
Hortonworks DataFlow

 (January 31, 2018)

MiNiFi Java Agent Administration

docs.cloudera.com

http://docs.cloudera.com

Hortonworks DataFlow January 31, 2018

ii

Hortonworks DataFlow: MiNiFi Java Agent Administration
Copyright © 2012-2018 Hortonworks, Inc. Some rights reserved.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks DataFlow January 31, 2018

iii

Table of Contents
1. MiNiFi System Administrator's Guide .. 1

1.1. Automatic Warm-Redeploy ... 1
1.1.1. FileChangeIngestor ... 1
1.1.2. RestChangeIngestor ... 2
1.1.3. PullHttpChangeIngestor ... 3

1.2. Status Reporting and Querying ... 3
1.2.1. FlowStatus Script Query ... 3
1.2.2. Periodic Status Reporters .. 4
1.2.3. FlowStatus Query Options .. 5

1.3. Periodic Status Reporters Config File ... 8
1.3.1. Versioning .. 8
1.3.2. Flow Controller .. 8
1.3.3. Core Properties .. 8
1.3.4. FlowFile Repository .. 9
1.3.5. Content Repository .. 10
1.3.6. Provenance Repository ... 10
1.3.7. Component Status Repository .. 10
1.3.8. Security Properties .. 11
1.3.9. Processors ... 11
1.3.10. Process Groups ... 13
1.3.11. Input Ports ... 14
1.3.12. Output Ports .. 14
1.3.13. Funnels ... 14
1.3.14. Connections .. 14
1.3.15. Remote Process Groups .. 15
1.3.16. Provenance Reporting .. 16

1.4. Example Config File ... 16

Hortonworks DataFlow January 31, 2018

1

1. MiNiFi System Administrator's Guide

1.1. Automatic Warm-Redeploy
When many MiNiFi agents running on the edge, it may not be possible to manually stop,
edit the config.yml and then restart every one every time their configuration needs to
change. The Config Change Coordinator and its Ingestors were designed to automatically
redeploy in response to a configuration update.

The Config Change Ingestors are the means by which the agent is notified of a potential
new configuration. Currently there are three:

• FileChangeIngestor

• RestChangeIngestor

• PullHttpChangeIngestor

After a new configuration has been pulled/received the Ingestors use a Differentiator
in order to determine if the currently running config is different than the new config.
Which Differentiator is used, is configurable for each Ingestor. Currently there is only one
Differentiator:

• WholeConfigDifferentiator: Compares the entire new config with the currently running
one, byte for byte.

After a new config is determined to be new, the MiNiFi agent will attempt to restart. The
bootstrap first saves the old config into a swap file. The bootstrap monitors the agent as it
restarts and if it fails it will roll back to the old config. If it succeeds then the swap file will
be deleted and the agent will start processing using the new config.

Note: Data left in connections when the agent attempts to restart will either be mapped to
a connection with the same ID in the new config, or orphaned and deleted.

The configuration for Warm-Redeploy is done in the bootstrap.conf and primarily revolve
around the Config Change Ingestors. The configuration in the bootstrap.conf is done using
the "nifi.minifi.notifier.ingestors" key followed by the full path name of the desired Ingestor
implementation to run. Use a comma separated list to define more than one Ingestor
implementation. For example:

nifi.minifi.notifier.ingestors=org.apache.nifi.minifi.bootstrap.configuration.
ingestors.PullHttpChangeIngestor

Ingestor specific configuration is also necessary and done in the bootstrap.conf as well.
Specifics for each are detailed below.

1.1.1. FileChangeIngestor

class name: org.apache.nifi.minifi.bootstrap.configuration.ingestors.FileChangeIngestor

This Config Change Ingestor watches a file and when the file is updated, the file is ingested
as a new config.

Hortonworks DataFlow January 31, 2018

2

Note: The config file path configured here and in "nifi.minifi.config" cannot be the same.
This is due to the swapping mechanism and other implementation limitations.

Below are the configuration options. The file config path is the only required property.

Option Description

nifi.minifi.notifier.ingestors.file.config.path Path of the file to monitor for changes. When these
occur, the FileChangeNotifier, if configured, will begin the
configuration reloading process

nifi.minifi.notifier.ingestors.file.polling.period.seconds How frequently the file specified by
'nifi.minifi.notifier.file.config.path' should be evaluated
for changes. If not set then a default polling period of 15
seconds will be used.

nifi.minifi.notifier.ingestors.file.differentiator Which differentiator to use. If not set then it uses the
WholeConfigDifferentiator as a default.

1.1.2. RestChangeIngestor

class name: org.apache.nifi.minifi.bootstrap.configuration.ingestors.RestChangeIngestor

This Config Change Ingestor sets up a light-weight Jetty HTTP(S) REST service in order to
listen to HTTP(S) requests. A potential new configuration is sent via a POST request with
the BODY being the potential new config.

Note: The encoding is expected to be Unicode and the exact version specified by the BOM
mark ('UTF-8','UTF-16BE' or 'UTF-16LE'). If there is no BOM mark, then UTF-8 is used.

Here is an example post request using 'curl' hitting the local machine on pot 8338 and it is
executed with the config file "config.yml" in the directory the command is run from:

curl --request POST --data-binary "@config.yml" http://localhost:8338/

Below are the configuration options. There are no required options. If no properties are set
then the server will bind to hostname "localhost" on a random open port, will only connect
via HTTP and will use the WholeConfigDifferentiator.

Option Description

nifi.minifi.notifier.ingestors.receive.http.host Hostname on which the Jetty server will bind to. If not
specified then it will bind to localhost.

nifi.minifi.notifier.ingestors.receive.http.port Port on which the Jetty server will bind to. If not specified
then it will bind to a random open port.

nifi.minifi.notifier.ingestors.receive.http.truststore.location If using HTTPS, this specifies the location of the truststore.

nifi.minifi.notifier.ingestors.receive.http.truststore.passwordIf using HTTPS, this specifies the password of the
truststore.

nifi.minifi.notifier.ingestors.receive.http.truststore.type If using HTTPS, this specifies the type of the truststore.

nifi.minifi.notifier.ingestors.receive.http.keystore.location If using HTTPS, this specifies the location of the keystore.

nifi.minifi.notifier.ingestors.receive.http.keystore.password If using HTTPS, this specifies the password of the keystore.

nifi.minifi.notifier.ingestors.receive.http.keystore.type If using HTTPS, this specifies the type of the keystore.

nifi.minifi.notifier.ingestors.receive.http.need.client.auth If using HTTPS, this specifies whether or not to require
client authentication.

nifi.minifi.notifier.ingestors.receive.http.differentiator Which differentiator to use. If not set then it uses the
WholeConfigDifferentiator as a default.

Hortonworks DataFlow January 31, 2018

3

1.1.3. PullHttpChangeIngestor

class name:
org.apache.nifi.minifi.bootstrap.configuration.ingestors.PullHttpChangeIngestor

This Config Change Ingestor periodically sends a GET request to a REST endpoint using
HTTP(S) to order to pull the potential new config.

Below are the configuration options. The hostname and port are the only required
properties.

Option Description

nifi.minifi.notifier.ingestors.pull.http.hostname Hostname on which to pull configurations from

nifi.minifi.notifier.ingestors.pull.http.port Port on which to pull configurations from

nifi.minifi.notifier.ingestors.pull.http.path Path on which to pull configurations from

nifi.minifi.notifier.ingestors.pull.http.period.ms Period on which to pull configurations from, defaults to 5
minutes if not set.

nifi.minifi.notifier.ingestors.pull.http.use.etag If the destination server is set up with cache control ability
and utilizes an "ETag" header, then this should be set to
true to utilize it. Very simply, the Ingestor remembers
the "ETag" of the last successful pull (returned 200) then
uses that "ETag" in a "If-None-Match" header on the next
request.

nifi.minifi.notifier.ingestors.pull.http.connect.timeout.ms Sets the connect timeout for new connections. A value of
0 means no timeout, otherwise values must be a positive
whole number in milliseconds.

nifi.minifi.notifier.ingestors.pull.http.read.timeout.ms Sets the read timeout for new connections. A value of 0
means no timeout, otherwise values must be a positive
whole number in milliseconds.

nifi.minifi.notifier.ingestors.pull.http.truststore.location If using HTTPS, this specifies the location of the truststore.

nifi.minifi.notifier.ingestors.pull.http.truststore.password If using HTTPS, this specifies the password of the
truststore.

nifi.minifi.notifier.ingestors.pull.http.truststore.type If using HTTPS, this specifies the type of the truststore.

nifi.minifi.notifier.ingestors.pull.http.keystore.location If using HTTPS, this specifies the location of the keystore.

nifi.minifi.notifier.ingestors.pull.http.keystore.password If using HTTPS, this specifies the password of the keystore.

nifi.minifi.notifier.ingestors.pull.http.keystore.type If using HTTPS, this specifies the type of the keystore.

nifi.minifi.notifier.ingestors.pull.http.differentiator Which differentiator to use. If not set then it uses the
WholeConfigDifferentiator as a default.

1.2. Status Reporting and Querying
In NiFi there is a lot of information, such as stats and bulletins, that is only available to view
through the UI. MiNiFi provides access to this information through a query mechanism. You
can query FlowStatus either using the MiNiFi.sh script or by configuring one of the Periodic
Status Reporters. The API for the query is the same for the reporters and the "flowStatus"
script option. The API is outlined in the "FlowStatus Query Options" section below.

1.2.1. FlowStatus Script Query

From the minifi.sh script, you can manually query to get the current status of your
dataflow. The following is an example of a minifi.sh query you might run to view health,

Hortonworks DataFlow January 31, 2018

4

stats, and bulletins for the TailFile processor. This query returns information to your
command-line.

minifi.sh flowStatus processor:TailFile:health,stats,bulletins

Currently the script only accepts one high level option at a time. Also any names of
connections, remote process groups, or processors that contain "" (a space), ":", ";" or ","
cause parsing errors when querying.

1.2.2. Periodic Status Reporters

You can set up Periodic Status Reporters to periodically report the status of your dataflow.
The query executes at configurable intervals and the results are reported using the
configured implementation. Configure the Reporters in the bootstrap.conf file, using the
"nifi.minifi.status.reporter.components" key followed by the full path name of the desired
Reporter implementation to run. Use a comma separated list to define more than one
Reporter implementation. For example:

nifi.minifi.status.reporter.components=org.apache.nifi.minifi.bootstrap.
status.reporters.StatusLogger

1.2.2.1. StatusLogger

class name: org.apache.nifi.minifi.bootstrap.status.reporters.StatusLogger

The Periodic Status Reporter logs the results of the query to the logs. By default it is logged
to the minifi-bootstrap.log but you can modify logback.xml to log to an alternate file and
location.

Option Description

nifi.minifi.status.reporter.log.query The FlowStatus query to run.

nifi.minifi.status.reporter.log.level The log level at which to log the status. Available options
are "TRACE", "DEBUG", "INFO", "WARN" and "ERROR".

nifi.minifi.status.reporter.log.period The delay (in milliseconds) between each query.

Example bootstrap.conf configuration:

The FlowStatus query to submit to the MiNiFi instance
nifi.minifi.status.reporter.log.query=instance:health,bulletins
The log level at which the status will be logged
nifi.minifi.status.reporter.log.level=INFO
The period (in milliseconds) at which to log the status
nifi.minifi.status.reporter.log.period=60000

Example logback.xml configuration to output the status to its own rolling log file:

<appender name="STATUS_LOG_FILE" class="ch.qos.logback.core.rolling.
RollingFileAppender">
 <file>logs/minifi-status.log</file>
 <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <!--
 For daily rollover, use 'user_%d.log'.
 For hourly rollover, use 'user_%d{yyyy-MM-dd_HH}.log'.
 To GZIP rolled files, replace '.log' with '.log.gz'.
 To ZIP rolled files, replace '.log' with '.log.zip'.
 -->

Hortonworks DataFlow January 31, 2018

5

 <fileNamePattern>./logs/minifi-status_%d.log</fileNamePattern>
 <!-- keep 5 log files worth of history -->
 <maxHistory>5</maxHistory>
 </rollingPolicy>
 <encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">
 <pattern>%date %level [%thread] %logger{40} %msg%n</pattern>
 </encoder>
</appender>

<logger name="org.apache.nifi.minifi.bootstrap.status.reporters.StatusLogger"
 level="INFO" additivity="false">
 <appender-ref ref="STATUS_LOG_FILE" />
</logger>

1.2.3. FlowStatus Query Options

This section outlines each option to query the MiNiFi instance for the FlowStatus.

1.2.3.1. Processors

To query the processors use the "processor" flag followed by the processor ID to get (or
"all") followed by one of the processor options. The processor options are below.

Option Description

health The processor's run status, whether or not it has bulletins
and the validation errors (if there are any).

bulletins A list of all the current bulletins (if there are any).

stats The current stats of the processor. This includes but is not
limited to active threads and FlowFiles sent/received.

An example query to get the health, bulletins and stats of the "TailFile" processor is below.

minifi.sh flowStatus processor:TailFile:health,stats,bulletins

1.2.3.2. Connections

To query the connections use the "connection" flag followed by the connection ID to get (or
"all") followed by one of the connection options. The connection options are below.

Option Description

health The connections's queued bytes and queued FlowFile
count.

stats The current stats of the connection. This includes input/
output count and input/output bytes.

An example query to get the health and stats of the "TailToS2S" connection is below.

minifi.sh flowStatus connection:TailToS2S:health,stats

1.2.3.3. Remote Process Groups

To query the remote process groups (RPG) use the "remoteProcessGroup" flag followed
by the RPG ID to get (or "all") followed by one of the remote process group options. The
remote process group options are below.

Hortonworks DataFlow January 31, 2018

6

Option Description

health The connections's queued bytes and queued FlowFile
count.

bulletins A list of all the current bulletins (if there are any).

inputPorts A list of every input port for this RPG and their status.
Their status includes it's name, whether the target exit and
whether it's currently running.

stats The current stats of the RPG. This includes the active
threads, sent content size and count.

An example query to get the health, bulletins, input ports and stats of all the RPGs is below.

minifi.sh flowStatus remoteprocessgroup:all:health,bulletins,inputports,stats

1.2.3.4. Controller Services

To query the controller services use the "controllerServices" flag followed by one of the
controller service options. The controller service options are below.

Option Description

health The controller service's state, whether or not it has
bulletins and any validation errors.

bulletins A list of all the current bulletins (if there are any).

An example query to get the health and bulletins of all the controller services is below.

minifi.sh flowStatus controllerservices:health,bulletins

1.2.3.5. Provenance Reporting

To query the status of the provenance reporting use the "provenancereporting" flag
followed by one of the provenance reporting options. The provenance reporting options
are below.

Option Description

health The provenance reporting state, active threads, whether
or not it has bulletins and any validation errors.

bulletins A list of all the current bulletins (if there are any).

An example query to get the health and bulletins of the provenance reporting is below.

minifi.sh flowStatus provenancereporting:health,bulletins

1.2.3.6. Instance

To query the status of the MiNiFi instance use the "instance" flag followed by one of the
instance options. The instance options are below.

Option Description

health The provenance reporting state, active threads, whether
or not it has bulletins and any validation errors.

bulletins A list of all the current bulletins (if there are any).

stats The current stats of the instance. This including but
not limited to bytes read/written and FlowFiles sent/
transferred.

Hortonworks DataFlow January 31, 2018

7

An example query to get the health, stats and bulletins of the instance is below.

minifi.sh flowStatus instance:health,stats,bulletins

1.2.3.7. System Diagnostics

To query the system diagnostics use the "systemdiagnostics" flag followed by one of the
system diagnostics options. The system diagnostics options are below.

Option Description

heap Information detailing the state of the JVM heap.

processorstats The system processor stats. This includes the available
processors and load average.

contentrepositoryusage A list of each content repository and stats detailing its
usage.

flowfilerepositoryusage Stats about the current usage of the FlowFile repository.

garbagecollection A list of the garbage collection events, detailing their
name, collection count and time.

An example query to get the heap, processor stats, content repository usage, FlowFile
repository usage and garbage collection from the system diagnostics is below.

minifi.sh flowStatus systemdiagnostics:heap,processorstats,
contentrepositoryusage,flowfilerepositoryusage,garbagecollection

1.2.3.8. Example

This is an example of a simple query to get the health of all the processors and its results
from a simple flow:

User:minifi-0.0.1-SNAPSHOT user ./bin/minifi.sh flowStatus
 processor:all:health

Java home: /Library/Java/JavaVirtualMachines/jdk1.8.0_74.jdk/Contents/Home
MiNiFi home: /Users/user/projects/nifi-minifi/minifi-assembly/target/minifi-0.
0.1-SNAPSHOT-bin/minifi-0.0.1-SNAPSHOT

Bootstrap Config File: /Users/user/projects/nifi-minifi/minifi-assembly/
target/minifi-0.0.1-SNAPSHOT-bin/minifi-0.0.1-SNAPSHOT/conf/bootstrap.conf

{"controllerServiceStatusList":null,"processorStatusList":
[{"name":"Connection Diagnostics","processorHealth":{"runStatus":"Running",
"hasBulletins":false,"validationErrorList":[]},"processorStats":null,
"bulletinList":null},{"name":"UpdateAttribute","processorHealth":
{"runStatus":"Running","hasBulletins":false,"validationErrorList":
[]},"processorStats":null,"bulletinList":null},{"name":"Processor
 Diagnostics","processorHealth":{"runStatus":"Running","hasBulletins":false,
"validationErrorList":[]},"processorStats":null,"bulletinList":null},
{"name":"System Diagnostics","processorHealth":{"runStatus":"Running",
"hasBulletins":false,"validationErrorList":[]},"processorStats":null,
"bulletinList":null},{"name":"GenerateFlowFile","processorHealth":
{"runStatus":"Running","hasBulletins":false,"validationErrorList":[]},
"processorStats":null,"bulletinList":null}],"connectionStatusList":null,
"remoteProcessGroupStatusList":null,"instanceStatus":null,
"systemDiagnosticsStatus":null,"reportingTaskStatusList":null,
"errorsGeneratingReport":[]}

Hortonworks DataFlow January 31, 2018

8

1.3. Periodic Status Reporters Config File
The config.yml in the conf directory is the main configuration file for controlling how MiNiFi
runs. This section provides an overview of the properties in this file. The file is a YAML and
follows the YAML format laid out here.

Note: Values for periods of time and data sizes must include the unit of measure, for
example "10 sec" or "10 MB", not simply "10".

1.3.1. Versioning
The "MiNiFi Config Version" property is used to indicate to the configuration parser which
version of the config file it is looking at. If the property is empty or missing, version 1 is
assumed.

The MiNiFi Toolkit Converter is capable of parsing previous versions (possibly subject to a
future deprecation policy) and writing out the current version. It can also validate that a
given config file parses and upconverts to the current version without issue.

1.3.1.1. Version 1 -> Version 2 changes

1. Use ids instead of names for processors, connections.

2. Allow multiple source relationships for connections.

3. Added support for process groups, and internal input ports an output ports.

4. Change Id Key for RPGs from "Remote Processing Groups" to the proper "Remote Process
Groups" (not "ing").

1.3.1.2. Version 2 -> Version 3 changes

1. Added support for Controller Services.

2. Added support for Site-To-Site over proxy.

1.3.2. Flow Controller
The first section of config.yml is for naming and commenting on the file.

Property Description

MiNiFi Config Version The version of the configuration file. The default value if
this property is missing or empty is 1, the current value is 2.

name The name of the file.

comment A comment describing the usage of this config file.

1.3.3. Core Properties
The Core Properties section applies to the core framework as a whole.

Property Description

flow controller graceful shutdown period Indicates the shutdown period. The default value is 10 sec.

http://www.yaml.org/

Hortonworks DataFlow January 31, 2018

9

Property Description

flow service write delay interval When many changes are made to the flow.xml, this
property specifies how long to wait before writing out the
changes, so as to batch the changes into a single write.
The default value is 500 ms.

administrative yield duration If a component allows an unexpected exception to escape,
it is considered a bug. As a result, the framework will
pause (or administratively yield) the component for this
amount of time. This is done so that the component does
not use up massive amounts of system resources, since it is
known to have problems in the existing state. The default
value is 30 sec.

bored yield duration When a component has no work to do (i.e., is "bored"),
this is the amount of time it will wait before checking to
see if it has new data to work on. This way, it does not use
up CPU resources by checking for new work too often.
When setting this property, be aware that it could add
extra latency for components that do not constantly have
work to do, as once they go into this "bored" state, they
will wait this amount of time before checking for more
work. The default value is 10 millis.

max concurrent threads The maximum number of threads any processor can have
running at one time.

1.3.4. FlowFile Repository
The FlowFile repository keeps track of the attributes and current state of each FlowFile
in the system. By default, this repository is installed in the same root installation directory
as all the other repositories; however, it is advisable to configure it on a separate drive if
available.

Property Description

partitions The number of partitions. The default value is 256.

checkpoint interval The FlowFile Repository checkpoint interval. The default
value is 2 mins.

always sync If set to true, any change to the repository will be
synchronized to the disk, meaning that NiFi will ask the
operating system not to cache the information. This is very
expensive and can significantly reduce NiFi performance.
However, if it is false, there could be the potential for data
loss if either there is a sudden power loss or the operating
system crashes. The default value is false.

1.3.4.1. Swap Subsection

A part of the FlowFile Repository section there is a Swap subsection.

NiFi keeps FlowFile information in memory (the JVM) but during surges of incoming data,
the FlowFile information can start to take up so much of the JVM that system performance
suffers. To counteract this effect, NiFi "swaps" the FlowFile information to disk temporarily
until more JVM space becomes available again. The "Swap" subsection of properties govern
how that process occurs.

Property Description

threshold The queue threshold at which NiFi starts to swap FlowFile
information to disk. The default value is 20000.

in period The swap in period. The default value is 5 sec.

Hortonworks DataFlow January 31, 2018

10

Property Description

in threads The number of threads to use for swapping in. The default
value is 1.

out period The swap out period. The default value is 5 sec.

out threads The number of threads to use for swapping out. The
default value is 4.

1.3.5. Content Repository
The Content Repository holds the content for all the FlowFiles in the system. By default,
it is installed in the same root installation directory as all the other repositories; however,
administrators will likely want to configure it on a separate drive if available. If nothing
else, it is best if the Content Repository is not on the same drive as the FlowFile Repository.
In dataflows that handle a large amount of data, the Content Repository could fill up a
disk and the FlowFile Repository, if also on that disk, could become corrupt. To avoid this
situation, configure these repositories on different drives.

Property Description

content claim max appendable size The maximum size for a content claim. The default value is
10 MB.

content claim max flow files The maximum number of FlowFiles to assign to one
content claim. The default value is 100.

always sync If set to true, any change to the repository will be
synchronized to the disk, meaning that NiFi will ask the
operating system not to cache the information. This is very
expensive and can significantly reduce NiFi performance.
However, if it is false, there could be the potential for data
loss if either there is a sudden power loss or the operating
system crashes. The default value is false.

1.3.6. Provenance Repository
Property Description

provenance rollover time The amount of time to wait before rolling over the latest
data provenance information so that it is available to be
accessed by components. The default value is 1 min.

1.3.7. Component Status Repository
The Component Status Repository contains the information for the Component Status
History tool in the User Interface. These properties govern how that tool works.

The buffer.size and snapshot.frequency work together to determine the amount of
historical data to retain. As an example to configure two days worth of historical data with
a data point snapshot occurring every 5 minutes you would configure snapshot.frequency
to be "5 mins" and the buffer.size to be "576". To further explain this example for every 60
minutes there are 12 (60 / 5) snapshot windows for that time period. To keep that data for
48 hours (12 * 48) you end up with a buffer size of 576.

Property Description

buffer size Specifies the buffer size for the Component Status
Repository. The default value is 1440.

snapshot frequency This value indicates how often to present a snapshot of
the components' status history. The default value is 1 min.

Hortonworks DataFlow January 31, 2018

11

1.3.8. Security Properties

These properties pertain to various security features in NiFi. Many of these properties are
covered in more detail in the Security Configuration section of this Administrator's Guide.

Property Description

keystore The full path and name of the keystore. It is blank by
default.

keystore type The keystore type. It is blank by default.

keystore password The keystore password. It is blank by default.

key password The key password. It is blank by default.

truststore The full path and name of the truststore. It is blank by
default.

truststore type The truststore type. It is blank by default.

truststore password The truststore password. It is blank by default.

ssl protocol The protocol to use when communicating via https.
Necessary to transfer provenance securely.

Note: A StandardSSLContextService will be made automatically with the ID "SSL-Context-
Service" if "ssl protocol" is configured.

1.3.8.1. Sensitive Properties Subsection

Some properties for processors are marked as sensitive and should be encrypted. These
following properties will be used to encrypt the properties while in use by MiNiFi. This will
currently not be used to encrypt properties in the config file.

Property Description

key This is the password used to encrypt any sensitive property
values that are configured in processors. By default, it
is blank, but the system administrator should provide a
value for it. It can be a string of any length, although the
recommended minimum length is 10 characters. Be aware
that once this password is set and one or more sensitive
processor properties have been configured, this password
should not be changed.

algorithm The algorithm used to encrypt sensitive properties. The
default value is PBEWITHMD5AND256BITAES-CBC-
OPENSSL.

provider The sensitive property provider. The default value is BC.

1.3.9. Processors

The current implementation of MiNiFi supports multiple processors. The "Processors"
subsection is a list of these processors. Each processor must specify these properties. They
are the basic configuration general to all processor implementations. Make sure that all
relationships for a processor are accounted for in the auto-terminated relationship list or
are used in a connection.

Property Description

name The name of what this processor will do. This is not used
for any underlying implementation but solely for the users
of this configuration and MiNiFi agent.

Hortonworks DataFlow January 31, 2018

12

Property Description

id The id of this processor. This can be omitted but in
processors without this field, there should not be any
duplicate names and connections will need to specify
source and destination name instead of id. If set it should
be a filesystem-friendly value (regex: [A-Za-z0-9_-]+)

class The fully qualified java class name of the processor to run.
For example for the standard TailFile processor it would
be: org.apache.nifi.processors.standard.TailFile

max concurrent tasks The maximum number of tasks that the processor will use.

scheduling strategy The strategy for executing the processor. Valid options are
CRON_DRIVEN or TIMER_DRIVEN

scheduling period This property expects different input depending on the
scheduling strategy selected. For the TIMER_DRIVEN
scheduling strategy, this value is a time duration specified
by a number followed by a time unit. For example, 1
second or 5 mins. The default value of 0 sec means that
the Processor should run as often as possible as long as it
has data to process. This is true for any time duration of
0, regardless of the time unit (i.e., 0 sec, 0 mins, 0 days).
For an explanation of values that are applicable for the
CRON driven scheduling strategy, see the description of
the CRON driven scheduling strategy in the scheduling tab
section of the NiFi User documentation.

penalization period Specifies how long FlowFiles will be penalized.

yield period In the event the processor cannot make progress it should
yield which will prevent the processor from being
scheduled to run for some period of time. That period of
time is specific using this property.

run duration nanos If the processor supports batching this property can
be used to control how long the Processor should be
scheduled to run each time that it is triggered. Smaller
values will have lower latency but larger values will have
higher throughput. This period should typically only be set
between 0 and 2000000000 (2 seconds).

auto-terminated relationships list A YAML list of the relationships to auto-terminate for the
processor.

annotation data Some processors make use of "Annotation Data" in order
to do more complex configuration, such as the Advanced
portion of UpdateAttribute. This data will be unique to
each implementing processor and more than likely will not
be written out manually.

1.3.9.1. Processor Properties

Within the Processor Configuration section, there is the Properties subsection. The keys
and values in this section are the property names and values for the processor. For example
the TailFile processor would have a section like this:

Properties:
 File to Tail: logs/nifi-app.log
 Rolling Filename Pattern: nifi-app*
 State File: ./conf/state/tail-file
 Initial Start Position: Beginning of File

1.3.9.2. Controller Services

The current implementation of MiNiFi supports Controller Services. The "Controller
Services" subsection is a list of these services. Each Controller Service must specify the

https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#scheduling-tab

Hortonworks DataFlow January 31, 2018

13

following properties. They are the basic configuration general to all Controller Service
implementations.

Property Description

name The name of what this Controller Service will do. This is not
used for any underlying implementation but solely for the
users of this configuration and MiNiFi agent.

id The id of this Controller Service. This must be a valid UUID.
To reference this Controller Service in the properties of
another component, this ID is used.

type The fully qualified java class name of the
processor to run. For example for the standard
StandardSSLContextService processor would be:
org.apache.nifi.ssl.StandardSSLContextService

Note: If the "Security Properties" is configured with an "ssl protocol" then a
StandardSSLContextService will be made automatically with the ID "SSL-Context-Service".

1.3.9.2.1. Controller Service Properties

Within the Controller Service Configuration section, there is the Properties subsection.
The keys and values in this section are the property names and values for the service. For
example the StandardSSLContextService would have a section like this:

Properties:
 Keystore Filename: /tmp/localhost/keystore.jks
 Keystore Password: keystorePassword
 Keystore Type: JKS
 SSL Protocol: TLS
 Truststore Filename: /tmp/truststore.jks
 Truststore Password: truststorePassword
 Truststore Type: JKS
 key-password: keyPassword

1.3.10. Process Groups
Process groups can be nested from the top level. They can contain other process groups as
well and can be used to logically group related operations.

Property Description

name The name of what this process group will do.

id The id of this process group. This needs to be set to a
unique filesystem-friendly value (regex: [A-Za-z0-9_-]+)

Processors The processors contained in this Process Group. (Defined
above)

Remote Process Groups The remote process groups contained in this Process
Group. (Defined below)

Connections The connections contained in this Process Group. (Defined
below)

Input Ports The input ports contained in this Process Group. (Defined
below)

Output Ports The output ports contained in this Process Group. (Defined
below)

Funnels The funnels contained in this Process Group. (Defined
below)

Process Groups The child Process Groups contained in this Process Group.

Hortonworks DataFlow January 31, 2018

14

1.3.11. Input Ports

These ports provide input to the Process Group they reside on. (Currently only for internal
Input ports.)

Property Description

name The name of what this input port will do.

id The id of this input port. This needs to be set to a unique
filesystem-friendly value (regex: [A-Za-z0-9_-]+)

1.3.12. Output Ports

These ports provide output from the Process Group they reside on. (Currently only for
internal Output ports.)

Property Description

name The name of what this output port will do.

id The id of this output port. This needs to be set to a unique
filesystem-friendly value (regex: [A-Za-z0-9_-]+)

1.3.13. Funnels

Funnels can be used to combine outputs from multiple processors into a single connection
for ease of design.

Property Description

id The id of this funnel. This needs to be set to a unique
filesystem-friendly value (regex: [A-Za-z0-9_-]+)

1.3.14. Connections

There can be multiple connections in this version of MiNiFi. The "Connections" subsection is
a list of connections. Each connection must specify these properties.

Property Description

name The name of what this connection will do. This is used for
the id of the connection so it must be unique.

id The id of this connection. This needs to be left empty or
set to a filesystem-friendly value (regex: [A-Za-z0-9_-]+)

source name The name of what of the processor that is the source for
this connection.

source relationship name The name of the processors relationship to route to this
connection

destination name The name of the component to receive this connection.

max work queue size This property is the max number of FlowFiles that can be
in the queue before back pressure is applied. When back
pressure is applied the source processor will no longer be
scheduled to run.

max work queue data size This property specifies the maximum amount of data
(in size) that should be queued up before applying back
pressure. When back pressure is applied the source
processor will no longer be scheduled to run.

Hortonworks DataFlow January 31, 2018

15

Property Description

flowfile expiration Indicates how long FlowFiles are allowed to exist in the
connection before be expired (automatically removed
from the flow).

queue prioritizer class This configuration option specifies the fully qualified
java class path of a queue prioritizer to use. If
no special prioritizer is desired then it should be
left blank. An example value of this property is:
org.apache.nifi.prioritizer.NewestFlowFileFirstPrioritizer

1.3.15. Remote Process Groups

MiNiFi can be used to send data using the Site to Site protocol (via a Remote Process
Group) or a Processor. These properties configure the Remote Process Groups that use Site-
To-Site to send data to a core instance. The proxy settings are for HTTP Site-To-Site.

Property Description

name The name of what this Remote Process Group points to.
This is not used for any underlying implementation but
solely for the users of this configuration and MiNiFi agent.

comment A comment about the Remote Process Group. This is not
used for any underlying implementation but solely for the
users of this configuration and MiNiFi agent.

url The URL of the core NiFi instance.

timeout How long MiNiFi should wait before timing out the
connection.

yield period When communication with this Remote Process Group
fails, it will not be scheduled again for this amount of time.

transport protocol The transport protocol to use for this Remote Process
Group. Can be either "RAW" or "HTTP"

proxy host The hostname of the proxy server

proxy port The port to connect to on the proxy server

proxy user The user name on the proxy server

proxy password The password for the proxy server

1.3.15.1. Input Ports Subsection

When connecting via Site to Site, MiNiFi needs to know which input port to communicate
to of the core NiFi instance. These properties designate and configure communication with
that port.

Property Description

id The id of the input port as it exists on the core NiFi
instance. To get this information access the UI of the core
instance, right the input port that is desired to be connect
to and select "configure". The id of the port should under
the "Id" section.

name The name of the input port as it exists on the core NiFi
instance. To get this information access the UI of the core
instance, right the input port that is desired to be connect
to and select "configure". The id of the port should under
the "Port name" section.

comments: A comment about the Input Port. This is not used for any
underlying implementation but solely for the users of this
configuration and MiNiFi agent.

Hortonworks DataFlow January 31, 2018

16

Property Description

max concurrent tasks The number of tasks that this port should be scheduled for
at maximum.

use compression Whether or not compression should be used when
communicating with the port. This is a boolean value of
either "true" or "false"

1.3.16. Provenance Reporting
MiNiFi is currently designed only to report provenance data using the Site to Site protocol.
These properties configure the underlying reporting task that sends the provenance events.

Property Description

comment A comment about the Provenance reporting. This is not
used for any underlying implementation but solely for the
users of this configuration and MiNiFi agent.

scheduling strategy The strategy for executing the Reporting Task. Valid
options are CRON_DRIVEN or TIMER_DRIVEN

scheduling period This property expects different input depending on the
scheduling strategy selected. For the TIMER_DRIVEN
scheduling strategy, this value is a time duration specified
by a number followed by a time unit. For example, 1
second or 5 mins. The default value of 0 sec means that
the Processor should run as often as possible as long as it
has data to process. This is true for any time duration of
0, regardless of the time unit (i.e., 0 sec, 0 mins, 0 days).
For an explanation of values that are applicable for the
CRON driven scheduling strategy, see the description of
the CRON driven scheduling strategy in the scheduling tab
section of the NiFi User documentation.

destination url The URL to post the Provenance Events to.

port name The name of the input port as it exists on the receiving NiFi
instance. To get this information access the UI of the core
instance, right the input port that is desired to be connect
to and select "configure". The id of the port should under
the "Port name" section.

originating url The URL of this MiNiFi instance. This is used to include the
Content URI to send to the destination.

use compression Indicates whether or not to compress the events when
being sent.

timeout How long MiNiFi should wait before timing out the
connection.

batch size Specifies how many records to send in a single batch, at
most. This should be significantly above the expected
amount of records generated between scheduling. If
it is not, then there is the potential for the Provenance
reporting to lag behind event generation and never catch
up.

Note: In order to send via HTTPS, the "Security Properties" must be fully configured. A
StandardSSLContextService will be made automatically with the ID "SSL-Context-Service"
and used by the Provenance Reporting.

1.4. Example Config File
Below are two example config YAML files. The first tails the minifi-app.log, send
the tailed log and provenance data back to a secure instance of NiFi. The second

https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#scheduling-tab

Hortonworks DataFlow January 31, 2018

17

uses a series of processors to tail the app log, routes off only lines that contain
"WriteAheadFlowFileRepository" and puts it as a file in the "" directory.

MiNiFi Config Version: 1
Flow Controller:
 name: MiNiFi Flow
 comment:

Core Properties:
 flow controller graceful shutdown period: 10 sec
 flow service write delay interval: 500 ms
 administrative yield duration: 30 sec
 bored yield duration: 10 millis

FlowFile Repository:
 partitions: 256
 checkpoint interval: 2 mins
 always sync: false
 Swap:
 threshold: 20000
 in period: 5 sec
 in threads: 1
 out period: 5 sec
 out threads: 4

Provenance Repository:
 provenance rollover time: 1 min

Content Repository:
 content claim max appendable size: 10 MB
 content claim max flow files: 100
 always sync: false

Component Status Repository:
 buffer size: 1440
 snapshot frequency: 1 min

Security Properties:
 keystore: /tmp/ssl/localhost-ks.jks
 keystore type: JKS
 keystore password: localtest
 key password: localtest
 truststore: /tmp/ssl/localhost-ts.jks
 truststore type: JKS
 truststore password: localtest
 ssl protocol: TLS
 Sensitive Props:
 key:
 algorithm: PBEWITHMD5AND256BITAES-CBC-OPENSSL
 provider: BC

Processors:
 - name: TailFile
 class: org.apache.nifi.processors.standard.TailFile
 max concurrent tasks: 1
 scheduling strategy: TIMER_DRIVEN
 scheduling period: 1 sec
 penalization period: 30 sec
 yield period: 1 sec
 run duration nanos: 0

Hortonworks DataFlow January 31, 2018

18

 auto-terminated relationships list:
 Properties:
 File to Tail: logs/minifi-app.log
 Rolling Filename Pattern: minifi-app*
 Initial Start Position: Beginning of File

Connections:
 - name: TailToS2S
 source name: TailFile
 source relationship name: success
 destination name: 8644cbcc-a45c-40e0-964d-5e536e2ada61
 max work queue size: 0
 max work queue data size: 1 MB
 flowfile expiration: 60 sec
 queue prioritizer class: org.apache.nifi.prioritizer.
NewestFlowFileFirstPrioritizer

Remote Processing Groups:
 - name: NiFi Flow
 comment:
 url: https://localhost:8090/nifi
 timeout: 30 secs
 yield period: 10 sec
 Input Ports:
 - id: 8644cbcc-a45c-40e0-964d-5e536e2ada61
 name: tailed log
 comments:
 max concurrent tasks: 1
 use compression: false

Provenance Reporting:
 comment:
 scheduling strategy: TIMER_DRIVEN
 scheduling period: 30 sec
 destination url: https://localhost:8090/
 port name: provenance
 originating url: http://${hostname(true)}:8081/nifi
 use compression: true
 timeout: 30 secs
 batch size: 1000

Flow Controller:
 name: MiNiFi Flow
 comment:

Core Properties:
 flow controller graceful shutdown period: 10 sec
 flow service write delay interval: 500 ms
 administrative yield duration: 30 sec
 bored yield duration: 10 millis
 max concurrent threads: 1

FlowFile Repository:
 partitions: 256
 checkpoint interval: 2 mins
 always sync: false
 Swap:
 threshold: 20000
 in period: 5 sec
 in threads: 1

Hortonworks DataFlow January 31, 2018

19

 out period: 5 sec
 out threads: 4

Content Repository:
 content claim max appendable size: 10 MB
 content claim max flow files: 100
 always sync: false

Component Status Repository:
 buffer size: 1440
 snapshot frequency: 1 min

Security Properties:
 keystore: /tmp/ssl/localhost-ks.jks
 keystore type: JKS
 keystore password: localtest
 key password: localtest
 truststore: /tmp/ssl/localhost-ts.jks
 truststore type: JKS
 truststore password: localtest
 ssl protocol: TLS
 Sensitive Props:
 key:
 algorithm: PBEWITHMD5AND256BITAES-CBC-OPENSSL
 provider: BC

Processors:
 - name: TailAppLog
 class: org.apache.nifi.processors.standard.TailFile
 max concurrent tasks: 1
 scheduling strategy: TIMER_DRIVEN
 scheduling period: 10 sec
 penalization period: 30 sec
 yield period: 1 sec
 run duration nanos: 0
 auto-terminated relationships list:
 Properties:
 File to Tail: logs/minifi-app.log
 Rolling Filename Pattern: minifi-app*
 Initial Start Position: Beginning of File
 - name: SplitIntoSingleLines
 class: org.apache.nifi.processors.standard.SplitText
 max concurrent tasks: 1
 scheduling strategy: TIMER_DRIVEN
 scheduling period: 0 sec
 penalization period: 30 sec
 yield period: 1 sec
 run duration nanos: 0
 auto-terminated relationships list:
 - failure
 - original
 Properties:
 Line Split Count: 1
 Header Line Count: 0
 Remove Trailing Newlines: true
 - name: RouteErrors
 class: org.apache.nifi.processors.standard.RouteText
 max concurrent tasks: 1
 scheduling strategy: TIMER_DRIVEN
 scheduling period: 0 sec

Hortonworks DataFlow January 31, 2018

20

 penalization period: 30 sec
 yield period: 1 sec
 run duration nanos: 0
 auto-terminated relationships list:
 - unmatched
 - original
 Properties:
 Routing Strategy: Route to 'matched' if line matches all conditions
 Matching Strategy: Contains
 Character Set: UTF-8
 Ignore Leading/Trailing Whitespace: true
 Ignore Case: true
 Grouping Regular Expression:
 WALFFR: WriteAheadFlowFileRepository
 - name: PutFile
 class: org.apache.nifi.processors.standard.PutFile
 max concurrent tasks: 1
 scheduling strategy: TIMER_DRIVEN
 scheduling period: 0 sec
 penalization period: 30 sec
 yield period: 1 sec
 run duration nanos: 0
 auto-terminated relationships list:
 - failure
 - success
 Properties:
 Directory: ./
 Conflict Resolution Strategy: replace
 Create Missing Directories: true
 Maximum File Count:
 Last Modified Time:
 Permissions:
 Owner:
 Group:

Connections:
 - name: TailToSplit
 source name: TailAppLog
 source relationship name: success
 destination name: SplitIntoSingleLines
 max work queue size: 0
 max work queue data size: 1 MB
 flowfile expiration: 60 sec
 queue prioritizer class: org.apache.nifi.prioritizer.
NewestFlowFileFirstPrioritizer
 - name: SplitToRoute
 source name: SplitIntoSingleLines
 source relationship name: splits
 destination name: RouteErrors
 max work queue size: 0
 max work queue data size: 1 MB
 flowfile expiration: 60 sec
 queue prioritizer class: org.apache.nifi.prioritizer.
NewestFlowFileFirstPrioritizer
 - name: RouteToS2S
 source name: RouteErrors
 source relationship name: matched
 destination name: PutFile
 max work queue size: 0
 max work queue data size: 1 MB

Hortonworks DataFlow January 31, 2018

21

 flowfile expiration: 60 sec
 queue prioritizer class: org.apache.nifi.prioritizer.
NewestFlowFileFirstPrioritizer

Provenance Reporting:
 comment:
 scheduling strategy: TIMER_DRIVEN
 scheduling period: 30 sec
 destination url: https://localhost:8080/
 port name: provenance
 originating url: http://${hostname(true)}:8081/nifi
 use compression: true
 timeout: 30 secs
 batch size: 1000

	Hortonworks DataFlow
	Table of Contents
	1. MiNiFi System Administrator's Guide
	1.1. Automatic Warm-Redeploy
	1.1.1. FileChangeIngestor
	1.1.2. RestChangeIngestor
	1.1.3. PullHttpChangeIngestor

	1.2. Status Reporting and Querying
	1.2.1. FlowStatus Script Query
	1.2.2. Periodic Status Reporters
	1.2.2.1. StatusLogger

	1.2.3. FlowStatus Query Options
	1.2.3.1. Processors
	1.2.3.2. Connections
	1.2.3.3. Remote Process Groups
	1.2.3.4. Controller Services
	1.2.3.5. Provenance Reporting
	1.2.3.6. Instance
	1.2.3.7. System Diagnostics
	1.2.3.8. Example

	1.3. Periodic Status Reporters Config File
	1.3.1. Versioning
	1.3.1.1. Version 1 -> Version 2 changes
	1.3.1.2. Version 2 -> Version 3 changes

	1.3.2. Flow Controller
	1.3.3. Core Properties
	1.3.4. FlowFile Repository
	1.3.4.1. Swap Subsection

	1.3.5. Content Repository
	1.3.6. Provenance Repository
	1.3.7. Component Status Repository
	1.3.8. Security Properties
	1.3.8.1. Sensitive Properties Subsection

	1.3.9. Processors
	1.3.9.1. Processor Properties
	1.3.9.2. Controller Services
	1.3.9.2.1. Controller Service Properties

	1.3.10. Process Groups
	1.3.11. Input Ports
	1.3.12. Output Ports
	1.3.13. Funnels
	1.3.14. Connections
	1.3.15. Remote Process Groups
	1.3.15.1. Input Ports Subsection

	1.3.16. Provenance Reporting

	1.4. Example Config File

