
Hortonworks DataFlow

 (February 28, 2018)

Administration

docs.cloudera.com

http://docs.cloudera.com

Hortonworks DataFlow February 28, 2018

ii

Hortonworks DataFlow: Administration
Copyright © 2012-2018 Hortonworks, Inc. Some rights reserved.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks DataFlow February 28, 2018

iii

Table of Contents
1. NiFi System Administrator's Guide .. 1

1.1. NiFi System Administrator's Guide ... 1
1.1.1. Configuration Best Practices ... 1
1.1.2. Security Configuration .. 2
1.1.3. User Authentication ... 6
1.1.4. Multi-Tenant Authorization .. 10
1.1.5. Encryption Configuration .. 42
1.1.6. Encrypted Passwords in Configuration Files ... 50
1.1.7. Administrative Tools ... 54
1.1.8. Clustering Configuration ... 60
1.1.9. State Management ... 64
1.1.10. Bootstrap Properties ... 75
1.1.11. Notification Services ... 76
1.1.12. Proxy Configuration .. 79
1.1.13. Kerberos Service ... 80
1.1.14. System Properties ... 81

Hortonworks DataFlow February 28, 2018

iv

List of Tables
1.1. Table 1. Maximum Password Length on Limited Cryptographic Strength JVM 48

Hortonworks DataFlow February 28, 2018

1

1. NiFi System Administrator's Guide

1.1. NiFi System Administrator's Guide

1.1.1. Configuration Best Practices

If you are running on Linux, consider these best practices. Typical Linux defaults are not
necessarily well tuned for the needs of an IO intensive application like NiFi. For all of these
areas, your distribution's requirements may vary. Use these sections as advice, but consult
your distribution-specific documentation for how best to achieve these recommendations.

Maximum File Handles NiFi will at any one time potentially have a very large number
of file handles open. Increase the limits by editing '/etc/
security/limits.conf' to add something like

* hard nofile 50000
* soft nofile 50000

Maximum Forked Processes NiFi may be configured to generate a significant
number of threads. To increase the allowable number
edit '/etc/security/limits.conf'

* hard nproc 10000
* soft nproc 10000

And your distribution may require an edit to /etc/security/limits.d/90-nproc.conf by adding

* soft nproc 10000

Increase the number of TCP
socket ports available

This is particularly important if your flow will be setting
up and tearing down a large number of sockets in small
period of time.

sudo sysctl -w net.ipv4.ip_local_port_range="10000 65000"

Set how long sockets stay in a
TIMED_WAIT state when closed

You don't want your sockets to sit and linger too long
given that you want to be able to quickly setup and
teardown new sockets. It is a good idea to read more
about it but to adjust do something like

sudo sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_time_wait="1"

Tell Linux you never want NiFi to
swap

Swapping is fantastic for some applications. It isn't good
for something like NiFi that always wants to be running.
To tell Linux you'd like swapping off you can edit '/etc/
sysctl.conf' to add the following line

vm.swappiness = 0

For the partitions handling the various NiFi repos turn off things like 'atime'. Doing so can
cause a surprising bump in throughput. Edit the '/etc/fstab' file and for the partition(s) of
interest add the 'noatime' option.

Hortonworks DataFlow February 28, 2018

2

1.1.2. Security Configuration

NiFi provides several different configuration options for security purposes. The most
important properties are those under the "security properties" heading in the nifi.properties
file. In order to run securely, the following properties must be set:

Property Name Description

nifi.security.keystore Filename of the Keystore that contains the server's private
key.

nifi.security.keystoreType The type of Keystore. Must be either PKCS12 or JKS.
JKS is the preferred type, PKCS12 files will be loaded with
BouncyCastle provider.

nifi.security.keystorePasswd The password for the Keystore.

nifi.security.keyPasswd The password for the certificate in the Keystore. If not set,
the value of nifi.security.keystorePasswd will be
used.

nifi.security.truststore Filename of the Truststore that will be used to authorize
those connecting to NiFi. A secured instance with no
Truststore will refuse all incoming connections.

nifi.security.truststoreType The type of the Truststore. Must be either PKCS12 or JKS.
JKS is the preferred type, PKCS12 files will be loaded with
BouncyCastle provider.

nifi.security.truststorePasswd The password for the Truststore.

nifi.security.needClientAuth Set to true to specify that connecting clients must
authenticate themselves. This property is used by the
NiFi cluster protocol to indicate that nodes in the cluster
will be authenticated and must have certificates that are
trusted by the Truststores.

Once the above properties have been configured, we can enable the User Interface
to be accessed over HTTPS instead of HTTP. This is accomplished by setting
the nifi.web.https.host and nifi.web.https.port properties. The
nifi.web.https.host property indicates which hostname the server should run
on. If it is desired that the HTTPS interface be accessible from all network interfaces,
a value of 0.0.0.0 should be used. To allow admins to configure the application to
run only on specific network interfaces, nifi.web.http.network.interface* or
nifi.web.https.network.interface* properties can be specified.

It is important when enabling HTTPS that the
nifi.web.http.port property be unset.

Similar to nifi.security.needClientAuth, the web server can be configured to
require certificate based client authentication for users accessing the User Interface. In
order to do this it must be configured to not support username/password authentication
using Lightweight Directory Access Protocol (LDAP) or Kerberos. Either of these options will
configure the web server to WANT certificate based client authentication. This will allow
it to support users with certificates and those without that may be logging in with their
credentials or those accessing anonymously. If username/password authentication and
anonymous access are not configured, the web server will REQUIRE certificate based client
authentication. See User Authentication for more details.

Now that the User Interface has been secured, we can easily secure Site-to-Site
connections and inner-cluster communications, as well. This is accomplished by setting

Hortonworks DataFlow February 28, 2018

3

the nifi.remote.input.secure and nifi.cluster.protocol.is.secure
properties, respectively, to true.

1.1.2.1. TLS Generation Toolkit

In order to facilitate the secure setup of NiFi, you can use the tls-toolkit command
line utility to automatically generate the required keystores, truststore, and relevant
configuration files. This is especially useful for securing multiple NiFi nodes, which can be a
tedious and error-prone process.

JKS keystores and truststores are recommended for NiFi.
This tool allows the specification of other keystore types
on the command line but will ignore a type of PKCS12
for use as the truststore because that format has some
compatibility issues between BouncyCastle and Oracle
implementations.

The tls-toolkit command line tool has two primary modes of operation:

1. Standalone - generates the certificate authority, keystores, truststores, and
nifi.properties files in one command.

2. Client/Server mode - uses a Certificate Authority Server that accepts Certificate Signing
Requests from clients, signs them, and sends the resulting certificates back. Both client
and server validate the other's identity through a shared secret.

1.1.2.1.1. Standalone

Standalone mode is invoked by running ./bin/tls-toolkit.sh standalone -h
which prints the usage information along with descriptions of options that can be specified.

You can use the following command line options with the tls-toolkit in standalone
mode:

• -a,--keyAlgorithm <arg> Algorithm to use for generated keys (default: RSA)

• -B,--clientCertPassword <arg> Password for client certificate. Must either be one
value or one for each client DN (auto-generate if not specified)

• -c,--certificateAuthorityHostname <arg> Hostname of NiFi Certificate
Authority (default: localhost)

• -C,--clientCertDn <arg> Generate client certificate suitable for use in browser with
specified DN (Can be specified multiple times)

• -d,--days <arg> Number of days issued certificate should be valid for (default: 1095)

• -f,--nifiPropertiesFile <arg> Base nifi.properties file to update
(Embedded file identical to the one in a default NiFi install will be used if not specified)

• -g,--differentKeyAndKeystorePasswords Use different generated password for
the key and the keystore

• -G,--globalPortSequence <arg> Use sequential ports that are calculated for all
hosts according to the provided hostname expressions (Can be specified multiple times,
MUST BE SAME FROM RUN TO RUN)

Hortonworks DataFlow February 28, 2018

4

• -h,--help Print help and exit

• -k,--keySize <arg> Number of bits for generated keys (default: 2048)

• -K,--keyPassword <arg> Key password to use. Must either be one value or one for
each host (auto-generate if not specified)

• -n,--hostnames <arg> Comma separated list of hostnames

• --nifiDnPrefix <arg> String to prepend to hostname(s) when determining DN
(default: CN=)

• --nifiDnSuffix <arg> String to append to hostname(s) when determining DN
(default: , OU=NIFI)

• -o,--outputDirectory <arg> The directory to output keystores, truststore, config
files (default: ../bin)

• -O,--isOverwrite Overwrite existing host output

• -P,--trustStorePassword <arg> Keystore password to use. Must either be one
value or one for each host (auto-generate if not specified)

• -s,--signingAlgorithm <arg> Algorithm to use for signing certificates (default:
SHA256WITHRSA)

• -S,--keyStorePassword <arg> Keystore password to use. Must either be one value
or one for each host (auto-generate if not specified)

• --subjectAlternativeNames <arg> Comma-separated list of domains to use as
Subject Alternative Names in the certificate

• -T,--keyStoreType <arg> The type of keystores to generate (default: jks)

Hostname Patterns:

• Square brackets can be used in order to easily specify a range of hostnames. Example:
[01-20]

• Parentheses can be used in order to specify that more than one NiFi instance will run on
the given host(s). Example: (5)

Examples:

Create 4 sets of keystore, truststore, nifi.properties for localhost along with a client
certificate with the given DN:

bin/tls-toolkit.sh standalone -n 'localhost(4)' -C 'CN=username,OU=NIFI'

Create keystore, truststore, nifi.properties for 10 NiFi hostnames in each of 4 subdomains:

bin/tls-toolkit.sh standalone -n 'nifi[01-10].subdomain[1-4].domain'

Create 2 sets of keystore, truststore, nifi.properties for 10 NiFi hostnames in each of 4
subdomains along with a client certificate with the given DN:

bin/tls-toolkit.sh standalone -n 'nifi[01-10].subdomain[1-4].domain(2)' -C
 'CN=username,OU=NIFI'

Hortonworks DataFlow February 28, 2018

5

1.1.2.1.2. Client/Server

Client/Server mode relies on a long-running Certificate Authority (CA) to issue certificates.
The CA can be stopped when you're not bringing nodes online.

1.1.2.1.2.1. Server

The CA server is invoked by running ./bin/tls-toolkit.sh server -h which prints
the usage information along with descriptions of options that can be specified.

You can use the following command line options with the tls-toolkit in server mode:

• -a,--keyAlgorithm <arg> Algorithm to use for generated keys (default: RSA)

• --configJsonIn <arg> The place to read configuration info from (defaults to the
value of configJson), implies useConfigJson if set (default: configJson value)

• -d,--days <arg> Number of days issued certificate should be valid for (default: 1095)

• -D,--dn <arg> The dn to use for the CA certificate (default:
CN=YOUR_CA_HOSTNAME,OU=NIFI)

• -f,--configJson <arg> The place to write configuration info (default:
config.json)

• -F,--useConfigJson Flag specifying that all configuration is read from configJson
to facilitate automated use (otherwise configJson will only be written to)

• -g,--differentKeyAndKeystorePasswords Use different generated password for
the key and the keystore

• -h,--help Print help and exit

• -k,--keySize <arg> Number of bits for generated keys (default: 2048)

• -p,--PORT <arg> The port for the Certificate Authority to listen on (default: 8443)

• -s,--signingAlgorithm <arg> Algorithm to use for signing certificates (default:
SHA256WITHRSA)

• -T,--keyStoreType <arg> The type of keystores to generate (default: jks)

• -t,--token <arg> The token to use to prevent MITM (required and must be same as
one used by clients)

1.1.2.1.2.2. Client

The client can be used to request new Certificates from the CA. The client utility generates
a keypair and Certificate Signing Request (CSR) and sends the CSR to the Certificate
Authority. The client is invoked by running ./bin/tls-toolkit.sh client -h which
prints the usage information along with descriptions of options that can be specified.

You can use the following command line options with the tls-toolkit in client mode:

• -a,--keyAlgorithm <arg> Algorithm to use for generated keys (default: RSA)

• -c,--certificateAuthorityHostname <arg> Hostname of NiFi Certificate
Authority (default: localhost)

Hortonworks DataFlow February 28, 2018

6

• -C,--certificateDirectory <arg> The directory to write the CA certificate
(default: .)

• --configJsonIn <arg> The place to read configuration info from, implies
useConfigJson if set (default: configJson value)

• -D,--dn <arg> The DN to use for the client certificate (default: CN=<localhost
name>,OU=NIFI) (this is auto-populated by the tool)

• -f,--configJson <arg> The place to write configuration info (default:
config.json)

• -F,--useConfigJson Flag specifying that all configuration is read from configJson
to facilitate automated use (otherwise configJson will only be written to)

• -g,--differentKeyAndKeystorePasswords Use different generated password for
the key and the keystore

• -h,--help Print help and exit

• -k,--keySize <arg> Number of bits for generated keys (default: 2048)

• -p,--PORT <arg> The port to use to communicate with the Certificate Authority
(default: 8443)

• --subjectAlternativeNames <arg> Comma-separated list of domains to use as
Subject Alternative Names in the certificate

• -T,--keyStoreType <arg> The type of keystores to generate (default: jks)

• -t,--token <arg> The token to use to prevent MITM (required and must be same as
one used by CA)

After running the client you will have the CA's certificate, a keystore, a truststore, and a
config.json with information about them as well as their passwords.

For a client certificate that can be easily imported into the browser, specify: -T PKCS12

1.1.3. User Authentication

NiFi supports user authentication via client certificates, via username/password, via Apache
Knox, or via OpenId Connect (http://openid.net/connect).

Username/password authentication is performed by a 'Login Identity Provider'. The Login
Identity Provider is a pluggable mechanism for authenticating users via their username/
password. Which Login Identity Provider to use is configured in the nifi.properties file.
Currently NiFi offers username/password with Login Identity Providers options for LDAP
and Kerberos.

The nifi.login.identity.provider.configuration.file
property specifies the configuration file for Login Identity Providers. The
nifi.security.user.login.identity.provider property indicates which of
the configured Login Identity Provider should be used. By default, this property is not
configured meaning that username/password must be explicitly enabled.

http://openid.net/connect

Hortonworks DataFlow February 28, 2018

7

During OpenId Connect authentication, NiFi will redirect users to login with the Provider
before returning to NiFi. NiFi will then call the Provider to obtain the user identity.

During Apache Knox authentication, NiFi will redirect users to login with Apache Knox
before returning to NiFi. NiFi will verify the Apache Knox token during authentication.

NiFi can only be configured for username/password,
OpenId Connect, or Apache Knox at a given time. It does
not support running each of these concurrently. NiFi will
require client certificates for authenticating users over
HTTPS if none of these are configured.

A secured instance of NiFi cannot be accessed anonymously unless configured to use an
LDAP or Kerberos Login Identity Provider, which in turn must be configured to explicitly
allow anonymous access. Anonymous access is not currently possible by the default
FileAuthorizer (see Authorizer Configuration), but is a future effort (NIFI-2730).

NiFi does not perform user authentication over HTTP.
Using HTTP, all users will be granted all roles.

1.1.3.1. Lightweight Directory Access Protocol (LDAP)

Below is an example and description of configuring a Login Identity Provider that
integrates with a Directory Server to authenticate users.

<provider>
 <identifier>ldap-provider</identifier>
 <class>org.apache.nifi.ldap.LdapProvider</class>
 <property name="Authentication Strategy">START_TLS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url"></property>
 <property name="User Search Base"></property>
 <property name="User Search Filter"></property>

 <property name="Identity Strategy">USE_DN</property>
 <property name="Authentication Expiration">12 hours</property>
</provider>

With this configuration, username/password authentication can be enabled by referencing
this provider in nifi.properties.

https://issues.apache.org/jira/browse/NIFI-2730

Hortonworks DataFlow February 28, 2018

8

nifi.security.user.login.identity.provider=ldap-provider

Property Name Description

Authentication Strategy How the connection to the LDAP server is authenticated.
Possible values are ANONYMOUS, SIMPLE, LDAPS, or
START_TLS.

Manager DN The DN of the manager that is used to bind to the LDAP
server to search for users.

Manager Password The password of the manager that is used to bind to the
LDAP server to search for users.

TLS - Keystore Path to the Keystore that is used when connecting to
LDAP using LDAPS or START_TLS.

TLS - Keystore Password Password for the Keystore that is used when connecting to
LDAP using LDAPS or START_TLS.

TLS - Keystore Type Type of the Keystore that is used when connecting to
LDAP using LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Truststore Path to the Truststore that is used when connecting to
LDAP using LDAPS or START_TLS.

TLS - Truststore Password Password for the Truststore that is used when connecting
to LDAP using LDAPS or START_TLS.

TLS - Truststore Type Type of the Truststore that is used when connecting to
LDAP using LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Client Auth Client authentication policy when connecting to LDAP
using LDAPS or START_TLS. Possible values are REQUIRED,
WANT, NONE.

TLS - Protocol Protocol to use when connecting to LDAP using LDAPS or
START_TLS. (i.e. TLS, TLSv1.1, TLSv1.2, etc).

TLS - Shutdown Gracefully Specifies whether the TLS should be shut down gracefully
before the target context is closed. Defaults to false.

Referral Strategy Strategy for handling referrals. Possible values are
FOLLOW, IGNORE, THROW.

Connect Timeout Duration of connect timeout. (i.e. 10 secs).

Read Timeout Duration of read timeout. (i.e. 10 secs).

Url Space-separated list of URLs of the LDAP servers (i.e.
ldap://<hostname>:<port>).

User Search Base Base DN for searching for users (i.e.
CN=Users,DC=example,DC=com).

User Search Filter Filter for searching for users against the 'User Search Base'.
(i.e. sAMAccountName={0}). The user specified name is
inserted into '{0}'.

Identity Strategy Strategy to identify users. Possible values are USE_DN
and USE_USERNAME. The default functionality if this
property is missing is USE_DN in order to retain backward
compatibility. USE_DN will use the full DN of the user entry
if possible. USE_USERNAME will use the username the user
logged in with.

Authentication Expiration The duration of how long the user authentication is valid
for. If the user never logs out, they will be required to
log back in following this duration.

1.1.3.2. Kerberos

Below is an example and description of configuring a Login Identity Provider that
integrates with a Kerberos Key Distribution Center (KDC) to authenticate users.

<provider>

Hortonworks DataFlow February 28, 2018

9

 <identifier>kerberos-provider</identifier>
 <class>org.apache.nifi.kerberos.KerberosProvider</class>
 <property name="Default Realm">NIFI.APACHE.ORG</property>
 <property name="Kerberos Config File">/etc/krb5.conf</property>
 <property name="Authentication Expiration">12 hours</property>
</provider>

With this configuration, username/password authentication can be enabled by referencing
this provider in nifi.properties.

nifi.security.user.login.identity.provider=kerberos-provider

Property Name Description

Default Realm Default realm to provide when user enters incomplete user
principal (i.e. NIFI.APACHE.ORG).

Kerberos Config File Absolute path to Kerberos client configuration file.

Authentication Expiration The duration of how long the user authentication is valid
for. If the user never logs out, they will be required to
log back in following this duration.

See also Kerberos Service to allow single sign-on access via client Kerberos tickets.

1.1.3.3. OpenId Connect

To enable authentication via OpenId Connect the following properties must be configured
in nifi.properties.

Property Name Description

nifi.security.user.oidc.discovery.url The discovery URL for the desired OpenId Connect
Provider (http://openid.net/specs/openid-connect-
discovery-1_0.html).

nifi.security.user.oidc.connect.timeout Connect timeout when communicating with the OpenId
Connect Provider.

nifi.security.user.oidc.read.timeout Read timeout when communicating with the OpenId
Connect Provider.

nifi.security.user.oidc.client.id The client id for NiFi after registration with the OpenId
Connect Provider.

nifi.security.user.oidc.client.secret The client secret for NiFi after registration with the OpenId
Connect Provider.

nifi.security.user.oidc.preferred.jwsalgorithmThe preferred algorithm for validating identity tokens.
If this value is blank, it will default to 'RS256' which
is required to be supported by the OpenId Connect
Provider according to the specification. If this value is
'HS256', 'HS384', or 'HS512', NiFi will attempt to validate
HMAC protected tokens using the specified client secret.
If this value is 'none', NiFi will attempt to validate
unsecured/plain tokens. Other values for this algorithm
will attempt to parse as an RSA or EC algorithm to be
used in conjunction with the JSON Web Key (JWK)
provided through the jwks_uri in the metadata found at
the discovery URL.

1.1.3.4. Apache Knox

To enable authentication via Apache Knox the following properties must be configured in
nifi.properties.

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html

Hortonworks DataFlow February 28, 2018

10

Property Name Description

nifi.security.user.knox.url The URL for the Apache Knox log in page.

nifi.security.user.knox.publicKey The path to the Apache Knox public key that will be used
to verify the signatures of the authentication tokens in the
HTTP Cookie.

nifi.security.user.knox.cookieName The name of the HTTP Cookie that Apache Knox will
generate after successful log in.

nifi.security.user.knox.audiences Optional. A comma separate listed of allowed audiences.
If set, the audience in the token must be present in this
listing. The audience that is populated in the token can
be configured in Knox.

1.1.4. Multi-Tenant Authorization

After you have configured NiFi to run securely and with an authentication mechanism, you
must configure who has access to the system, and the level of their access. You can do this
using 'multi-tenant authorization'. Multi-tenant authorization enables multiple groups of
users (tenants) to command, control, and observe different parts of the dataflow, with
varying levels of authorization. When an authenticated user attempts to view or modify
a NiFi resource, the system checks whether the user has privileges to perform that action.
These privileges are defined by policies that you can apply system-wide or to individual
components.

1.1.4.1. Authorizer Configuration

An 'authorizer' grants users the privileges to manage users and policies by creating
preliminary authorizations at startup.

Authorizers are configured using two properties in the 'nifi.properties' file:

• The nifi.authorizer.configuration.file property specifies the configuration
file where authorizers are defined. By default, the 'authorizers.xml' file located in the
root installation conf directory is selected.

• The nifi.security.user.authorizer property indicates which of the configured
authorizers in the 'authorizers.xml' file to use.

1.1.4.2. Authorizers.xml Setup

The 'authorizers.xml' file is used to define and configure available authorizers. The default
authorizer is the StandardManagedAuthorizer. The managed authorizer is comprised of
a UserGroupProvider and a AccessPolicyProvider. The users, group, and access policies will
be loaded and optionally configured through these providers. The managed authorizer will
make all access decisions based on these provided users, groups, and access policies.

During startup there is a check to ensure that there are no two users/groups with the same
identity/name. This check is executed regardless of the configured implementation. This
is necessary because this is how users/groups are identified and authorized during access
decisions.

The default UserGroupProvider is the FileUserGroupProvider, however, you can develop
additional UserGroupProviders as extensions. The FileUserGroupProvider has the following
properties:

Hortonworks DataFlow February 28, 2018

11

• Users File - The file where the FileUserGroupProvider stores users and groups. By default,
the 'users.xml' in the 'conf' directory is chosen.

• Legacy Authorized Users File - The full path to an existing authorized-users.xml that will
be automatically be used to load the users and groups into the Users File.

• Initial User Identity - The identity of a users and systems to seed the Users File. The name
of each property must be unique, for example: "Initial User Identity A", "Initial User
Identity B", "Initial User Identity C" or "Initial User Identity 1", "Initial User Identity 2",
"Initial User Identity 3"

Another option for the UserGroupProvider is the LdapUserGroupProvider. By default, this
option is commented out but can be configured in lieu of the FileUserGroupProvider. This
will sync users and groups from a directory server and will present them in NiFi UI in read
only form. The LdapUserGroupProvider has the following properties:

• Authentication Strategy - How the connection to the LDAP server is authenticated.
Possible values are ANONYMOUS, SIMPLE, LDAPS, or START_TLS

• Manager DN - The DN of the manager that is used to bind to the LDAP server to search
for users.

• Manager Password - The password of the manager that is used to bind to the LDAP
server to search for users.

• TLS - Keystore - Path to the Keystore that is used when connecting to LDAP using LDAPS
or START_TLS.

• TLS - Keystore Password - Password for the Keystore that is used when connecting to
LDAP using LDAPS or START_TLS.

• TLS - Keystore Type - Type of the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

• TLS - Truststore - Path to the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS.

• TLS - Truststore Password - Password for the Truststore that is used when connecting to
LDAP using LDAPS or START_TLS.

• TLS - Truststore Type - Type of the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

• TLS - Client Auth - Client authentication policy when connecting to LDAP using LDAPS or
START_TLS. Possible values are REQUIRED, WANT, NONE.

• TLS - Protocol - Protocol to use when connecting to LDAP using LDAPS or START_TLS. (i.e.
TLS, TLSv1.1, TLSv1.2, etc).

• TLS - Shutdown Gracefully - Specifies whether the TLS should be shut down gracefully
before the target context is closed. Defaults to false.

• Referral Strategy - Strategy for handling referrals. Possible values are FOLLOW, IGNORE,
THROW.

Hortonworks DataFlow February 28, 2018

12

• Connect Timeout - Duration of connect timeout. (i.e. 10 secs).

• Read Timeout - Duration of read timeout. (i.e. 10 secs).

• Url - Space-separated list of URLs of the LDAP servers (i.e. ldap://<hostname>:<port>).

• Page Size - Sets the page size when retrieving users and groups. If not specified, no
paging is performed.

• Sync Interval - Duration of time between syncing users and groups. (i.e. 30 mins).
Minimum allowable value is 10 secs.

• User Search Base - Base DN for searching for users (i.e. ou=users,o=nifi). Required to
search users.

• User Object Class - Object class for identifying users (i.e. person). Required if searching
users.

• User Search Scope - Search scope for searching users (ONE_LEVEL, OBJECT, or SUBTREE).
Required if searching users.

• User Search Filter - Filter for searching for users against the 'User Search Base' (i.e.
(memberof=cn=team1,ou=groups,o=nifi)). Optional.

• User Identity Attribute - Attribute to use to extract user identity (i.e. cn). Optional. If not
set, the entire DN is used.

• User Group Name Attribute - Attribute to use to define group membership (i.e.
memberof). Optional. If not set group membership will not be calculated through the
users. Will rely on group membership being defined through 'Group Member Attribute'
if set. The value of this property is the name of the attribute in the user ldap entry
that associates them with a group. The value of that user attribute could be a dn or
group name for instance. What value is expected is configured in the 'User Group Name
Attribute - Referenced Group Attribute'.

• User Group Name Attribute - Referenced Group Attribute - If blank, the value of the
attribute defined in 'User Group Name Attribute' is expected to be the full dn of the
group. If not blank, this property will define the attribute of the group ldap entry that
the value of the attribute defined in 'User Group Name Attribute' is referencing (i.e.
name). Use of this property requires that 'Group Search Base' is also configured.

• Group Search Base - Base DN for searching for groups (i.e. ou=groups,o=nifi). Required to
search groups.

• Group Object Class - Object class for identifying groups (i.e. groupOfNames). Required if
searching groups.

• Group Search Scope - Search scope for searching groups (ONE_LEVEL, OBJECT, or
SUBTREE). Required if searching groups.

• Group Search Filter - Filter for searching for groups against the 'Group Search Base'.
Optional.

• Group Name Attribute - Attribute to use to extract group name (i.e. cn). Optional. If not
set, the entire DN is used.

Hortonworks DataFlow February 28, 2018

13

• Group Member Attribute - Attribute to use to define group membership (i.e. member).
Optional. If not set group membership will not be calculated through the groups. Will
rely on group membership being defined through 'User Group Name Attribute' if set. The
value of this property is the name of the attribute in the group ldap entry that associates
them with a user. The value of that group attribute could be a dn or memberUid
for instance. What value is expected is configured in the 'Group Member Attribute -
Referenced User Attribute'. (i.e. member: cn=User 1,ou=users,o=nifi vs. memberUid:
user1)

• Group Member Attribute - Referenced User Attribute - If blank, the value of the attribute
defined in 'Group Member Attribute' is expected to be the full dn of the user. If not
blank, this property will define the attribute of the user ldap entry that the value of
the attribute defined in 'Group Member Attribute' is referencing (i.e. uid). Use of this
property requires that 'User Search Base' is also configured. (i.e. member: cn=User
1,ou=users,o=nifi vs. memberUid: user1)

Another option for the UserGroupProvider are composite implementations. This means
that multiple sources/implementations can be configured and composed. For instance, an
admin can configure users/groups to be loaded from a file and a directory server. There are
two composite implementations, one that supports multiple UserGroupProviders and one
that supports multiple UserGroupProviders and a single configurable UserGroupProvider.

The CompositeUserGroupProvider will provide support for retrieving users and groups from
multiple sources. The CompositeUserGroupProvider has the following properties:

• User Group Provider - The identifier of user group providers to load from. The name
of each property must be unique, for example: "User Group Provider A", "User Group
Provider B", "User Group Provider C" or "User Group Provider 1", "User Group Provider 2",
"User Group Provider 3"

The CompositeConfigurableUserGroupProvider will provide support for retrieving
users and groups from multiple sources. Additionally, a single configurable user group
provider is required. Users from the configurable user group provider are configurable,
however users loaded from one of the User Group Provider [unique key] will not be. The
CompositeConfigurableUserGroupProvider has the following properties:

• Configurable User Group Provider - A configurable user group provider.

• User Group Provider - The identifier of user group providers to load from. The name
of each property must be unique, for example: "User Group Provider A", "User Group
Provider B", "User Group Provider C" or "User Group Provider 1", "User Group Provider 2",
"User Group Provider 3"

The default AccessPolicyProvider is the FileAccessPolicyProvider, however, you can develop
additional AccessPolicyProvider as extensions. The FileAccessPolicyProvider has the
following properties:

• User Group Provider - The identifier for an User Group Provider defined above that will
be used to access users and groups for use in the managed access policies.

• Authorizations File - The file where the FileAccessPolicyProvider will store policies.

• Initial Admin Identity - The identity of an initial admin user that will be granted access
to the UI and given the ability to create additional users, groups, and policies. The value

Hortonworks DataFlow February 28, 2018

14

of this property could be a DN when using certificates or LDAP, or a Kerberos principal.
This property will only be used when there are no other policies defined. If this property
is specified then a Legacy Authorized Users File can not be specified.

• Legacy Authorized Users File - The full path to an existing authorized-users.xml that will
be automatically converted to the new authorizations model. If this property is specified
then an Initial Admin Identity can not be specified, and this property will only be used
when there are no other users, groups, and policies defined.

• Node Identity - The identity of a NiFi cluster node. When clustered, a property for each
node should be defined, so that every node knows about every other node. If not
clustered these properties can be ignored. The name of each property must be unique,
for example for a three node cluster: "Node Identity A", "Node Identity B", "Node Identity
C" or "Node Identity 1", "Node Identity 2", "Node Identity 3"

The identities configured in the Initial Admin Identity, the Node Identity properties, or
discovered in a Legacy Authorized Users File must be available in the configured User
Group Provider.

The default authorizer is the StandardManagedAuthorizer, however, you can develop
additional authorizers as extensions. The StandardManagedAuthorizer has the following
properties:

• Access Policy Provider - The identifier for an Access Policy Provider defined above.

The FileAuthorizer has been replaced with the more granular StandardManagedAuthorizer
approach described above. However, it is still available for backwards compatibility reasons.
The FileAuthorizer has the following properties.

• Authorizations File - The file where the FileAuthorizer stores policies. By default, the
'authorizations.xml' in the 'conf' directory is chosen.

• Users File - The file where the FileAuthorizer stores users and groups. By default, the
'users.xml' in the 'conf' directory is chosen.

• Initial Admin Identity - The identity of an initial admin user that is granted access to the
UI and given the ability to create additional users, groups, and policies. This property is
only used when there are no other users, groups, and policies defined.

• Legacy Authorized Users File - The full path to an existing authorized-users.xml that is
automatically converted to the multi-tenant authorization model. This property is only
used when there are no other users, groups, and policies defined.

• Node Identity - The identity of a NiFi cluster node. When clustered, a property for each
node should be defined, so that every node knows about every other node. If not
clustered, these properties can be ignored.

1.1.4.2.1. Initial Admin Identity (New NiFi Instance)

If you are setting up a secured NiFi instance for the first time, you must manually designate
an "Initial Admin Identity" in the 'authorizers.xml' file. This initial admin user is granted
access to the UI and given the ability to create additional users, groups, and policies. The
value of this property could be a DN (when using certificates or LDAP) or a Kerberos
principal. If you are the NiFi administrator, add yourself as the "Initial Admin Identity".

Hortonworks DataFlow February 28, 2018

15

Here is an example LDAP entry using the name John Smith:

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Initial User Identity 1">cn=John Smith,ou=people,dc=
example,dc=com</property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</class>
 <property name="User Group Provider">file-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">cn=John Smith,ou=people,dc=
example,dc=com</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</class>
 <property name="Access Policy Provider">file-access-policy-provider</
property>
 </authorizer>
</authorizers>

Here is an example Kerberos entry using the name John Smith and realm
NIFI.APACHE.ORG:

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Initial User Identity 1">johnsmith@NIFI.APACHE.ORG</
property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</class>
 <property name="User Group Provider">file-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">johnsmith@NIFI.APACHE.ORG</
property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>

Hortonworks DataFlow February 28, 2018

16

 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</class>
 <property name="Access Policy Provider">file-access-policy-provider</
property>
 </authorizer>
</authorizers>

After you have edited and saved the 'authorizers.xml' file, restart NiFi. The "Initial
Admin Identity" user and administrative policies are added to the 'users.xml' and
'authorizations.xml' files during restart. Once NiFi starts, the "Initial Admin Identity" user is
able to access the UI and begin managing users, groups, and policies.

For a brand new secure flow, providing the "Initial Admin
Identity" gives that user access to get into the UI and to
manage users, groups and policies. But if that user wants
to start modifying the flow, they need to grant themselves
policies for the root process group. The system is unable
to do this automatically because in a new flow the UUID
of the root process group is not permanent until the
flow.xml.gz is generated. If the NiFi instance is an upgrade
from an existing flow.xml.gz or a 1.x instance going from
unsecure to secure, then the "Initial Admin Identity" user is
automatically given the privileges to modify the flow.

Here is an example loading users and groups from LDAP. Group membership will be driven
through the member attribute of each group. Authorization will still use file based access
policies:

dn: cn=User 1,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 1
sn: User1
uid: user1

dn: cn=User 2,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 2
sn: User2
uid: user2

dn: cn=admins,ou=groups,o=nifi
objectClass: groupOfNames
objectClass: top
cn: admins
member: cn=User 1,ou=users,o=nifi
member: cn=User 2,ou=users,o=nifi

<authorizers>
 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.ldap.tenants.LdapUserGroupProvider</class>
 <property name="Authentication Strategy">ANONYMOUS</property>

 <property name="Manager DN"></property>

Hortonworks DataFlow February 28, 2018

17

 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url">ldap://localhost:10389</property>
 <property name="Page Size"></property>
 <property name="Sync Interval">30 mins</property>

 <property name="User Search Base">ou=users,o=nifi</property>
 <property name="User Object Class">person</property>
 <property name="User Search Scope">ONE_LEVEL</property>
 <property name="User Search Filter"></property>
 <property name="User Identity Attribute">cn</property>
 <property name="User Group Name Attribute"></property>
 <property name="User Group Name Attribute - Referenced Group
 Attribute"></property>

 <property name="Group Search Base">ou=groups,o=nifi</property>
 <property name="Group Object Class">groupOfNames</property>
 <property name="Group Search Scope">ONE_LEVEL</property>
 <property name="Group Search Filter"></property>
 <property name="Group Name Attribute">cn</property>
 <property name="Group Member Attribute">member</property>
 <property name="Group Member Attribute - Referenced User Attribute"></
property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</class>
 <property name="User Group Provider">ldap-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">John Smith</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</class>
 <property name="Access Policy Provider">file-access-policy-provider</
property>
 </authorizer>
</authorizers>

The 'Initial Admin Identity' value would have loaded from the cn from John Smith's entry
based on the 'User Identity Attribute' value.

Hortonworks DataFlow February 28, 2018

18

Here is an example loading users and groups from LDAP. Group membership will be driven
through the member attribute of each group. Authorization will still use file based access
policies:

dn: uid=User 1,ou=Users,dc=local
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: user1
cn: User 1

dn: uid=User 2,ou=Users,dc=local
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: user2
cn: User 2

dn: cn=Managers,ou=Groups,dc=local
objectClass: posixGroup
cn: Managers
memberUid: user1
memberUid: user2

<authorizers>
 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.ldap.tenants.LdapUserGroupProvider</class>
 <property name="Authentication Strategy">ANONYMOUS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url">ldap://localhost:10389</property>
 <property name="Page Size"></property>
 <property name="Sync Interval">30 mins</property>

 <property name="User Search Base">ou=Groups,dc=local</property>
 <property name="User Object Class">posixAccount</property>
 <property name="User Search Scope">ONE_LEVEL</property>
 <property name="User Search Filter"></property>
 <property name="User Identity Attribute">cn</property>
 <property name="User Group Name Attribute"></property>
 <property name="User Group Name Attribute - Referenced Group
 Attribute"></property>

Hortonworks DataFlow February 28, 2018

19

 <property name="Group Search Base">ou=Groups,dc=local</property>
 <property name="Group Object Class">posixGroup</property>
 <property name="Group Search Scope">ONE_LEVEL</property>
 <property name="Group Search Filter"></property>
 <property name="Group Name Attribute">cn</property>
 <property name="Group Member Attribute">memberUid</property>
 <property name="Group Member Attribute - Referenced User
 Attribute">uid</property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</class>
 <property name="User Group Provider">ldap-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">John Smith</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</class>
 <property name="Access Policy Provider">file-access-policy-provider</
property>
 </authorizer>
</authorizers>

Here is an example composite implementation loading users and groups from LDAP
and a local file. Group membership will be driven through the member attribute of each
group. The users from LDAP will be read only while the users loaded from the file will be
configurable in UI.

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Initial User Identity 1">cn=nifi-node1,ou=servers,dc=
example,dc=com</property>
 <property name="Initial User Identity 2">cn=nifi-node2,ou=servers,dc=
example,dc=com</property>
 </userGroupProvider>
 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.ldap.tenants.LdapUserGroupProvider</class>
 <property name="Authentication Strategy">ANONYMOUS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>

Hortonworks DataFlow February 28, 2018

20

 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url">ldap://localhost:10389</property>
 <property name="Page Size"></property>
 <property name="Sync Interval">30 mins</property>

 <property name="User Search Base">ou=users,o=nifi</property>
 <property name="User Object Class">person</property>
 <property name="User Search Scope">ONE_LEVEL</property>
 <property name="User Search Filter"></property>
 <property name="User Identity Attribute">cn</property>
 <property name="User Group Name Attribute"></property>
 <property name="User Group Name Attribute - Referenced Group
 Attribute"></property>

 <property name="Group Search Base">ou=groups,o=nifi</property>
 <property name="Group Object Class">groupOfNames</property>
 <property name="Group Search Scope">ONE_LEVEL</property>
 <property name="Group Search Filter"></property>
 <property name="Group Name Attribute">cn</property>
 <property name="Group Member Attribute">member</property>
 <property name="Group Member Attribute - Referenced User Attribute"></
property>
 </userGroupProvider>
 <userGroupProvider>
 <identifier>composite-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.
CompositeConfigurableUserGroupProvider</class>
 <property name="Configurable User Group Provider">file-user-group-
provider</property>
 <property name="User Group Provider 1">ldap-user-group-provider</
property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</class>
 <property name="User Group Provider">composite-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">John Smith</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1">cn=nifi-node1,ou=servers,dc=example,
dc=com</property>
 <property name="Node Identity 2">cn=nifi-node2,ou=servers,dc=example,
dc=com</property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</class>
 <property name="Access Policy Provider">file-access-policy-provider</
property>
 </authorizer>

Hortonworks DataFlow February 28, 2018

21

</authorizers>

In this example, the users and groups are loaded from LDAP but the servers are managed in
a local file. The 'Initial Admin Identity' value came from an attribute in a LDAP entry based
on the 'User Identity Attribute'. The 'Node Identity' values are established in the local file
using the 'Initial User Identity' properties.

1.1.4.2.2. Legacy Authorized Users (NiFi Instance Upgrade)

If you are upgrading from a 0.x NiFi instance, you can convert your previously configured
users and roles to the multi-tenant authorization model. In the 'authorizers.xml' file, specify
the location of your existing 'authorized-users.xml' file in the "Legacy Authorized Users File"
property.

Here is an example entry:

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File">/Users/johnsmith/
config_files/authorized-users.xml</property>

 <property name="Initial User Identity 1"></property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</class>
 <property name="User Group Provider">file-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity"></property>
 <property name="Legacy Authorized Users File">/Users/johnsmith/
config_files/authorized-users.xml</property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</class>
 <property name="Access Policy Provider">file-access-policy-provider</
property>
 </authorizer>
</authorizers>

After you have edited and saved the 'authorizers.xml' file, restart NiFi. Users and roles from
the 'authorized-users.xml' file are converted and added as identities and policies in the
'users.xml' and 'authorizations.xml' files. Once the application starts, users who previously
had a legacy Administrator role can access the UI and begin managing users, groups, and
policies.

The following tables summarize the global and component policies assigned to each legacy
role if the NiFi instance has an existing 'flow.xml.gz':

Hortonworks DataFlow February 28, 2018

22

1.1.4.2.2.1. Global Access Policies

Admin DFM Monitor Provenance NiFi Proxy

view the UI * * *

access the
controller -
view

* * * *

access the
controller -
modify

*

query
provenance

*

access
restricted
components

*

access all
policies - view

*

access all
policies -
modify

*

access users/
user groups -
view

*

access users/
user groups -
modify

*

retrieve site-to-
site details

*

view system
diagnostics

* *

proxy user
requests

*

access
counters

1.1.4.2.2.2. Component Access Policies on the Root Process Group

Admin DFM Monitor Provenance NiFi Proxy

view the
component

* * *

modify the
component

*

view the data * * *

modify the
data

* *

For details on the individual policies in the table, see Access Policies.

NiFi fails to restart if values exist for both the "Initial Admin
Identity" and "Legacy Authorized Users File" properties.
You can specify only one of these values to initialize
authorizations.

Do not manually edit the 'authorizations.xml' file. Create
authorizations only during initial setup and afterwards
using the NiFi UI.

Hortonworks DataFlow February 28, 2018

23

1.1.4.2.3. Cluster Node Identities

If you are running NiFi in a clustered environment, you must specify the identities for each
node. The authorization policies required for the nodes to communicate are created during
startup.

For example, if you are setting up a 2 node cluster with the following DNs for each node:

cn=nifi-1,ou=people,dc=example,dc=com
cn=nifi-2,ou=people,dc=example,dc=com

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Initial User Identity 1">johnsmith@NIFI.APACHE.ORG</
property>
 <property name="Initial User Identity 2">cn=nifi-1,ou=people,dc=
example,dc=com</property>
 <property name="Initial User Identity 3">cn=nifi-2,ou=people,dc=
example,dc=com</property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</class>
 <property name="User Group Provider">file-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">johnsmith@NIFI.APACHE.ORG</
property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1">cn=nifi-1,ou=people,dc=example,dc=
com</property>
 <property name="Node Identity 2">cn=nifi-2,ou=people,dc=example,dc=
com</property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</class>
 <property name="Access Policy Provider">file-access-policy-provider</
property>
 </authorizer>
</authorizers>

In a cluster, all nodes must have the same
'authorizations.xml' and 'users.xml'. The only exception
is if a node has empty 'authorizations.xml' and 'user.xml'
files prior to joining the cluster. In this scenario, the node
inherits them from the cluster during startup.

Now that initial authorizations have been created, additional users, groups and
authorizations can be created and managed in the NiFi UI.

Hortonworks DataFlow February 28, 2018

24

1.1.4.3. Configuring Users & Access Policies

Depending on the capabilities of the configured UserGroupProvider and
AccessPolicyProvider the users, groups, and policies will be configurable in the UI. If the
extensions are not configurable the users, groups, and policies will read-only in the UI.
If the configured authorizer does not use UserGroupProvider and AccessPolicyProvider
the users and policies may or may not be visible and configurable in the UI based on the
underlying implementation.

This section assumes the users, groups, and policies are configurable in the UI and
describes:

• How to create users and groups

• How access policies are used to define authorizations

• How to view policies that are set on a user

• How to configure access policies by walking through specific examples

Instructions requiring interaction with the UI assume
the application is being accessed by User1, a user with
administrator privileges, such as the "Initial Admin Identity"
user or a converted legacy admin user (see Authorizers.xml
Setup).

1.1.4.3.1. Creating Users and Groups

From the UI, select "Users" from the Global Menu. This opens a dialog to create and
manage users and groups.

Click the Add icon

().

Hortonworks DataFlow February 28, 2018

25

To create a user, enter the 'Identity' information relevant to the authentication method
chosen to secure your NiFi instance. Click OK.

To create a group, select the "Group" radio button, enter the name of the group and select
the users to be included in the group. Click OK.

Hortonworks DataFlow February 28, 2018

26

1.1.4.3.2. Access Policies

You can manage the ability for users and groups to view or modify NiFi resources using
'access policies'. There are two types of access policies that can be applied to a resource:

• View - If a view policy is created for a resource, only the users or groups that are added
to that policy are able to see the details of that resource.

• Modify - If a resource has a modify policy, only the users or groups that are added to that
policy can change the configuration of that resource.

You can create and apply access policies on both global and component levels.

1.1.4.3.2.1. Global Access Policies

Global access policies govern the following system level authorizations:

Policy Privilege Global Menu Selection

view the UI Allow users to view the UI N/A

Hortonworks DataFlow February 28, 2018

27

Policy Privilege Global Menu Selection

access the controller Allows users to view/modify the
controller including Reporting Tasks,
Controller Services, and Nodes in the
Cluster

Controller Settings

query provenance Allows users to submit a Provenance
Search and request Event Lineage

Data Provenance

access restricted components Allows users to create/modify
restricted components assuming
otherwise sufficient permissions

N/A

access all policies Allows users to view/modify the
policies for all components

Policies

access users/user groups Allows users to view/modify the users
and user groups

Users

retrieve site-to-site details Allows other NiFi instances to retrieve
Site-To-Site details

N/A

view system diagnostics Allows users to view System
Diagnostics

Summary

proxy user requests Allows proxy machines to send
requests on the behalf of others

N/A

access counters Allows users to view/modify Counters Counters

1.1.4.3.2.2. Component Level Access Policies

Component level access policies govern the following component level authorizations:

Policy Privilege

view the component Allows users to view component configuration details

modify the component Allows users to modify component configuration details

view the data Allows user to view metadata and content for this
component through provenance data and flowfile queues
in outbound connections

modify the data Allows user to empty flowfile queues in outbound
connections and submit replays

view the policies Allows users to view the list of users who can view/modify
a component

modify the policies Allows users to modify the list of users who can view/
modify a component

receive data via site-to-site Allows a port to receive data from NiFi instances

send data via site-to-site Allows a port to send data from NiFi instances

You can apply access policies to all component types
except connections. Connection authorizations are
inferred by the individual access policies on the source
and destination components of the connection, as well
as the access policy of the process group containing
the components. This is discussed in more detail in the
Creating a Connection and Editing a Connection examples
below.

In order to access List Queue or Delete Queue for a
connection, a user requires permission to the "view the
data" and "modify the data" policies on the component.
In a clustered environment, all nodes must be added to
these policies as well, as a user request could be replicated
through any node in the cluster.

Hortonworks DataFlow February 28, 2018

28

1.1.4.3.2.3. Access Policy Inheritance

An administrator does not need to manually create policies for every component in the
dataflow. To reduce the amount of time admins spend on authorization management,
policies are inherited from parent resource to child resource. For example, if a user is
given access to view and modify a process group, that user can also view and modify the
components in the process group. Policy inheritance enables an administrator to assign
policies at one time and have the policies apply throughout the entire dataflow.

You can override an inherited policy (as described in the Moving a Processor example
below). Overriding a policy removes the inherited policy, breaking the chain of inheritance
from parent to child, and creates a replacement policy to add users as desired. Inherited
policies and their users can be restored by deleting the replacement policy.

"View the policies" and "modify the policies" component-
level access policies are an exception to this inherited
behavior. When a user is added to either policy, they are
added to the current list of administrators. They do not
override higher level administrators. For this reason, only
component specific administrators are displayed for the
"view the policies" and "modify the policies" access policies.

You cannot modify the users/groups on an inherited
policy. Users and groups can only be added or removed
from a parent policy or an override policy.

1.1.4.3.3. Viewing Policies on Users

From the UI, select "Users" from the Global Menu. This opens the NiFi Users dialog.

Select the View User Policies icon

().

Hortonworks DataFlow February 28, 2018

29

The User Policies window displays the global and component level
policies that have been set for the chosen user. Select the Go To icon

()
to navigate to that component in the canvas.

1.1.4.3.4. Access Policy Configuration Examples

The most effective way to understand how to create and apply access policies is to walk
through some common examples. The following scenarios assume User1 is an administrator
and User2 is a newly added user that has only been given access to the UI.

Let's begin with two processors on the canvas as our starting point: GenerateFlowFile and
LogAttribute.

Hortonworks DataFlow February 28, 2018

30

User1 can add components to the dataflow and is able to move, edit and connect all
processors. The details and properties of the root process group and processors are visible
to User1.

User1 wants to maintain their current privileges to the dataflow and its components.

User2 is unable to add components to the dataflow or move, edit, or connect components.
The details and properties of the root process group and processors are hidden from User2.

Hortonworks DataFlow February 28, 2018

31

1.1.4.3.4.1. Moving a Processor

To allow User2 to move the GenerateFlowFile processor in the dataflow and only that
processor, User1 performs the following steps:

1. Select the GenerateFlowFile processor so that it is highlighted.

2. Select the Access Policies icon

()
from the Operate palette and the Access Policies dialog opens.

3. Select "modify the component" from the policy drop-down. The "modify the component"
policy that currently exists on the processor (child) is the "modify the component" policy
inherited from the root process group (parent) on which User1 has privileges.

Hortonworks DataFlow February 28, 2018

32

4. Select the Override link in the policy inheritance message. When creating the
replacement policy, you are given a choice to override with a copy of the inherited policy
or an empty policy. Select the Override button to create a copy.

5. On the replacement policy that is created, select the Add User icon

().
Find or enter User2 in the User Identity field and select OK. With these changes, User1
maintains the ability to move both processors on the canvas. User2 can now move the
GenerateFlowFile processor but cannot move the LogAttribute processor.

Hortonworks DataFlow February 28, 2018

33

1.1.4.3.4.2. Editing a Processor

In the "Moving a Processor" example above, User2 was added to the "modify the
component" policy for GenerateFlowFile. Without the ability to view the processor
properties, User2 is unable to modify the processor's configuration. In order to edit
a component, a user must be on both the "view the component" and "modify the
component" policies. To implement this, User1 performs the following steps:

1. Select the GenerateFlowFile processor.

Hortonworks DataFlow February 28, 2018

34

2. Select the Access Policies icon

()
from the Operate palette and the Access Policies dialog opens.

3. Select "view the component" from the policy drop-down. The view the component"
policy that currently exists on the processor (child) is the "view the component" policy
inherited from the root process group (parent) on which User1 has privileges.

4. Select the Override link in the policy inheritance message, keep the default of Copy
policy and select the Override button.

5. On the override policy that is created, select the Add User icon

().
Find or enter User2 in the User Identity field and select OK. With these changes, User1
maintains the ability to view and edit the processors on the canvas. User2 can now view
and edit the GenerateFlowFile processor.

Hortonworks DataFlow February 28, 2018

35

1.1.4.3.4.3. Creating a Connection

With the access policies configured as discussed in the previous two examples, User1 is able
to connect GenerateFlowFile to LogAttribute:

Hortonworks DataFlow February 28, 2018

36

User2 cannot make the connection:

This is because:

• User2 does not have modify access on the process group.

• Even though User2 has view and modify access to the source component
(GenerateFlowFile), User2 does not have an access policy on the destination component
(LogAttribute).

To allow User2 to connect GenerateFlowFile to LogAttribute, as User1:

1. Select the root process group. The Operate palette is updated with details for the root
process group.

Hortonworks DataFlow February 28, 2018

37

2. Select the Access Policies icon

()
from the Operate palette and the Access Policies dialog opens.

3. Select "modify the component" from the policy drop-down.

4. Select the Add User icon

().
Find or enter User2 and select OK.

By adding User2 to the "modify the component" policy on the process
group, User2 is added to the "modify the component" policy on

Hortonworks DataFlow February 28, 2018

38

the LogAttribute processor by policy inheritance. To confirm this,
highlight the LogAttribute processor and select the Access Policies icon

()
from the Operate palette:

With these changes, User2 can now connect the GenerateFlowFile processor to the
LogAttribute processor.

Hortonworks DataFlow February 28, 2018

39

1.1.4.3.4.4. Editing a Connection

Assume User1 or User2 adds a ReplaceText processor to the root process group:

User1 can select and change the existing connection (between GenerateFlowFile to
LogAttribute) to now connect GenerateFlowFile to ReplaceText:

Hortonworks DataFlow February 28, 2018

40

User 2 is unable to perform this action.

To allow User2 to connect GenerateFlowFile to ReplaceText, as User1:

1. Select the root process group. The Operate palette is updated with details for the root
process group.

2. Select the Access Policies icon

().

Hortonworks DataFlow February 28, 2018

41

3. Select "view the component" from the policy drop-down.

4. Select the Add User icon

().
Find or enter User2 and select OK.

Being added to both the view and modify policies for the process group, User2 can now
connect the GenerateFlowFile processor to the ReplaceText processor.

Hortonworks DataFlow February 28, 2018

42

1.1.5. Encryption Configuration

This section provides an overview of the capabilities of NiFi to encrypt and decrypt data.

The EncryptContent processor allows for the encryption and decryption of data, both
internal to NiFi and integrated with external systems, such as openssl and other data
sources and consumers.

1.1.5.1. Key Derivation Functions

Key Derivation Functions (KDF) are mechanisms by which human-readable information,
usually a password or other secret information, is translated into a cryptographic key
suitable for data protection. For further information, read the Wikipedia entry on Key
Derivation Functions. Currently, KDFs are ingested by CipherProvider implementations
and return a fully-initialized Cipher object to be used for encryption or decryption. Due
to the use of a CipherProviderFactory, the KDFs are not customizable at this time.
Future enhancements will include the ability to provide custom cost parameters to the KDF
at initialization time. As a work-around, CipherProvider instances can be initialized
with custom cost parameters in the constructor but this is not currently supported by the
CipherProviderFactory. Here are the KDFs currently supported by NiFi (primarily in
the EncryptContent processor for password-based encryption (PBE)) and relevant notes:

• NiFi Legacy KDF

• The original KDF used by NiFi for internal key derivation for PBE, this is 1000 iterations
of the MD5 digest over the concatenation of the password and 8 or 16 bytes of
random salt (the salt length depends on the selected cipher block size).

• This KDF is deprecated as of NiFi 0.5.0 and should only be used for backwards
compatibility to decrypt data that was previously encrypted by a legacy version of NiFi.

• OpenSSL PKCS#5 v1.5 EVP_BytesToKey

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function

Hortonworks DataFlow February 28, 2018

43

• This KDF was added in v0.4.0.

• This KDF is provided for compatibility with data encrypted using OpenSSL's
default PBE, known as EVP_BytesToKey. This is a single iteration of MD5 over
the concatenation of the password and 8 bytes of random ASCII salt. OpenSSL
recommends using PBKDF2 for key derivation but does not expose the library
method necessary to the command-line tool, so this KDF is still the de facto default for
command-line encryption.

• Bcrypt

• This KDF was added in v0.5.0.

• Bcrypt is an adaptive function based on the Blowfish cipher. This KDF is strongly
recommended as it automatically incorporates a random 16 byte salt, configurable
cost parameter (or "work factor"), and is hardened against brute-force attacks using
GPGPU (which share memory between cores) by requiring access to "large" blocks of
memory during the key derivation. It is less resistant to FPGA brute-force attacks where
the gate arrays have access to individual embedded RAM blocks.

• Because the length of a Bcrypt-derived key is always 184 bits, the complete output is
then fed to a SHA-512 digest and truncated to the desired key length. This provides
the benefit of the avalanche effect on the formatted input.

• The recommended minimum work factor is 12 (212 key derivation rounds) (as of
2/1/2016 on commodity hardware) and should be increased to the threshold at
which legitimate systems will encounter detrimental delays (see schedule below or use
BcryptCipherProviderGroovyTest#testDefaultConstructorShouldProvideStrongWorkFactor()
to calculate safe minimums).

• The salt format is $2a$10$ABCDEFGHIJKLMNOPQRSTUV. The salt is delimited by $
and the three sections are as follows:

• 2a - the version of the format. An extensive explanation can be found here. NiFi
currently uses 2a for all salts generated internally.

• 10 - the work factor. This is actually the log2 value, so the total iteration count
would be 210 in this case.

• ABCDEFGHIJKLMNOPQRSTUV - the 22 character, Base64-encoded, unpadded, raw
salt value. This decodes to a 16 byte salt used in the key derivation.

• Scrypt

• This KDF was added in v0.5.0.

• Scrypt is an adaptive function designed in response to bcrypt. This KDF is
recommended as it requires relatively large amounts of memory for each derivation,
making it resistant to hardware brute-force attacks.

• The recommended minimum cost is N=214, r=8, p=1 (as of 2/1/2016 on
commodity hardware) and should be increased to the threshold at which
legitimate systems will encounter detrimental delays (see schedule below or use

https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://blog.ircmaxell.com/2012/12/seven-ways-to-screw-up-bcrypt.html
https://en.wikipedia.org/wiki/Scrypt

Hortonworks DataFlow February 28, 2018

44

ScryptCipherProviderGroovyTest#testDefaultConstructorShouldProvideStrongParameters()
to calculate safe minimums).

• The salt format is $s0$e0101$ABCDEFGHIJKLMNOPQRSTUV. The salt is delimited by
$ and the three sections are as follows:

• s0 - the version of the format. NiFi currently uses s0 for all salts generated
internally.

• e0101 - the cost parameters. This is actually a hexadecimal encoding of N, r, p
using shifts. This can be formed/parsed using Scrypt#encodeParams() and
Scrypt#parseParameters().

• Some external libraries encode N, r, and p separately in the form $400$1$1$.
A utility method is available at ScryptCipherProvider#translateSalt()
which will convert the external form to the internal form.

• ABCDEFGHIJKLMNOPQRSTUV - the 12-44 character, Base64-encoded, unpadded,
raw salt value. This decodes to a 8-32 byte salt used in the key derivation.

• PBKDF2

• This KDF was added in v0.5.0.

• Password-Based Key Derivation Function 2 is an adaptive derivation function which
uses an internal pseudorandom function (PRF) and iterates it many times over a
password and salt (at least 16 bytes).

• The PRF is recommended to be HMAC/SHA-256 or HMAC/SHA-512. The use of an
HMAC cryptographic hash function mitigates a length extension attack.

• The recommended minimum number of iterations is 160,000
(as of 2/1/2016 on commodity hardware). This number
should be doubled every two years (see schedule below or use
PBKDF2CipherProviderGroovyTest#testDefaultConstructorShouldProvideStrongIterationCount()
to calculate safe minimums).

• This KDF is not memory-hard (can be parallelized massively with commodity
hardware) but is still recommended as sufficient by NIST SP 800-132 (PDF) and many
cryptographers (when used with a proper iteration count and HMAC cryptographic
hash function).

• None

• This KDF was added in v0.5.0.

• This KDF performs no operation on the input and is a marker to indicate the raw key is
provided to the cipher. The key must be provided in hexadecimal encoding and be of a
valid length for the associated cipher/algorithm.

1.1.5.1.1. Additional Resources

• Explanation of optimal scrypt cost parameters and relationships

https://en.wikipedia.org/wiki/PBKDF2
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://stackoverflow.com/a/30308723/70465

Hortonworks DataFlow February 28, 2018

45

• NIST Special Publication 800-132

• OWASP Password Storage Work Factor Calculations

• PBKDF2 rounds calculations

• Scrypt as KDF vs password storage vulnerabilities

• Scrypt vs. Bcrypt (as of 2010)

• Bcrypt vs PBKDF2

• Choosing a work factor for Bcrypt

• OpenSSL EVP BytesToKey PKCS#1v1.5

• OpenSSL PBKDF2 KDF

• OpenSSL KDF flaws description

1.1.5.2. Salt and IV Encoding

Initially, the EncryptContent processor had a single method of deriving the encryption
key from a user-provided password. This is now referred to as NiFiLegacy mode,
effectively MD5 digest, 1000 iterations. In v0.4.0, another method of deriving
the key, OpenSSL PKCS#5 v1.5 EVP_BytesToKey was added for compatibility with
content encrypted outside of NiFi using the openssl command-line tool. Both of these
Key Derivation Functions (KDF) had hard-coded digest functions and iteration counts, and
the salt format was also hard-coded. With v0.5.0, additional KDFs are introduced with
variable iteration counts, work factors, and salt formats. In addition, raw keyed encryption
was also introduced. This required the capacity to encode arbitrary salts and Initialization
Vectors (IV) into the cipher stream in order to be recovered by NiFi or a follow-on system to
decrypt these messages.

For the existing KDFs, the salt format has not changed.

1.1.5.2.1. NiFi Legacy

The first 8 or 16 bytes of the input are the salt. The salt length is determined based on the
selected algorithm's cipher block length. If the cipher block size cannot be determined (such
as with a stream cipher like RC4), the default value of 8 bytes is used. On decryption, the
salt is read in and combined with the password to derive the encryption key and IV.

http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet#Work_Factor
http://security.stackexchange.com/a/3993/16485
http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html
http://security.stackexchange.com/a/26253/16485
http://security.stackexchange.com/a/6415/16485
http://wildlyinaccurate.com/bcrypt-choosing-a-work-factor/
https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html
http://security.stackexchange.com/a/29139/16485

Hortonworks DataFlow February 28, 2018

46

1.1.5.2.2. OpenSSL PKCS#5 v1.5 EVP_BytesToKey

OpenSSL allows for salted or unsalted key derivation. *Unsalted key derivation is a security
risk and is not recommended.* If a salt is present, the first 8 bytes of the input are the ASCII
string "Salted__" (0x53 61 6C 74 65 64 5F 5F) and the next 8 bytes are the ASCII-
encoded salt. On decryption, the salt is read in and combined with the password to derive
the encryption key and IV. If there is no salt header, the entire input is considered to be the
cipher text.

For new KDFs, each of which allow for non-deterministic IVs, the IV must be stored
alongside the cipher text. This is not a vulnerability, as the IV is not required to be secret,
but simply to be unique for messages encrypted using the same key to reduce the success
of cryptographic attacks. For these KDFs, the output consists of the salt, followed by the
salt delimiter, UTF-8 string "NiFiSALT" (0x4E 69 46 69 53 41 4C 54) and then the IV,
followed by the IV delimiter, UTF-8 string "NiFiIV" (0x4E 69 46 69 49 56), followed by
the cipher text.

Hortonworks DataFlow February 28, 2018

47

1.1.5.2.3. Bcrypt, Scrypt, PBKDF2

Hortonworks DataFlow February 28, 2018

48

1.1.5.3. Java Cryptography Extension (JCE) Limited Strength Jurisdiction
Policies

Because of US export regulations, default JVMs have limits imposed on the strength of
cryptographic operations available to them. For example, AES operations are limited
to 128 bit keys by default. While AES-128 is cryptographically safe, this can have
unintended consequences, specifically on Password-based Encryption (PBE).

PBE is the process of deriving a cryptographic key for encryption or decryption from
user-provided secret material, usually a password. Rather than a human remembering a
(random-appearing) 32 or 64 character hexadecimal string, a password or passphrase is
used.

A number of PBE algorithms provided by NiFi impose strict limits on the length of the
password due to the underlying key length checks. Below is a table listing the maximum
password length on a JVM with limited cryptographic strength.

Table 1.1. Table 1. Maximum Password Length on Limited Cryptographic
Strength JVM

Algorithm Max Password Length

PBEWITHMD5AND128BITAES-CBC-OPENSSL 16

PBEWITHMD5AND192BITAES-CBC-OPENSSL 16

PBEWITHMD5AND256BITAES-CBC-OPENSSL 16

PBEWITHMD5ANDDES 16

PBEWITHMD5ANDRC2 16

PBEWITHSHA1ANDRC2 16

PBEWITHSHA1ANDDES 16

PBEWITHSHAAND128BITAES-CBC-BC 7

PBEWITHSHAAND192BITAES-CBC-BC 7

PBEWITHSHAAND256BITAES-CBC-BC 7

PBEWITHSHAAND40BITRC2-CBC 7

PBEWITHSHAAND128BITRC2-CBC 7

PBEWITHSHAAND40BITRC4 7

http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits

Hortonworks DataFlow February 28, 2018

49

Algorithm Max Password Length

PBEWITHSHAAND128BITRC4 7

PBEWITHSHA256AND128BITAES-CBC-BC 7

PBEWITHSHA256AND192BITAES-CBC-BC 7

PBEWITHSHA256AND256BITAES-CBC-BC 7

PBEWITHSHAAND2-KEYTRIPLEDES-CBC 7

PBEWITHSHAAND3-KEYTRIPLEDES-CBC 7

PBEWITHSHAANDTWOFISH-CBC 7

1.1.5.4. Allow Insecure Cryptographic Modes

By default, the Allow Insecure Cryptographic Modes property in
EncryptContent processor settings is set to not-allowed. This means that if a
password of fewer than 10 characters is provided, a validation error will occur. 10
characters is a conservative estimate and does not take into consideration full entropy
calculations, patterns, etc.

On a JVM with limited strength cryptography, some PBE algorithms limit the maximum
password length to 7, and in this case it will not be possible to provide a "safe" password. It
is recommended to install the JCE Unlimited Strength Jurisdiction Policy files for the JVM to
mitigate this issue.

• JCE Unlimited Strength Jurisdiction Policy files for Java 8

If on a system where the unlimited strength policies cannot be installed, it is recommended
to switch to an algorithm that supports longer passwords (see table above).

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

Hortonworks DataFlow February 28, 2018

50

Allowing Weak Crypto If it is not possible to install
the unlimited strength jurisdiction policies, the Allow
Weak Crypto setting can be changed to allowed,
but this is not recommended. Changing this setting
explicitly acknowledges the inherent risk in using weak
cryptographic configurations.

It is preferable to request upstream/downstream systems to switch to keyed encryption or
use a "strong"Key Derivation Function (KDF) supported by NiFi.

1.1.6. Encrypted Passwords in Configuration Files
In order to facilitate the secure setup of NiFi, you can use the encrypt-config command
line utility to encrypt raw configuration values that NiFi decrypts in memory on startup.
This extensible protection scheme transparently allows NiFi to use raw values in operation,
while protecting them at rest. In the future, hardware security modules (HSM) and external
secure storage mechanisms will be integrated, but for now, an AES encryption provider is
the default implementation.

This is a change in behavior; prior to 1.0, all configuration values were stored in plaintext on
the file system. POSIX file permissions were recommended to limit unauthorized access to
these files

If no administrator action is taken, the configuration values remain unencrypted.

1.1.6.1. Encrypt-Config Tool

The encrypt-config command line tool (invoked as ./bin/encrypt-config.sh
or bin\encrypt-config.bat) reads from a 'nifi.properties' file with plaintext sensitive
configuration values, prompts for a master password or raw hexadecimal key, and encrypts
each value. It replaces the plain values with the protected value in the same file, or writes
to a new 'nifi.properties' file if specified.

The default encryption algorithm utilized is AES/GCM 128/256-bit. 128-bit is used if the JCE
Unlimited Strength Cryptographic Jurisdiction Policy files are not installed, and 256-bit is
used if they are installed.

You can use the following command line options with the encrypt-config tool:

• -h,--help Prints this usage message

• -v,--verbose Sets verbose mode (default false)

• -n,--niFiProperties <arg> The nifi.properties file containing unprotected config
values (will be overwritten)

• -l,--loginIdentityProviders <arg> The login-identity-providers.xml file
containing unprotected config values (will be overwritten)

• -a,--authorizers <arg> The authorizers.xml file containing unprotected config
values (will be overwritten)

• -f,--flowXml <arg> The flow.xml.gz file currently protected with old password (will
be overwritten)

• -b,--bootstrapConf <arg> The bootstrap.conf file to persist master key

https://cwiki.apache.org/confluence/display/NIFI/Encryption+Information
https://cwiki.apache.org/confluence/display/NIFI/Key+Derivation+Function+Explanations

Hortonworks DataFlow February 28, 2018

51

• -o,--outputNiFiProperties <arg> The destination nifi.properties file containing
protected config values (will not modify input nifi.properties)

• -i,--outputLoginIdentityProviders <arg> The destination login-identity-
providers.xml file containing protected config values (will not modify input login-identity-
providers.xml)

• -u,--outputAuthorizers <arg> The destination authorizers.xml file containing
protected config values (will not modify input authorizers.xml)

• -g,--outputFlowXml <arg> The destination flow.xml.gz file containing protected
config values (will not modify input flow.xml.gz)

• -k,--key <arg> The raw hexadecimal key to use to encrypt the sensitive properties

• -e,--oldKey <arg> The old raw hexadecimal key to use during key migration

• -p,--password <arg> The password from which to derive the key to use to encrypt
the sensitive properties

• -w,--oldPassword <arg> The old password from which to derive the key during
migration

• -r,--useRawKey If provided, the secure console will prompt for the raw key value in
hexadecimal form

• -m,--migrate If provided, the nifi.properties and/or login-identity-providers.xml
sensitive properties will be re-encrypted with a new key

• -x,--encryptFlowXmlOnly If provided, the properties in flow.xml.gz will be re-
encrypted with a new key but the nifi.properties and/or login-identity-providers.xml files
will not be modified

• -s,--propsKey <arg> The password or key to use to encrypt the sensitive processor
properties in flow.xml.gz

• -A,--newFlowAlgorithm <arg> The algorithm to use to encrypt the sensitive
processor properties in flow.xml.gz

• -P,--newFlowProvider <arg> The security provider to use to encrypt the sensitive
processor properties in flow.xml.gz

As an example of how the tool works, assume that you have installed the tool on a
machine supporting 256-bit encryption and with the following existing values in the
'nifi.properties' file:

security properties
nifi.sensitive.props.key=thisIsABadSensitiveKeyPassword
nifi.sensitive.props.algorithm=PBEWITHMD5AND256BITAES-CBC-OPENSSL
nifi.sensitive.props.provider=BC
nifi.sensitive.props.additional.keys=

nifi.security.keystore=/path/to/keystore.jks
nifi.security.keystoreType=JKS
nifi.security.keystorePasswd=thisIsABadKeystorePassword
nifi.security.keyPasswd=thisIsABadKeyPassword

Hortonworks DataFlow February 28, 2018

52

nifi.security.truststore=
nifi.security.truststoreType=
nifi.security.truststorePasswd=

Enter the following arguments when using the tool:

encrypt-config.sh
-b bootstrap.conf
-k 0123456789ABCDEFFEDCBA98765432100123456789ABCDEFFEDCBA9876543210
-n nifi.properties

As a result, the 'nifi.properties' file is overwritten with protected properties and sibling
encryption identifiers (aes/gcm/256, the currently supported algorithm):

security properties
nifi.sensitive.props.key=n2z+tTTbHuZ4V4V2||uWhdasyDXD4ZG2lMAes/
vqh6u4vaz4xgL4aEbF4Y/dXevqk3ulRcOwf1vc4RDQ==
nifi.sensitive.props.key.protected=aes/gcm/256
nifi.sensitive.props.algorithm=PBEWITHMD5AND256BITAES-CBC-OPENSSL
nifi.sensitive.props.provider=BC
nifi.sensitive.props.additional.keys=

nifi.security.keystore=/path/to/keystore.jks
nifi.security.keystoreType=JKS
nifi.security.keystorePasswd=oBjT92hIGRElIGOh||MZ6uYuWNBrOA6usq/
Jt3DaD2e4otNirZDytac/w/KFe0HOkrJR03vcbo
nifi.security.keystorePasswd.protected=aes/gcm/256
nifi.security.keyPasswd=ac/BaE35SL/esLiJ||
+ULRvRLYdIDA2VqpE0eQXDEMjaLBMG2kbKOdOwBk/hGebDKlVg==
nifi.security.keyPasswd.protected=aes/gcm/256
nifi.security.truststore=
nifi.security.truststoreType=
nifi.security.truststorePasswd=

Additionally, the 'bootstrap.conf' file is updated with the encryption key as follows:

Master key in hexadecimal format for encrypted sensitive configuration
 values
nifi.bootstrap.sensitive.key=
0123456789ABCDEFFEDCBA98765432100123456789ABCDEFFEDCBA9876543210

Sensitive configuration values are encrypted by the tool by default, however you can
encrypt any additional properties, if desired. To encrypt additional properties, specify
them as comma-separated values in the nifi.sensitive.props.additional.keys
property.

If the 'nifi.properties' file already has valid protected values, those property values are not
modified by the tool.

When applied to 'login-identity-providers.xml' and 'authorizers.xml', the property elements
are updated with an encryption attribute:

Example of protected login-identity-providers.xml:

 <!-- LDAP Provider -->
 <provider>
 <identifier>ldap-provider</identifier>
 <class>org.apache.nifi.ldap.LdapProvider</class>
 <property name="Authentication Strategy">START_TLS</property>
 <property name="Manager DN">someuser</property>

Hortonworks DataFlow February 28, 2018

53

 <property name="Manager Password" encryption="aes/gcm/
128">q4r7WIgN0MaxdAKM||SGgdCTPGSFEcuH4RraMYEdeyVbOx93abdWTVSWvh1w+klA</
property>
 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password" encryption="aes/gcm/
128">Uah59TWX+Ru5GY5p||B44RT/LJtC08QWA5ehQf01JxIpf0qSJUzug25UwkF5a50g</
property>
 <property name="TLS - Keystore Type"></property>
 ...
 </provider>

Example of protected authorizers.xml:

 <!-- LDAP User Group Provider -->
 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.ldap.tenants.LdapUserGroupProvider</class>
 <property name="Authentication Strategy">START_TLS</property>
 <property name="Manager DN">someuser</property>
 <property name="Manager Password" encryption="aes/gcm/
128">q4r7WIgN0MaxdAKM||SGgdCTPGSFEcuH4RraMYEdeyVbOx93abdWTVSWvh1w+klA</
property>
 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password" encryption="aes/gcm/
128">Uah59TWX+Ru5GY5p||B44RT/LJtC08QWA5ehQf01JxIpf0qSJUzug25UwkF5a50g</
property>
 <property name="TLS - Keystore Type"></property>
 ...
 </userGroupProvider>

1.1.6.2. Sensitive Property Key Migration

In order to change the key used to encrypt the sensitive values, indicate migration mode
using the -m or --migrate flag, provide the new key or password using the -k or -
p flags as usual, and provide the existing key or password using -e or -w respectively.
This will allow the toolkit to decrypt the existing values and re-encrypt them, and update
bootstrap.conf with the new key. Only one of the key or password needs to be
specified for each phase (old vs. new), and any combination is sufficient:

• old key # new key

• old key # new password

• old password # new key

• old password # new password

1.1.6.3. Existing Flow Migration

This tool can also be used to change the value of nifi.sensitive.props.key for
an existing flow. The tool will read the existing flow.xml.gz and decrypt any sensitive
component properties using the original key, then re-encrypt the sensitive properties with
the new key, and write out a new version of the flow.xml.gz, or overwrite the existing
one.

The current sensitive properties key is not provided as a command-line argument, as it is
read directly from nifi.properties. As this file is a required parameter, the -x/--

Hortonworks DataFlow February 28, 2018

54

encryptFlowXmlOnly flags tell the tool not to attempt to encrypt the properties in
nifi.properties, but rather to only update the nifi.sensitive.props.key
value with the new key. The exception to this is if the nifi.properties is already
encrypted, the new sensitive property key will also be encrypted before being written to
nifi.properties.

The following command would migrate the sensitive properties key in place, meaning it
would overwrite the existing flow.xml.gz and nifi.properties:

./encrypt-config.sh -f /path/to/flow.xml.gz -n ./path/to/nifi.properties -s
 newpassword -x

The following command would migrate the sensitive properties key and write out a
separate flow.xml.gz and nifi.properties:

./encrypt-config.sh -f ./path/to/src/flow.xml.gz -g /path/to/dest/flow.
xml.gz -n /path/to/src/nifi.properties -o /path/to/dest/nifi.properties -s
 newpassword -x

1.1.6.4. Password Key Derivation

Instead of providing a 32 or 64 character raw hexadecimal key, you can provide a
password from which the key will be derived. As of 1.0.0, the password must be at least 12
characters, and the key will be derived using SCrypt with the parameters:

• pw - the password bytes in UTF-8

• salt - the fixed salt value (NIFI_SCRYPT_SALT) bytes in UTF-8

• N - 216

• r - 8

• p - 1

• dkLen - determined by the JCE policies available

As of August 2016, these values are determined to be strong for this threat model but may
change in future versions.

While fixed salts are counter to best practices, a static
salt is necessary for deterministic key derivation without
additional storage of the salt value.

1.1.6.5. Secure Prompt

If you prefer not to provide the password or raw key in the command-line invocation of the
tool, leaving these arguments absent will prompt a secure console read of the password (by
default) or raw key (if the -r flag is provided at invocation).

1.1.7. Administrative Tools
The admin toolkit contains command line utilities for administrators to support NiFi
maintenance in standalone and clustered environments. These utilities include:

• Notify - The notification tool allows administrators to send bulletins to the NiFi UI using
the command line.

Hortonworks DataFlow February 28, 2018

55

• Node Manager - The node manager tool allows administrators to perform a status check
on a node as well as to connect, disconnect, or remove nodes that are part of a cluster.

• File Manager - The file manager tool allows administrators to backup, install or restore a
NiFi installation from backup.

The admin toolkit is bundled with the nifi-toolkit and can be executed with scripts found in
the bin folder.

1.1.7.1. Prerequisites for Running Admin Toolkit in a Secure
Environment

For secured nodes and clusters, two policies should be configured in advance:

• Access the controller - A user that will have access to these utilities should be authorized
in NiFi by creating an "access the controller" policy (/controller) with both view and
modify rights.

• Proxy user request - If not previously set node's identity (the DN value of the node's
certificate) should be authorized to proxy requests on behalf of a user

When executing either the notify or node manager tools in a secured environment the
proxyDN flag option should be used in order to properly identify the user that was
authorized to execute these commands. In non-secure environments, or if running the
status operation on the Node Manager tool, the flag is ignored.

1.1.7.2. Notify

Notify allows administrators to send messages as bulletins to NiFi. Notify is supported on
NiFi version 1.2.0 and higher. The notification tool is also available in a notify.bat file for use
on Windows machines.

To send notifications:

notify.sh -d {$NIFI_HOME} -b {nifi bootstrap file path} -m {message} [-l
 {level}] [-v]

To show help:

notify.sh -h

The following are available options:

• -b,--bootstrapConf <arg> Existing Bootstrap Configuration file (required)

• -d,--nifiInstallDir <arg> NiFi Root Folder (required)

• -h,--help Help Text (optional)

• -l,--level <arg> Status level of bulletin - INFO, WARN, ERROR

• -m,--message <arg> Bulletin message (required)

• -p,--proxyDN <arg> Proxy or User DN (required for secured nodes)

• -v,--verbose Verbose messaging (optional)

Hortonworks DataFlow February 28, 2018

56

Example usage on Linux:

./notify.sh -d /usr/nifi/nifi_current -b /usr/nifi/nifi_current/conf/
bootstrap.conf -m "Test Message Server 1" -l "WARN" -p "ydavis@nifi" -v

Example usage on Windows:

notify.bat -v -d "C:\\Program Files\\nifi\\nifi-1.2.0-SNAPSHOT" -b "C:\\
Program Files\\nifi\\nifi-1.2.0-SNAPSHOT\\conf\\bootstrap.conf" -m "Test
 Message Server 1" -v

Executing the above command line should result in a bulletin appearing in NiFi:

1.1.7.3. Node Manager

Node manager supports connecting, disconnecting and removing a node when in a cluster
(an error message displays if the node is not part of a cluster) as well as obtaining the
status of a node. When nodes are disconnected from a cluster and need to be connected
or removed, a list of urls of connected nodes should be provided to send the required
command to the active cluster. Node Manager supports NiFi version 1.0.0 and higher. Node
Manager is also available in 'node-manager.bat' file for use on Windows machines.

To connect, disconnect, or remove a node from a cluster:

node-manager.sh -d {$NIFI_HOME} -b { nifi bootstrap file path}
-o {remove|disconnect|connect|status} [-u {url list}] [-p {proxy name}] [-v]

To show help:

node-manager.sh -h

The following are available options:

• -b,--bootstrapConf <arg> Existing Bootstrap Configuration file (required)

• -d,--nifiInstallDir <arg> NiFi Root Folder (required)

• -h,--help Help Text (optional)

• -o, --operation <arg> Operations supported: status, connect (cluster), disconnect
(cluster), remove (cluster)

• -p,--proxyDN <arg> Proxy or User DN (required for secured nodes doing connect,
disconnect and remove operations)

Hortonworks DataFlow February 28, 2018

57

• -u,--clusterUrls <arg> Comma delimited list of active urls for cluster (optional).
Not required for disconnecting a node yet will be needed when connecting or removing
from a cluster

• -v,--verbose Verbose messaging (optional)

Example usage on Linux:

disconnect without cluster url list
./node-manager.sh
-d /usr/nifi/nifi_current
-b /usr/nifi/nifi_current/conf/bootstrap.conf
-o disconnect
-p ydavis@nifi
-v

#with url list
./node-manager.sh
-d /usr/nifi/nifi_current
-b /usr/nifi/nifi_current/conf/bootstrap.conf
-o connect
-u 'http://nifi-server-1:8080,http://nifi-server-2:8080'
-v

Example usage on Windows:

node-manager.bat
-d "C:\\Program Files\\nifi\\nifi-1.2.0-SNAPSHOT"
-b "C:\\Program Files\\nifi\\nifi-1.2.0-SNAPSHOT\\conf\\bootstrap.conf"
-o disconnect
-v

1.1.7.3.1. Expected behavior

Status:

To obtain information on UI availability of a node, the status operation can be used to
determine if the node is running. If the -u (clusterUrls) option is not provided the
current node url is checked otherwise the urls provided will be checked.

Disconnect:

When a node is disconnected from the cluster, the node itself should appear as
disconnected and the cluster should have a bulletin indicating the disconnect request was
received. The cluster should also show n-1/n nodes available in the cluster. For example,
if 1 node is disconnected from a 3-node cluster, then 2 of 3 nodes should show on the
remaining nodes in the cluster. Changes to the flow should not be allowed on the cluster
with a disconnected node.

Connect:

When the connect command is executed to reconnect a node to a cluster, upon completion
the node itself should show that it has rejoined the cluster by showing n/n nodes.
Previously it would have shown Disconnected. Other nodes in the cluster should receive
a bulletin of the connect request and also show n/n nodes allowing for changes to be
allowed to the flow.

Remove:

Hortonworks DataFlow February 28, 2018

58

When the remove command is executed the node should show as disconnected from a
cluster. The nodes remaining in the cluster should show n-1/n-1 nodes. For example, if 1
node is removed from a 3-node cluster, then the remaining 2 nodes should show 2 of 2
nodes). The cluster should allow a flow to be adjusted. The removed node can rejoin the
cluster if restarted and the flow for the cluster has not changed. If the flow was changed,
the flow template of the removed node should be deleted before restarting the node
to allow it to obtain the cluster flow (otherwise an uninheritable flow file exception may
occur).

1.1.7.4. File Manager

The File Manager utility allows system administrators to take a backup of an existing NiFi
installation, install a new version of NiFi in a designated location (while migrating any
previous configuration settings) or restore an installation from a previous backup. File
Manager supports NiFi version 1.0.0 and higher and is available in 'file-manager.bat' file for
use on Windows machines.

To show help:

file-manager.sh -h

The following are available options:

• -b,--backupDir <arg> Backup NiFi Directory (used with backup or restore
operation)

• -c,--nifiCurrentDir <arg> Current NiFi Installation Directory (used optionally with
install or restore operation)

• -d,--nifiInstallDir <arg> NiFi Installation Directory (used with install or restore
operation)

• -h,--help Print help info (optional)

• -i,--installFile <arg> NiFi Install File (used with install operation)

• -m,--moveRepositories Allow repositories to be moved to new/restored nifi
directory from existing installation, if available (used optionally with install or restore
operation)

• -o,--operation <arg> File operation (install | backup | restore)

• -r,--nifiRollbackDir <arg> NiFi Installation Directory (used with install or restore
operation)

• -t,--bootstrapConf <arg> Current NiFi Bootstrap Configuration File (used
optionally)

• -v,--verbose Verbose messaging (optional)

• -x,--overwriteConfigs Overwrite existing configuration directory with upgrade
changes (used optionally with install or restore operation)

Example usage on Linux:

backup NiFi installation

Hortonworks DataFlow February 28, 2018

59

option -t may be provided to ensure backup of external boostrap.conf file
./file-manager.sh
-o backup
-b /tmp/nifi_bak
-c /usr/nifi_old
-v

install NiFi using compressed tar file into /usr/nifi directory (should
 install as /usr/nifi/nifi-1.3.0).
migrate existing configurations with location determined by external
 bootstrap.conf and move over repositories from nifi_old
options -t and -c should both be provided if migration of configurations,
 state and repositories are required
./file-manager.sh
-o install
-i nifi-1.3.0.tar.gz
-d /usr/nifi
-c /usr/nifi/nifi_old
-t /usr/nifi/old_conf/bootstrap.conf
-v
-m

restore NiFi installation from backup directory and move back repositories
option -t may be provided to ensure bootstrap.conf is restored to the file
 path provided, otherwise it is placed in the
default directory under the rollback path (e.g. /usr/nifi_old/conf)
./file-manager.sh
-o restore
-b /tmp/nifi_bak
-r /usr/nifi_old
-c /usr/nifi
-m
-v

1.1.7.5. Expected Behavior

Backup:

During the backup operation a backup directory is created in a designated location for
an existing NiFi installation. Backups will capture all critical files (including any internal or
external configurations, libraries, scripts and documents) however it excludes backing up
repositories and logs due to potential size. If configuration/library files are external from
the existing installation folder the backup operation will capture those as well.

Install:

During the install operation File Manager will perform installation using the designated NiFi
binary file (either tar.gz or zip file) to create a new installation or migrate an existing nifi
installation to a new one. Installation can optionally move repositories (if located within the
configuration folder of the current installation) to the new installation as well as migrate
configuration files to the newer installation.

Restore:

The restore operation allows an existing installation to revert back to a previous
installation. Using an existing backup directory (created from the backup operation) the
FileManager utility will restore libraries, scripts and documents as well as revert to previous
configurations. NOTE: If repositories were changed due to the installation of a newer

Hortonworks DataFlow February 28, 2018

60

version of NiFi these may no longer be compatible during restore. In that scenario exclude
the -m option to ensure new repositories will be created or, if repositories live outside of
the NiFi directory, remove them so they can be recreated on startup after restore.

1.1.8. Clustering Configuration

This section provides a quick overview of NiFi Clustering and instructions on how to set up
a basic cluster. In the future, we hope to provide supplemental documentation that covers
the NiFi Cluster Architecture in depth.

NiFi employs a Zero-Master Clustering paradigm. Each node in the cluster performs the
same tasks on the data, but each operates on a different set of data. One of the nodes
is automatically elected (via Apache ZooKeeper) as the Cluster Coordinator. All nodes
in the cluster will then send heartbeat/status information to this node, and this node is
responsible for disconnecting nodes that do not report any heartbeat status for some
amount of time. Additionally, when a new node elects to join the cluster, the new node
must first connect to the currently-elected Cluster Coordinator in order to obtain the most
up-to-date flow. If the Cluster Coordinator determines that the node is allowed to join
(based on its configured Firewall file), the current flow is provided to that node, and that
node is able to join the cluster, assuming that the node's copy of the flow matches the copy
provided by the Cluster Coordinator. If the node's version of the flow configuration differs
from that of the Cluster Coordinator's, the node will not join the cluster.

Why Cluster?

NiFi Administrators or Dataflow Managers (DFMs) may find that using one instance of NiFi
on a single server is not enough to process the amount of data they have. So, one solution
is to run the same dataflow on multiple NiFi servers. However, this creates a management
problem, because each time DFMs want to change or update the dataflow, they must
make those changes on each server and then monitor each server individually. By clustering
the NiFi servers, it's possible to have that increased processing capability along with a single

Hortonworks DataFlow February 28, 2018

61

interface through which to make dataflow changes and monitor the dataflow. Clustering
allows the DFM to make each change only once, and that change is then replicated to
all the nodes of the cluster. Through the single interface, the DFM may also monitor the
health and status of all the nodes.

NiFi Clustering is unique and has its own terminology. It's important to understand the
following terms before setting up a cluster.

Terminology

NiFi Cluster Coordinator: A NiFi Cluster Coordinator is the node in a NiFi cluster that is
responsible for carrying out tasks to manage which nodes are allowed in the cluster and
providing the most up-to-date flow to newly joining nodes. When a DataFlow Manager
manages a dataflow in a cluster, they are able to do so through the User Interface of any
node in the cluster. Any change made is then replicated to all nodes in the cluster.

Nodes: Each cluster is made up of one or more nodes. The nodes do the actual data
processing.

Primary Node: Every cluster has one Primary Node. On this node, it is possible to run
"Isolated Processors" (see below). ZooKeeper is used to automatically elect a Primary
Node. If that node disconnects from the cluster for any reason, a new Primary Node will
automatically be elected. Users can determine which node is currently elected as the
Primary Node by looking at the Cluster Management page of the User Interface.

Isolated Processors: In a NiFi cluster, the same dataflow runs on all the nodes. As a result,
every component in the flow runs on every node. However, there may be cases when the
DFM would not want every processor to run on every node. The most common case is
when using a processor that communicates with an external service using a protocol that
does not scale well. For example, the GetSFTP processor pulls from a remote directory,
and if the GetSFTP Processor runs on every node in the cluster tries simultaneously to pull
from the same remote directory, there could be race conditions. Therefore, the DFM could
configure the GetSFTP on the Primary Node to run in isolation, meaning that it only runs on
that node. It could pull in data and - with the proper dataflow configuration - load-balance
it across the rest of the nodes in the cluster. Note that while this feature exists, it is also very
common to simply use a standalone NiFi instance to pull data and feed it to the cluster. It
just depends on the resources available and how the Administrator decides to configure
the cluster.

Heartbeats: The nodes communicate their health and status to the currently elected Cluster
Coordinator via "heartbeats", which let the Coordinator know they are still connected to
the cluster and working properly. By default, the nodes emit heartbeats every 5 seconds,
and if the Cluster Coordinator does not receive a heartbeat from a node within 40 seconds,
it disconnects the node due to "lack of heartbeat". (The 5-second setting is configurable
in the nifi.properties file. See the System Properties section of this document for more
information.) The reason that the Cluster Coordinator disconnects the node is because
the Coordinator needs to ensure that every node in the cluster is in sync, and if a node is
not heard from regularly, the Coordinator cannot be sure it is still in sync with the rest of
the cluster. If, after 40 seconds, the node does send a new heartbeat, the Coordinator will
automatically request that the node re-join the cluster, to include the re-validation of the
node's flow. Both the disconnection due to lack of heartbeat and the reconnection once a
heartbeat is received are reported to the DFM in the User Interface.

Hortonworks DataFlow February 28, 2018

62

Communication within the Cluster

As noted, the nodes communicate with the Cluster Coordinator via heartbeats. When a
Cluster Coordinator is elected, it updates a well-known ZNode in Apache ZooKeeper with
its connection information so that nodes understand where to send heartbeats. If one
of the nodes goes down, the other nodes in the cluster will not automatically pick up the
load of the missing node. It is possible for the DFM to configure the dataflow for failover
contingencies; however, this is dependent on the dataflow design and does not happen
automatically.

When the DFM makes changes to the dataflow, the node that receives the request to
change the flow communicates those changes to all nodes and waits for each node to
respond, indicating that it has made the change on its local flow.

Dealing with Disconnected Nodes

A DFM may manually disconnect a node from the cluster. But if a node becomes
disconnected for any other reason (such as due to lack of heartbeat), the Cluster
Coordinator will show a bulletin on the User Interface. The DFM will not be able to make
any changes to the dataflow until the issue of the disconnected node is resolved. The DFM
or the Administrator will need to troubleshoot the issue with the node and resolve it before
any new changes may be made to the dataflow. However, it is worth noting that just
because a node is disconnected does not mean that it is not working; this may happen
for a few reasons, including that the node is unable to communicate with the Cluster
Coordinator due to network problems.

There are cases where a DFM may wish to continue making changes to the flow, even
though a node is not connected to the cluster. In this case, they DFM may elect to remove
the node from the cluster entirely through the Cluster Management dialog. Once removed,
the node cannot be rejoined to the cluster until it has been restarted.

Flow Election

When a cluster first starts up, NiFi must determine which of the nodes have the "correct"
version of the flow. This is done by voting on the flows that each of the nodes has. When
a node attempts to connect to a cluster, it provides a copy of its local flow to the Cluster
Coordinator. If no flow has yet been elected the "correct" flow, the node's flow is compared
to each of the other Nodes' flows. If another Node's flow matches this one, a vote is cast
for this flow. If no other Node has reported the same flow yet, this flow will be added
to the pool of possibly elected flows with one vote. After some amount of time has
elapsed (configured by setting the nifi.cluster.flow.election.max.wait.time
property) or some number of Nodes have cast votes (configured by setting the
nifi.cluster.flow.election.max.candidates property), a flow is elected
to be the "correct" copy of the flow. All nodes that have incompatible flows are then
disconnected from the cluster while those with compatible flows inherit the cluster's flow.
Election is performed according to the "popular vote" with the caveat that the winner will
never be an "empty flow" unless all flows are empty. This allows an administrator to remove
a node's flow.xml.gz file and restart the node, knowing that the node's flow will not be
voted to be the "correct" flow unless no other flow is found.

Basic Cluster Setup

This section describes the setup for a simple three-node, non-secure cluster comprised of
three instances of NiFi.

Hortonworks DataFlow February 28, 2018

63

For each instance, certain properties in the nifi.properties file will need to be updated. In
particular, the Web and Clustering properties should be evaluated for your situation and
adjusted accordingly. All the properties are described in the System Properties section of
this guide; however, in this section, we will focus on the minimum properties that must be
set for a simple cluster.

For all three instances, the Cluster Common Properties can be left with the default settings.
Note, however, that if you change these settings, they must be set the same on every
instance in the cluster.

For each Node, the minimum properties to configure are as follows:

• Under the Web Properties section, set either the http or https port that you want the
Node to run on. Also, consider whether you need to set the http or https host property.

• Under the State Management section, set the
nifi.state.management.provider.cluster property to the identifier of the
Cluster State Provider. Ensure that the Cluster State Provider has been configured in the
state-management.xml file. See Configuring State Providers for more information.

• Under Cluster Node Properties, set the following:

• nifi.cluster.is.node - Set this to true.

• nifi.cluster.node.address - Set this to the fully qualified hostname of the node. If left
blank, it defaults to "localhost".

• nifi.cluster.node.protocol.port - Set this to an open port that is higher than 1024
(anything lower requires root).

• nifi.cluster.node.protocol.threads - The number of threads that should be used to
communicate with other nodes in the cluster. This property defaults to 10. A thread
pool is used for replicating requests to all nodes, and the thread pool will never have
fewer than this number of threads. It will grow as needed up to the maximum value
set by the nifi.cluster.node.protocol.max.threads property.

• nifi.cluster.node.protocol.max.threads - The maximum number of threads
that should be used to communicate with other nodes in the cluster. This
property defaults to 50. A thread pool is used for replication requests to all
nodes, and the thread pool will have a "core" size that is configured by the
nifi.cluster.node.protocol.threads property. However, if necessary, the
thread pool will increase the number of active threads to the limit set by this property.

• nifi.zookeeper.connect.string - The Connect String that is needed to connect to
Apache ZooKeeper. This is a comma-separated list of hostname:port pairs. For
example, localhost:2181,localhost:2182,localhost:2183. This should contain a list of all
ZooKeeper instances in the ZooKeeper quorum.

• nifi.zookeeper.root.node - The root ZNode that should be used in ZooKeeper.
ZooKeeper provides a directory-like structure for storing data. Each 'directory' in this
structure is referred to as a ZNode. This denotes the root ZNode, or 'directory', that
should be used for storing data. The default value is /root. This is important to set
correctly, as which cluster the NiFi instance attempts to join is determined by which
ZooKeeper instance it connects to and the ZooKeeper Root Node that is specified.

Hortonworks DataFlow February 28, 2018

64

• nifi.cluster.flow.election.max.wait.time - Specifies the amount of time
to wait before electing a Flow as the "correct" Flow. If the number
of Nodes that have voted is equal to the number specified by the
nifi.cluster.flow.election.max.candidates property, the cluster will not
wait this long. The default value is 5 mins. Note that the time starts as soon as the first
vote is cast.

• nifi.cluster.flow.election.max.candidates - Specifies the number of Nodes required in
the cluster to cause early election of Flows. This allows the Nodes in the cluster to avoid
having to wait a long time before starting processing if we reach at least this number
of nodes in the cluster.

Now, it is possible to start up the cluster. It does not matter which order the instances start
up. Navigate to the URL for one of the nodes, and the User Interface should look similar to
the following:

Troubleshooting

If you encounter issues and your cluster does not work as described, investigate the nifi-
app.log and nifi-user.log files on the nodes. If needed, you can change the logging level
to DEBUG by editing the conf/logback.xml file. Specifically, set the level="DEBUG" in the
following line (instead of "INFO"):

 <logger name="org.apache.nifi.web.api.config" level="INFO" additivity=
"false">
 <appender-ref ref="USER_FILE"/>
 </logger>

1.1.9. State Management
NiFi provides a mechanism for Processors, Reporting Tasks, Controller Services, and the
framework itself to persist state. This allows a Processor, for example, to resume from the
place where it left off after NiFi is restarted. Additionally, it allows for a Processor to store
some piece of information so that the Processor can access that information from all of the
different nodes in the cluster. This allows one node to pick up where another node left off,
or to coordinate across all of the nodes in a cluster.

1.1.9.1. Configuring State Providers

When a component decides to store or retrieve state, it does so by providing a "Scope" -
either Node-local or Cluster-wide. The mechanism that is used to store and retrieve this
state is then determined based on this Scope, as well as the configured State Providers. The

Hortonworks DataFlow February 28, 2018

65

nifi.properties file contains three different properties that are relevant to configuring these
State Providers.

Property Description

nifi.state.management.configuration.file The first is the property that specifies an external XML file
that is used for configuring the local and/or cluster-wide
State Providers. This XML file may contain configurations
for multiple providers

nifi.state.management.provider.local The property that provides the identifier of the local State
Provider configured in this XML file

nifi.state.management.provider.cluster Similarly, the property provides the identifier of the
cluster-wide State Provider configured in this XML file.

This XML file consists of a top-level state-management element, which has one or
more local-provider and zero or more cluster-provider elements. Each of these
elements then contains an id element that is used to specify the identifier that can be
referenced in the nifi.properties file, as well as a class element that specifies the fully-
qualified class name to use in order to instantiate the State Provider. Finally, each of these
elements may have zero or more property elements. Each property element has an
attribute, name that is the name of the property that the State Provider supports. The
textual content of the property element is the value of the property.

Once these State Providers have been configured in the state-management.xml file (or
whatever file is configured), those Providers may be referenced by their identifiers.

By default, the Local State Provider is configured to be a
WriteAheadLocalStateProvider that persists the data to the $NIFI_HOME/
state/local directory. The default Cluster State Provider is configured to be a
ZooKeeperStateProvider. The default ZooKeeper-based provider must have its
Connect String property populated before it can be used. It is also advisable, if multiple
NiFi instances will use the same ZooKeeper instance, that the value of the Root Node
property be changed. For instance, one might set the value to /nifi/<team name>/
production. A Connect String takes the form of comma separated <host>:<port>
tuples, such as my-zk-server1:2181,my-zk-server2:2181,my-zk-server3:2181. In the event a
port is not specified for any of the hosts, the ZooKeeper default of 2181 is assumed.

When adding data to ZooKeeper, there are two options for Access Control: Open and
CreatorOnly. If the Access Control property is set to Open, then anyone is allowed
to log into ZooKeeper and have full permissions to see, change, delete, or administer the
data. If CreatorOnly is specified, then only the user that created the data is allowed to
read, change, delete, or administer the data. In order to use the CreatorOnly option,
NiFi must provide some form of authentication. See the ZooKeeper Access Control section
below for more information on how to configure authentication.

If NiFi is configured to run in a standalone mode, the cluster-provider element need
not be populated in the state-management.xml file and will actually be ignored if they
are populated. However, the local-provider element must always be present and
populated. Additionally, if NiFi is run in a cluster, each node must also have the cluster-
provider element present and properly configured. Otherwise, NiFi will fail to startup.

While there are not many properties that need to be configured for these providers, they
were externalized into a separate state-management.xml file, rather than being configured
via the nifi.properties file, simply because different implementations may require different
properties, and it is easier to maintain and understand the configuration in an XML-based

Hortonworks DataFlow February 28, 2018

66

file such as this, than to mix the properties of the Provider in with all of the other NiFi
framework-specific properties.

It should be noted that if Processors and other components save state using the Clustered
scope, the Local State Provider will be used if the instance is a standalone instance (not in a
cluster) or is disconnected from the cluster. This also means that if a standalone instance is
migrated to become a cluster, then that state will no longer be available, as the component
will begin using the Clustered State Provider instead of the Local State Provider.

1.1.9.2. Embedded ZooKeeper Server

As mentioned above, the default State Provider for cluster-wide state is the
ZooKeeperStateProvider. At the time of this writing, this is the only State Provider
that exists for handling cluster-wide state. What this means is that NiFi has dependencies
on ZooKeeper in order to behave as a cluster. However, there are many environments in
which NiFi is deployed where there is no existing ZooKeeper ensemble being maintained. In
order to avoid the burden of forcing administrators to also maintain a separate ZooKeeper
instance, NiFi provides the option of starting an embedded ZooKeeper server.

Property Description

nifi.state.management.embedded.zookeeper.start Specifies whether or not this instance of NiFi should run an
embedded ZooKeeper server

nifi.state.management.embedded.zookeeper.properties Properties file that provides the
ZooKeeper properties to use if
nifi.state.management.embedded.zookeeper.start
is set to true

This can be accomplished by setting the
nifi.state.management.embedded.zookeeper.start property in nifi.properties
to true on those nodes that should run the embedded ZooKeeper server. Generally, it
is advisable to run ZooKeeper on either 3 or 5 nodes. Running on fewer than 3 nodes
provides less durability in the face of failure. Running on more than 5 nodes generally
produces more network traffic than is necessary. Additionally, running ZooKeeper on 4
nodes provides no more benefit than running on 3 nodes, ZooKeeper requires a majority
of nodes be active in order to function. However, it is up to the administrator to determine
the number of nodes most appropriate to the particular deployment of NiFi.

If the nifi.state.management.embedded.zookeeper.start property is set to
true, the nifi.state.management.embedded.zookeeper.properties property
in nifi.properties also becomes relevant. This specifies the ZooKeeper properties file to use.
At a minimum, this properties file needs to be populated with the list of ZooKeeper servers.
The servers are specified as properties in the form of server.1, server.2, to server.n.
Each of these servers is configured as <hostname>:<quorum port>[:<leader election port>].
For example, myhost:2888:3888. This list of nodes should be the same nodes in the
NiFi cluster that have the nifi.state.management.embedded.zookeeper.start
property set to true. Also note that because ZooKeeper will be listening on these ports,
the firewall may need to be configured to open these ports for incoming traffic, at least
between nodes in the cluster. Additionally, the port to listen on for client connections must
be opened in the firewall. The default value for this is 2181 but can be configured via the
clientPort property in the zookeeper.properties file.

When using an embedded ZooKeeper, the ./conf/zookeeper.properties file has a property
named dataDir. By default, this value is set to ./state/zookeeper. If more than

Hortonworks DataFlow February 28, 2018

67

one NiFi node is running an embedded ZooKeeper, it is important to tell the server which
one it is. This is accomplished by creating a file named myid and placing it in ZooKeeper's
data directory. The contents of this file should be the index of the server as specific by
the server.<number>. So for one of the ZooKeeper servers, we will accomplish this by
performing the following commands:

cd $NIFI_HOME
mkdir state
mkdir state/zookeeper
echo 1 > state/zookeeper/myid

For the next NiFi Node that will run ZooKeeper, we can accomplish this by performing the
following commands:

cd $NIFI_HOME
mkdir state
mkdir state/zookeeper
echo 2 > state/zookeeper/myid

And so on.

For more information on the properties used to administer ZooKeeper, see the ZooKeeper
Admin Guide.

For information on securing the embedded ZooKeeper Server, see the Securing ZooKeeper
section below.

1.1.9.3. ZooKeeper Access Control

ZooKeeper provides Access Control to its data via an Access Control List (ACL) mechanism.
When data is written to ZooKeeper, NiFi will provide an ACL that indicates that any user
is allowed to have full permissions to the data, or an ACL that indicates that only the user
that created the data is allowed to access the data. Which ACL is used depends on the
value of the Access Control property for the ZooKeeperStateProvider (see the
Configuring State Providers section for more information).

In order to use an ACL that indicates that only the Creator is allowed to access the data, we
need to tell ZooKeeper who the Creator is. There are two mechanisms for accomplishing
this. The first mechanism is to provide authentication using Kerberos. See Kerberizing NiFi's
ZooKeeper Client for more information.

The second option is to use a user name and password. This is configured by
specifying a value for the Username and a value for the Password properties for the
ZooKeeperStateProvider (see the Configuring State Providers section for more
information). The important thing to keep in mind here, though, is that ZooKeeper will
pass around the password in plain text. This means that using a user name and password
should not be used unless ZooKeeper is running on localhost as a one-instance cluster, or if
communications with ZooKeeper occur only over encrypted communications, such as a VPN
or an SSL connection. ZooKeeper will be providing support for SSL connections in version
3.5.0.

1.1.9.4. Securing ZooKeeper

When NiFi communicates with ZooKeeper, all communications, by default, are non-
secure, and anyone who logs into ZooKeeper is able to view and manipulate all of the NiFi

https://zookeeper.apache.org/doc/current/zookeeperAdmin.html
https://zookeeper.apache.org/doc/current/zookeeperAdmin.html

Hortonworks DataFlow February 28, 2018

68

state that is stored in ZooKeeper. To prevent this, we can use Kerberos to manage the
authentication. At this time, ZooKeeper does not provide support for encryption via SSL.
Support for SSL in ZooKeeper is being actively developed and is expected to be available in
the 3.5.x release version.

In order to secure the communications, we need to ensure that both the client and the
server support the same configuration. Instructions for configuring the NiFi ZooKeeper
client and embedded ZooKeeper server to use Kerberos are provided below.

If Kerberos is not already setup in your environment, you can find information
on installing and setting up a Kerberos Server at https://access.redhat.com/
documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/
Configuring_a_Kerberos_5_Server.html . This guide assumes that Kerberos already has been
installed in the environment in which NiFi is running.

Note, the following procedures for kerberizing an Embedded ZooKeeper server in your NiFi
Node and kerberizing a ZooKeeper NiFi client will require that Kerberos client libraries be
installed. This is accomplished in Fedora-based Linux distributions via:

yum install krb5-workstation

Once this is complete, the /etc/krb5.conf will need to be configured appropriately for your
organization's Kerberos environment.

1.1.9.4.1. Kerberizing Embedded ZooKeeper Server

The krb5.conf file on the systems with the embedded zookeeper servers should be identical
to the one on the system where the krb5kdc service is running. When using the embedded
ZooKeeper server, we may choose to secure the server by using Kerberos. All nodes
configured to launch an embedded ZooKeeper and using Kerberos should follow these
steps. When using the embedded ZooKeeper server, we may choose to secure the server
by using Kerberos. All nodes configured to launch an embedded ZooKeeper and using
Kerberos should follow these steps.

In order to use Kerberos, we first need to generate a Kerberos Principal for our ZooKeeper
servers. The following command is run on the server where the krb5kdc service is running.
This is accomplished via the kadmin tool:

kadmin: addprinc "zookeeper/myHost.example.com@EXAMPLE.COM"

Here, we are creating a Principal with the primary zookeeper/myHost.example.com,
using the realm EXAMPLE.COM. We need to use a Principal whose name is <service
name>/<instance name>. In this case, the service is zookeeper and the instance name
is myHost.example.com (the fully qualified name of our host).

Next, we will need to create a KeyTab for this Principal, this command is run on the server
with the NiFi instance with an embedded zookeeper server:

kadmin: xst -k zookeeper-server.keytab zookeeper/myHost.example.com@EXAMPLE.
COM

This will create a file in the current directory named zookeeper-server.keytab. We
can now copy that file into the $NIFI_HOME/conf/ directory. We should ensure that only
the user that will be running NiFi is allowed to read this file.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/Configuring_a_Kerberos_5_Server.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/Configuring_a_Kerberos_5_Server.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/Configuring_a_Kerberos_5_Server.html

Hortonworks DataFlow February 28, 2018

69

We will need to repeat the above steps for each of the instances of NiFi that will be
running the embedded ZooKeeper server, being sure to replace myHost.example.com with
myHost2.example.com, or whatever fully qualified hostname the ZooKeeper server will be
run on.

Now that we have our KeyTab for each of the servers that will be running NiFi, we
will need to configure NiFi's embedded ZooKeeper server to use this configuration.
ZooKeeper uses the Java Authentication and Authorization Service (JAAS), so we need
to create a JAAS-compatible file In the $NIFI_HOME/conf/ directory, create a file
named zookeeper-jaas.conf (this file will already exist if the Client has already been
configured to authenticate via Kerberos. That's okay, just add to the file). We will add to
this file, the following snippet:

Server {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="conf/zookeeper-server.keytab"
 storeKey=true
 useTicketCache=false
 principal="zookeeper/myHost.example.com@EXAMPLE.COM";
};

Be sure to replace the value of principal above with the appropriate Principal, including the
fully qualified domain name of the server.

Next, we need to tell NiFi to use this as our JAAS configuration. This is done by setting
a JVM System Property, so we will edit the conf/bootstrap.conf file. If the Client
has already been configured to use Kerberos, this is not necessary, as it was done above.
Otherwise, we will add the following line to our bootstrap.conf file:

java.arg.15=-Djava.security.auth.login.config=./conf/zookeeper-jaas.conf

Note: this additional line in the file doesn't have to be number 15, it just has to be added to
the bootstrap.conf file, use whatever number is appropriate for your configuration.

We will want to initialize our Kerberos ticket by running the following command:

kinit -kt zookeeper-server.keytab "zookeeper/myHost.example.com@EXAMPLE.COM"

Again, be sure to replace the Principal with the appropriate value, including your realm and
your fully qualified hostname.

Finally, we need to tell the Kerberos server to use the SASL Authentication Provider. To
do this, we edit the $NIFI_HOME/conf/zookeeper.properties file and add the
following lines:

authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
kerberos.removeHostFromPrincipal=true
kerberos.removeRealmFromPrincipal=true
jaasLoginRenew=3600000
requireClientAuthScheme=sasl

The kerberos.removeHostFromPrincipal and the kerberos.removeRealmFromPrincipal
properties are used to normalize the user principal name before comparing an identity
to acls applied on a Znode. By default the full principal is used however setting the
removeHostFromPrincipal and removeRealmFromPrincipal kerberos properties to true will

Hortonworks DataFlow February 28, 2018

70

instruct ZooKeeper to remove the host and the realm from the logged in user's identity for
comparison. In cases where NiFi nodes (within the same cluster) use principals that have
different host(s)/realm(s) values, these kerberos properties can be configured to ensure
that the nodes' identity will be normalized and that the nodes will have appropriate access
to shared Znodes in ZooKeeper.

The last line is optional but specifies that clients MUST use Kerberos to communicate with
our ZooKeeper instance.

Now, we can start NiFi, and the embedded ZooKeeper server will use Kerberos as the
authentication mechanism.

1.1.9.4.2. Kerberizing NiFi's ZooKeeper Client

Note: The NiFi nodes running the embedded zookeeper server will also need to follow the
below procedure since they will also be acting as a client at the same time.

The preferred mechanism for authenticating users with ZooKeeper is to use Kerberos.
In order to use Kerberos to authenticate, we must configure a few system properties, so
that the ZooKeeper client knows who the user is and where the KeyTab file is. All nodes
configured to store cluster-wide state using ZooKeeperStateProvider and using
Kerberos should follow these steps.

First, we must create the Principal that we will use when communicating with ZooKeeper.
This is generally done via the kadmin tool:

kadmin: addprinc "nifi@EXAMPLE.COM"

A Kerberos Principal is made up of three parts: the primary, the instance, and the realm.
Here, we are creating a Principal with the primary nifi, no instance, and the realm
EXAMPLE.COM. The primary (nifi, in this case) is the identifier that will be used to identify
the user when authenticating via Kerberos.

After we have created our Principal, we will need to create a KeyTab for the Principal:

kadmin: xst -k nifi.keytab nifi@EXAMPLE.COM

This keytab file can be copied to the other NiFi nodes with embedded zookeeper servers.

This will create a file in the current directory named nifi.keytab. We can now copy that
file into the $NIFI_HOME/conf/ directory. We should ensure that only the user that will be
running NiFi is allowed to read this file.

Next, we need to configure NiFi to use this KeyTab for authentication. Since ZooKeeper
uses the Java Authentication and Authorization Service (JAAS), we need to create a JAAS-
compatible file. In the $NIFI_HOME/conf/ directory, create a file named zookeeper-
jaas.conf and add to it the following snippet:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="conf/nifi.keytab"
 storeKey=true
 useTicketCache=false
 principal="nifi@EXAMPLE.COM";
};

Hortonworks DataFlow February 28, 2018

71

We then need to tell NiFi to use this as our JAAS configuration. This is done by setting a
JVM System Property, so we will edit the conf/bootstrap.conf file. We add the following
line anywhere in this file in order to tell the NiFi JVM to use this configuration:

java.arg.15=-Djava.security.auth.login.config=./conf/zookeeper-jaas.conf

Finally we need to update nifi.properties to ensure that NiFi knows to apply SASL
specific ACLs for the Znodes it will create in ZooKeeper for cluster management. To enable
this, in the $NIFI_HOME/conf/nifi.properties file and edit the following properties
as shown below:

nifi.zookeeper.auth.type=sasl
nifi.zookeeper.kerberos.removeHostFromPrincipal=true
nifi.zookeeper.kerberos.removeRealmFromPrincipal=true

Note: The kerberos.removeHostFromPrincipal and kerberos.removeRealmFromPrincipal
should be consistent with what is set in ZooKeeper configuration.

We can initialize our Kerberos ticket by running the following command:

kinit -kt nifi.keytab nifi@EXAMPLE.COM

Now, when we start NiFi, it will use Kerberos to authentication as the nifi user when
communicating with ZooKeeper.

1.1.9.4.3. Troubleshooting Kerberos Configuration

When using Kerberos, it is import to use fully-qualified domain names and not use
localhost. Please ensure that the fully qualified hostname of each server is used in the
following locations:

• conf/zookeeper.properties file should use FQDN for server.1, server.2, …,
server.N values.

• The Connect String property of the ZooKeeperStateProvider

• The /etc/hosts file should also resolve the FQDN to an IP address that is not127.0.0.1.

Failure to do so, may result in errors similar to the following:

2016-01-08 16:08:57,888 ERROR [pool-26-thread-1-SendThread(localhost:2181)]
 o.a.zookeeper.client.ZooKeeperSaslClient An error: (java.security.
PrivilegedActionException: javax.security.sasl.SaslException: GSS initiate
 failed [Caused by GSSException: No valid credentials provided (Mechanism
 level: Server not found in Kerberos database (7) - LOOKING_UP_SERVER)])
 occurred when evaluating ZooKeeper Quorum Member's received SASL token.
 ZooKeeper Client will go to AUTH_FAILED state.

If there are problems communicating or authenticating with Kerberos, this Troubleshooting
Guide may be of value.

One of the most important notes in the above Troubleshooting guide is the
mechanism for turning on Debug output for Kerberos. This is done by setting the
sun.security.krb5.debug environment variable. In NiFi, this is accomplished by
adding the following line to the _$NIFI_HOME/conf/bootstrap.conf` file:

java.arg.16=-Dsun.security.krb5.debug=true

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/Troubleshooting.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/Troubleshooting.html

Hortonworks DataFlow February 28, 2018

72

This will cause the debug output to be written to the NiFi Bootstrap log file. By default, this
is located at $NIFI_HOME/logs/nifi-bootstrap.log. This output can be rather verbose but
provides extremely valuable information for troubleshooting Kerberos failures.

1.1.9.5. ZooKeeper Migrator

You can use the NiFi ZooKeeper Migrator to perform the following tasks:

• Moving ZooKeeper information from one ZooKeeper cluster to another

• Migrating ZooKeeper node ownership

For example, you may want to use the ZooKeeper Migrator when you are:

• Upgrading from NiFi 0.x to NiFi 1.x in which embedded ZooKeepers are used

• Migrating from an embedded ZooKeeper in NiFi 0.x or 1.x to an external ZooKeeper

• Upgrading from NiFi 0.x with an external ZooKeeper to NiFi 1.x with the same external
ZooKeeper

• Migrating from an external ZooKeeper to an embedded ZooKeeper in NiFi 1.x

The NiFi ZooKeeper Migrator is part of the NiFi Toolkit and is downloaded separately from
the Apache NiFi download page.

1.1.9.5.1. zk-migrator.sh Command Line Parameters

You can use the following command line options with the ZooKeeper Migrator:

• -a,--auth <username:password> Allows the specification of a username and
password for authentication with ZooKeeper. This option is mutually exclusive with the -
k,--krb-conf option.

• -f,--file <filename> The file used for ZooKeeper data serialized as JSON. When
used with the -r,--receive option, data read from ZooKeeper will be stored in the
given filename. When used with the -s,--send option, the data in the file will be sent
to ZooKeeper.

• -h,--help Prints help, displays available parameters with descriptions

• --ignore-source Allows the ZooKeeper Migrator to write to the ZooKeeper and path
from which the data was obtained.

• -k,--krb-conf <jaas-filename> Allows the specification of a JAAS configuration
file to allow authentication with a ZooKeeper configured to use Kerberos. This option is
mutually exclusive with the -a,--auth option.

• -r,--receive Receives data from ZooKeeper and writes to the given filename (if the -
f,--file option is provided) or standard output. The data received will contain the full
path to each node read from ZooKeeper. This option is mutually exclusive with the -s,--
send option.

• -s,--send Sends data to ZooKeeper that is read from the given filename (if the -f,--
file option is provided) or standard input. The paths for each node in the data being
sent to ZooKeeper are absolute paths, and will be stored in ZooKeeper under the path

https://nifi.apache.org/download.html

Hortonworks DataFlow February 28, 2018

73

portion of the -z,--zookeeper argument. Typically, the path portion of the argument
can be omitted, which will store the nodes at their absolute paths. This option is mutually
exclusive with the -r,--receive option.

• --use-existing-acl Allows the ZooKeeper Migrator to write ACL values retrieved
from the source ZooKeeper server to destination server. Default action will apply Open
rights for unsecured destinations or Creator Only rights for secured destinations.

• -z,--zookeeper <zookeeper-endpoint> The ZooKeeper server(s) to use, specified
by a connect string, comprised of one or more comma-separated host:port pairs followed
by a path, in the format of host:port[,host2:port…,hostn:port]/znode/path.

1.1.9.5.2. Migrating Between Source and Destination ZooKeepers

Before you begin, confirm that:

• You have installed the destination ZooKeeper cluster.

• You have installed and configured a NiFi cluster to use the destination ZooKeeper cluster.

• If you are migrating ZooKeepers due to upgrading NiFi from 0.x to 1.x,, you have already
followed appropriate NiFi upgrade steps.

• You have configured Kerberos as needed.

• You have not started processing any dataflow (to avoid duplicate data processing).

• If one of the ZooKeeper clusters you are using is configured with Kerberos, you are
running the ZooKeeper Migrator from a host that has access to NiFi's ZooKeeper client
jaas configuration file (see Kerberizing NiFi's ZooKeeper Client for more information).

1.1.9.5.2.1. ZooKeeper Migration Steps

1. Collect the following information:

Required Information Description

Source ZooKeeper hostname (sourceHostname) The hostname must be one of the hosts running in
the ZooKeeper ensemble, which can be found in <NiFi
installation dir>/conf/zookeeper.properties. Any of the
hostnames declared in the server.N properties can be
used.

Destination ZooKeeper hostname
(destinationHostname)

The hostname must be one of the hosts running in
the ZooKeeper ensemble, which can be found in <NiFi
installation dir>/conf/zookeeper.properties. Any of the
hostnames declared in the server.N properties can be
used.

Source ZooKeeper port (sourceClientPort) This can be found in zookeeper.properties of the <NiFi
installation dir>/conf/zookeeper.properties. The port is
specified in the clientPort property.

Destination ZooKeeper port (destinationClientPort) This can be found in zookeeper.properties of the <NiFi
installation dir>/conf/zookeeper.properties. The port is
specified in the clientPort property.

Export data path Determine the path that will store a json file containing
the export of data from ZooKeeper. It must be readable
and writable by the user running the zk-migrator tool.

Source ZooKeeper Authentication Information This information is in <NiFi installation dir>/conf/
state-management.xml. For NiFi 0.x, if Creator Only
is specified in state-management.xml, you need to

Hortonworks DataFlow February 28, 2018

74

supply authentication information using the -a,--
auth argument with the values from the Username and
Password properties in state-management.xml. For NiFi
1.x, supply authentication information using the -k,--
krb-conf argument. + If the state-management.xml
specifies Open, no authentication is required.

Destination ZooKeeper Authentication Information This information is in <NiFi installation dir>/conf/
state-management.xml. For NiFi 0.x, if Creator Only
is specified in state-management.xml, you need to
supply authentication information using the -a,--
auth argument with the values from the Username and
Password properties in state-management.xml. For NiFi
1.x, supply authentication information using the -k,--
krb-conf argument. + If the state-management.xml
specifies Open, no authentication is required.

Root path to which NiFi writes data in Source ZooKeeper
(sourceRootPath)

This information can be found in <NiFi installation dir>/
conf/state-management.xml under the Root Node
property in the cluster-provider element. (default: /nifi)

Root path to which NiFi writes data in Destination
ZooKeeper (destinationRootPath)

This information can be found in <NiFi installation dir>/
conf/state-management.xml under the Root Node
property in the cluster-provider element.

2. Stop all processors in the NiFi flow. If you are migrating between two NiFi installations,
the flows on both must be stopped.

3. Export the NiFi component data from the source ZooKeeper. The following command
reads from the specified ZooKeeper running on the given hostname:port, using the
provided path to the data, and authenticates with ZooKeeper using the given username
and password. The data read from ZooKeeper is written to the file provided.

• For NiFi 0.x

• For an open ZooKeeper:

• zk-migrator.sh -r -z sourceHostname:sourceClientPort/sourceRootPath/
components -f /path/to/export/zk-source-data.json

• For a ZooKeeper using username:password for authentication:

• zk-migrator.sh -r -z sourceHostname:sourceClientPort/sourceRootPath/
components -a <username:password> -f /path/to/export/zk-source-data.json

• For NiFi 1.x

• For an open ZooKeeper:

• zk-migrator.sh -r -z sourceHostname:sourceClientPort/sourceRootPath/
components -f /path/to/export/zk-source-data.json

• For a ZooKeeper using Kerberos for authentication:

• zk-migrator.sh -r -z sourceHostname:sourceClientPort/sourceRootPath/
components -k /path/to/jaasconfig/jaas-config.conf -f /path/to/export/zk-
source-data.json

4. (Optional) If you have used the new NiFi installation to do any processing, you can also
export its ZooKeeper data as a backup prior to performing the migration.

Hortonworks DataFlow February 28, 2018

75

• For an open ZooKeeper:

• zk-migrator.sh -r -z
destinationHostname:destinationClientPort/destinationRootPath/components -
f /path/to/export/zk-destination-backup-data.json

• For a ZooKeeper using Kerberos for authentication:

• zk-migrator.sh -r -z
destinationHostname:destinationClientPort/destinationRootPath/components -
k /path/to/jaasconfig/jaas-config.conf -f /path/to/export/zk-destination-backup-
data.json

5. Migrate the ZooKeeper data to the destination ZooKeeper. If the source and destination
ZooKeepers are the same, the --ignore-source option can be added to the
following examples.

• For an open ZooKeeper:

• zk-migrator.sh -s -z
destinationHostname:destinationClientPort/destinationRootPath/components -
f /path/to/export/zk-source-data.json

• For a ZooKeeper using Kerberos for authentication:

• zk-migrator.sh -s -z
destinationHostname:destinationClientPort/destinationRootPath/components -
k /path/to/jaasconfig/jaas-config.conf -f /path/to/export/zk-source-data.json

6. Once the migration has completed successfully, start the processors in the NiFi flow.
Processing should continue from the point at which it was stopped when the NiFi flow
was stopped.

1.1.10. Bootstrap Properties
The bootstrap.conf file in the conf directory allows users to configure settings for how NiFi
should be started. This includes parameters, such as the size of the Java Heap, what Java
command to run, and Java System Properties.

Here, we will address the different properties that are made available in the file. Any
changes to this file will take effect only after NiFi has been stopped and restarted.

Property Description

java Specifies the fully qualified java command to run. By
default, it is simply java but could be changed to an
absolute path or a reference an environment variable,
such as $JAVA_HOME/bin/java

run.as The username to run NiFi as. For instance, if NiFi should
be run as the 'nifi' user, setting this value to 'nifi' will cause
the NiFi Process to be run as the 'nifi' user. This property
is ignored on Windows. For Linux, the specified user may
require sudo permissions.

lib.dir The lib directory to use for NiFi. By default, this is set to ./
lib

Hortonworks DataFlow February 28, 2018

76

conf.dir The conf directory to use for NiFi. By default, this is set to
./conf

graceful.shutdown.seconds When NiFi is instructed to shutdown, the Bootstrap will
wait this number of seconds for the process to shutdown
cleanly. At this amount of time, if the service is still
running, the Bootstrap will "kill" the process, or terminate
it abruptly.

java.arg.N Any number of JVM arguments can be passed to the NiFi
JVM when the process is started. These arguments are
defined by adding properties to bootstrap.conf that begin
with java.arg.. The rest of the property name is not
relevant, other than to different property names, and will
be ignored. The default includes properties for minimum
and maximum Java Heap size, the garbage collector to
use, etc.

notification.services.file When NiFi is started, or stopped, or when the Bootstrap
detects that NiFi has died, the Bootstrap is able to send
notifications of these events to interested parties. This is
configured by specifying an XML file that defines which
notification services can be used. More about this file can
be found in the Notification Services section.

notification.max.attempts If a notification service is configured but is unable to
perform its function, it will try again up to a maximum
number of attempts. This property configures what that
maximum number of attempts is. The default value is 5.

nifi.start.notification.services This property is a comma-separated list of Notification
Service identifiers that correspond to the Notification
Services defined in the notification.services.file
property. The services with the specified identifiers will be
used to notify their configured recipients whenever NiFi is
started.

nifi.stop.notification.services This property is a comma-separated list of Notification
Service identifiers that correspond to the Notification
Services defined in the notification.services.file
property. The services with the specified identifiers will be
used to notify their configured recipients whenever NiFi is
stopped.

nifi.died.notification.services This property is a comma-separated list of Notification
Service identifiers that correspond to the Notification
Services defined in the notification.services.file
property. The services with the specified identifiers will be
used to notify their configured recipients if the bootstrap
determines that NiFi has unexpectedly died.

1.1.11. Notification Services
When the NiFi bootstrap starts or stops NiFi, or detects that it has died unexpectedly, it is
able to notify configured recipients. Currently, the only mechanisms supplied are to send an
e-mail or HTTP POST notification. The notification services configuration file is an XML file
where the notification capabilities are configured.

The default location of the XML file is conf/bootstrap-notification-services.xml, but this
value can be changed in the conf/bootstrap.conf file.

The syntax of the XML file is as follows:

<services>
 <!-- any number of service elements can be defined. -->
 <service>
 <id>some-identifier</id>

Hortonworks DataFlow February 28, 2018

77

 <!-- The fully-qualified class name of the Notification Service. -->
 <class>org.apache.nifi.bootstrap.notification.email.
EmailNotificationService</class>

 <!-- Any number of properties can be set using this syntax.
 The properties available depend on the Notification Service. -->
 <property name="Property Name 1">Property Value</property>
 <property name="Another Property Name">Property Value 2</property>
 </service>
</services>

Once the desired services have been configured, they can then be referenced in the
bootstrap.conf file.

1.1.11.1. Email Notification Service

The first Notifier is to send emails and the implementation is
org.apache.nifi.bootstrap.notification.email.EmailNotificationService.
It has the following properties available:

Property Required Description

SMTP Hostname true The hostname of the SMTP Server that
is used to send Email Notifications

SMTP Port true The Port used for SMTP
communications

SMTP Username true Username for the SMTP account

SMTP Password Password for the SMTP account

SMTP Auth Flag indicating whether authentication
should be used

SMTP TLS Flag indicating whether TLS should be
enabled

SMTP Socket Factory javax.net.ssl.SSLSocketFactory

SMTP X-Mailer Header X-Mailer used in the header of the
outgoing email

Content Type Mime Type used to interpret the
contents of the email, such as text/
plain or text/html

From true Specifies the Email address to use as
the sender. Otherwise, a "friendly
name" can be used as the From
address, but the value must be
enclosed in double-quotes.

To The recipients to include in the To-Line
of the email

CC The recipients to include in the CC-Line
of the email

BCC The recipients to include in the BCC-
Line of the email

In addition to the properties above that are marked as required, at least one of the To, CC,
or BCC properties must be set.

A complete example of configuring the Email service would look like the following:

 <service>

Hortonworks DataFlow February 28, 2018

78

 <id>email-notification</id>
 <class>org.apache.nifi.bootstrap.notification.email.
EmailNotificationService</class>
 <property name="SMTP Hostname">smtp.gmail.com</property>
 <property name="SMTP Port">587</property>
 <property name="SMTP Username">username@gmail.com</property>
 <property name="SMTP Password">super-secret-password</property>
 <property name="SMTP TLS">true</property>
 <property name="From">"NiFi Service Notifier"</property>
 <property name="To">username@gmail.com</property>
 </service>

1.1.11.2. HTTP Notification Service

The second Notifier is to send HTTP POST requests and the implementation is
org.apache.nifi.bootstrap.notification.http.HttpNotificationService.
It has the following properties available:

Property Required Description

URL true The URL to send the notification to.
Expression language is supported.

Connection timeout Max wait time for connection to
remote service. Expression language is
supported. This defaults to 10s.

Write timeout Max wait time for remote service to
read the request sent. Expression
language is supported. This defaults to
10s.

Truststore Filename The fully-qualified filename of the
Truststore

Truststore Type The Type of the Truststore. Either JKS
or PKCS12

Truststore Password The password for the Truststore

Keystore Filename The fully-qualified filename of the
Keystore

Keystore Type The password for the Keystore

Keystore Password The password for the key. If this is not
specified, but the Keystore Filename,
Password, and Type are specified, then
the Keystore Password will be assumed
to be the same as the Key Password.

SSL Protocol The algorithm to use for this SSL
context. This can either be "SSL" or
"TLS".

In addition to the properties above, dynamic properties can be added. They will be added
as headers to the HTTP request. Expression language is supported.

The notification message is in the body of the POST request. The type of notification is in
the header "notification.type" and the subject uses the header "notification.subject".

A complete example of configuring the HTTP service could look like the following:

 <service>
 <id>http-notification</id>
 <class>org.apache.nifi.bootstrap.notification.http.
HttpNotificationService</class>

Hortonworks DataFlow February 28, 2018

79

 <property name="URL">https://testServer.com:8080/</property>
 <property name="Truststore Filename">localhost-ts.jks</property>
 <property name="Truststore Type">JKS</property>
 <property name="Truststore Password">localtest<property>
 <property name="Keystore Filename">localhost-ts.jks</property>
 <property name="Keystore Type">JKS</property>
 <property name="Keystore Password">localtest</property>
 <property name="notification.timestamp">${now()}</property>
 </service>

1.1.12. Proxy Configuration

When running Apache NiFi behind a proxy there are a couple of key items to be aware of
during deployment.

• NiFi is comprised of a number of web applications (web UI, web API, documentation,
custom UIs, data viewers, etc), so the mapping needs to be configured for the root path.
That way all context paths are passed through accordingly. For instance, if only the /
nifi context path was mapped, the custom UI for UpdateAttribute will not work,
since it is available at /update-attribute-ui-<version>.

• NiFi's REST API will generate URIs for each component on the graph. Since requests
are coming through a proxy, certain elements of the URIs being generated need to be
overridden. Without overriding, the users will be able to view the dataflow on the canvas
but will be unable to modify existing components. Requests will be attempting to call
back directly to NiFi, not through the proxy. The elements of the URI can be overridden
by adding the following HTTP headers when the proxy generates the HTTP request to
the NiFi instance:

X-ProxyScheme - the scheme to use to connect to the proxy
X-ProxyHost - the host of the proxy
X-ProxyPort - the port the proxy is listening on
X-ProxyContextPath - the path configured to map to the NiFi instance

• If NiFi is running securely, any proxy needs to be authorized to proxy user requests. These
can be configured in the NiFi UI through the Global Menu. Once these permissions are
in place, proxies can begin proxying user requests. The end user identity must be relayed
in a HTTP header. For example, if the end user sent a request to the proxy, the proxy
must authenticate the user. Following this the proxy can send the request to NiFi. In this
request an HTTP header should be added as follows.

X-ProxiedEntitiesChain: <end-user-identity>

If the proxy is configured to send to another proxy, the request to NiFi from the second
proxy should contain a header as follows.

X-ProxiedEntitiesChain: <end-user-identity><proxy-1-identity>

An example Apache proxy configuration that sets the required properties may look like the
following. Complete proxy configuration is outside of the scope of this document. Please
refer the documentation of the proxy for guidance for your deployment environment and
use case.

...

Hortonworks DataFlow February 28, 2018

80

<Location "/my-nifi">
 ...
 SSLEngine On
 SSLCertificateFile /path/to/proxy/certificate.crt
 SSLCertificateKeyFile /path/to/proxy/key.key
 SSLCACertificateFile /path/to/ca/certificate.crt
 SSLVerifyClient require
 RequestHeader add X-ProxyScheme "https"
 RequestHeader add X-ProxyHost "proxy-host"
 RequestHeader add X-ProxyPort "443"
 RequestHeader add X-ProxyContextPath "/my-nifi"
 RequestHeader add X-ProxiedEntitiesChain "<%{SSL_CLIENT_S_DN}>"
 ProxyPass https://nifi-host:8443
 ProxyPassReverse https://nifi-host:8443
 ...
</Location>
...

1.1.13. Kerberos Service

NiFi can be configured to use Kerberos SPNEGO (or "Kerberos Service") for authentication.
In this scenario, users will hit the REST endpoint /access/kerberos and the server will
respond with a 401 status code and the challenge response header WWW-Authenticate:
Negotiate. This communicates to the browser to use the GSS-API and load the user's
Kerberos ticket and provide it as a Base64-encoded header value in the subsequent
request. It will be of the form Authorization: Negotiate YII…. NiFi will attempt
to validate this ticket with the KDC. If it is successful, the user's principal will be returned
as the identity, and the flow will follow login/credential authentication, in that a JWT will
be issued in the response to prevent the unnecessary overhead of Kerberos authentication
on every subsequent request. If the ticket cannot be validated, it will return with the
appropriate error response code. The user will then be able to provide their Kerberos
credentials to the login form if the KerberosLoginIdentityProvider has been
configured. See Kerberos login identity provider for more details.

NiFi will only respond to Kerberos SPNEGO negotiation over an HTTPS connection, as
unsecured requests are never authenticated.

The following properties must be set in nifi.properties to enable Kerberos service
authentication.

Property Required Description

Service Principal true The service principal used by NiFi to
communicate with the KDC

Keytab Location true The file path to the keytab containing
the service principal

See Kerberos Properties for complete documentation.

1.1.13.1. Notes

• Kerberos is case-sensitive in many places and the error messages (or lack thereof) may
not be sufficiently explanatory. Check the case sensitivity of the service principal in your
configuration files. Convention is HTTP/fully.qualified.domain@REALM.

Hortonworks DataFlow February 28, 2018

81

• Browsers have varying levels of restriction when dealing with SPNEGO negotiations.
Some will provide the local Kerberos ticket to any domain that requests it, while others
whitelist the trusted domains. See Spring Security Kerberos - Reference Documentation:
Appendix E. Configure browsers for SPNEGO Negotiation for common browsers.

• Some browsers (legacy IE) do not support recent encryption algorithms such as AES, and
are restricted to legacy algorithms (DES). This should be noted when generating keytabs.

• The KDC must be configured and a service principal defined for NiFi and a keytab
exported. Comprehensive instructions for Kerberos server configuration and
administration are beyond the scope of this document (see MIT Kerberos Admin Guide),
but an example is below:

Adding a service principal for a server at nifi.nifi.apache.org and exporting the
keytab from the KDC:

root@kdc:/etc/krb5kdc# kadmin.local
Authenticating as principal admin/admin@NIFI.APACHE.ORG with password.
kadmin.local: listprincs
K/M@NIFI.APACHE.ORG
admin/admin@NIFI.APACHE.ORG
...
kadmin.local: addprinc -randkey HTTP/nifi.nifi.apache.org
WARNING: no policy specified for HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG;
 defaulting to no policy
Principal "HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG" created.
kadmin.local: ktadd -k /http-nifi.keytab HTTP/nifi.nifi.apache.org
Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type
 des3-cbc-sha1 added to keytab WRFILE:/http-nifi.keytab.
Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type
 des-cbc-crc added to keytab WRFILE:/http-nifi.keytab.
kadmin.local: listprincs
HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG
K/M@NIFI.APACHE.ORG
admin/admin@NIFI.APACHE.ORG
...
kadmin.local: q
root@kdc:~# ll /http*
-rw------- 1 root root 162 Mar 14 21:43 /http-nifi.keytab
root@kdc:~#

1.1.14. System Properties

The nifi.properties file in the conf directory is the main configuration file for controlling
how NiFi runs. This section provides an overview of the properties in this file and includes
some notes on how to configure it in a way that will make upgrading easier. After making
changes to this file, restart NiFi in order for the changes to take effect.

The contents of this file are relatively stable but do change
from time to time. It is always a good idea to review this
file when upgrading and pay attention for any changes.
Consider configuring items below marked with an asterisk
(*) in such a way that upgrading will be easier. For details,
see a full discussion on upgrading at the end of this
section. Note that values for periods of time and data sizes
must include the unit of measure, for example "10 secs" or
"10 MB", not simply "10".

http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html

Hortonworks DataFlow February 28, 2018

82

1.1.14.1. Core Properties

The first section of the nifi.properties file is for the Core Properties. These properties apply
to the core framework as a whole.

Property Description

nifi.flow.configuration.file* The location of the flow configuration file (i.e., the file
that contains what is currently displayed on the NiFi
graph). The default value is ./conf/flow.xml.gz.

nifi.flow.configuration.archive.enabled* Specifies whether NiFi creates a backup copy of the flow
automatically when the flow is updated. The default value
is true.

nifi.flow.configuration.archive.dir* The location of the archive directory where backup
copies of the flow.xml are saved. The default value
is ./conf/archive. NiFi removes old archive files
to limit disk usage based on archived file lifespan,
total size, and number of files, as specified with
nifi.flow.configuration.archive.max.time,
max.storage and max.count properties respectively. If
none of these limitation for archiving is specified, NiFi uses
default condition, that is "30 days" for max.time and "500
MB" for max.storage.

This cleanup mechanism takes into account only
automatically created archived flow.xml files. If there
are other files or directories in this archive directory,
NiFi will ignore them. Automatically created archives
have filename with ISO 8601 format timestamp
prefix followed by '<original-filename>'. That is
<year><month><day>T<hour><minute><second>
+<timezone offset><original filename>. For example,
20160706T160719+0900_flow.xml.gz. NiFi checks
filenames when it cleans archive directory. If you would
like to keep a particular archive in this directory without
worrying about NiFi deleting it, you can do so by copying it
with a different filename pattern.

nifi.flow.configuration.archive.max.time* The lifespan of archived flow.xml files. NiFi will delete
expired archive files when it updates flow.xml if this
property is specified. Expiration is determined based on
current system time and the last modified timestamp of
an archived flow.xml. If no archive limitation is specified in
nifi.properties, NiFi removes archives older than "30 days".

nifi.flow.configuration.archive.max.storage* The total data size allowed for the archived flow.xml
files. NiFi will delete the oldest archive files until the total
archived file size becomes less than this configuration
value, if this property is specified. If no archive limitation is
specified in nifi.properties, NiFi uses "500 MB" for this.

nifi.flow.configuration.archive.max.count* The number of archive files allowed. NiFi will delete the
oldest archive files so that only N latest archives can be
kept, if this property is specified.

nifi.flowcontroller.autoResumeState Indicates whether -upon restart- the components on the
NiFi graph should return to their last state. The default
value is true.

nifi.flowcontroller.graceful.shutdown.period Indicates the shutdown period. The default value is 10
secs.

nifi.flowservice.writedelay.interval When many changes are made to the flow.xml, this
property specifies how long to wait before writing out the
changes, so as to batch the changes into a single write.
The default value is 500 ms.

nifi.administrative.yield.duration If a component allows an unexpected exception to escape,
it is considered a bug. As a result, the framework will

Hortonworks DataFlow February 28, 2018

83

pause (or administratively yield) the component for this
amount of time. This is done so that the component does
not use up massive amounts of system resources, since it is
known to have problems in the existing state. The default
value is 30 secs.

nifi.bored.yield.duration When a component has no work to do (i.e., is "bored"),
this is the amount of time it will wait before checking to
see if it has new data to work on. This way, it does not use
up CPU resources by checking for new work too often.
When setting this property, be aware that it could add
extra latency for components that do not constantly have
work to do, as once they go into this "bored" state, they
will wait this amount of time before checking for more
work. The default value is 10 ms.

nifi.authorizer.configuration.file* This is the location of the file that specifies how
authorizers are defined. The default value is ./conf/
authorizers.xml.

nifi.login.identity.provider.configuration.file* This is the location of the file that specifies
how username/password authentication
is performed. This file is only considered if
nifi.security.user.login.identity.provider
is configured with a provider identifier. The default value is
./conf/login-identity-providers.xml.

nifi.templates.directory* This is the location of the directory where flow templates
are saved (for backward compatibility only). Templates
are stored in the flow.xml.gz starting with NiFi 1.0. The
template directory can be used to (bulk) import templates
into the flow.xml.gz automatically on NiFi startup. The
default value is ./conf/templates.

nifi.ui.banner.text This is banner text that may be configured to display at
the top of the User Interface. It is blank by default.

nifi.ui.autorefresh.interval The interval at which the User Interface auto-refreshes.
The default value is 30 secs.

nifi.nar.library.directory The location of the nar library. The default value is ./lib
and probably should be left as is.

NOTE: Additional library directories can be specified by
using the nifi.nar.library.directory. prefix with unique
suffixes and separate paths as values.

For example, to provide two additional library locations, a
user could also specify additional properties with keys of:

nifi.nar.library.directory.lib1=/nars/lib1

nifi.nar.library.directory.lib2=/nars/lib2

Providing three total locations, including
nifi.nar.library.directory.

nifi.nar.working.directory The location of the nar working directory. The default
value is ./work/nar and probably should be left as is.

nifi.documentation.working.directory The documentation working directory. The default value is
./work/docs/components and probably should be left
as is.

nifi.processor.scheduling.timeout Time to wait for a Processor's life-cycle operation
(@OnScheduled and @OnUnscheduled) to finish before
other life-cycle operation (e.g., stop) could be invoked. The
default value is 1 min.

Hortonworks DataFlow February 28, 2018

84

1.1.14.2. State Management

The State Management section of the Properties file provides a mechanism for configuring
local and cluster-wide mechanisms for components to persist state. See the State
Management section for more information on how this is used.

Property Description

nifi.state.management.configuration.file The XML file that contains configuration for the local and
cluster-wide State Providers. The default value is ./conf/
state-management.xml.

nifi.state.management.provider.local The ID of the Local State Provider to use. This value must
match the value of the id element of one of the local-
provider elements in the state-management.xml file.

nifi.state.management.provider.cluster The ID of the Cluster State Provider to use. This value
must match the value of the id element of one of
the cluster-provider elements in the state-
management.xml file. This value is ignored if not clustered
but is required for nodes in a cluster.

nifi.state.management.embedded.zookeeper.start Specifies whether or not this instance of NiFi should
start an embedded ZooKeeper Server. This is used in
conjunction with the ZooKeeperStateProvider.

nifi.state.management.embedded.zookeeper.properties Specifies a properties file that contains the configuration
for the embedded ZooKeeper Server that is started (if the
nifi.state.management.embedded.zookeeper.start
property is set to true)

1.1.14.3. H2 Settings

The H2 Settings section defines the settings for the H2 database, which keeps track of user
access and flow controller history.

Property Description

nifi.database.directory The location of the H2 database directory. The default
value is ./database_repository.

nifi.h2.url.append This property specifies additional arguments to add to
the connection string for the H2 database. The default
value should be used and should not be changed. It is:
;LOCK_TIMEOUT=25000;WRITE_DELAY=0;AUTO_SERVER=FALSE.

1.1.14.4. FlowFile Repository

The FlowFile repository keeps track of the attributes and current state of each FlowFile
in the system. By default, this repository is installed in the same root installation directory
as all the other repositories; however, it is advisable to configure it on a separate drive if
available.

Property Description

nifi.flowfile.repository.implementation The FlowFile Repository
implementation. The default value is
org.apache.nifi.controller.repository.WriteAheadFlowFileRepository
and should only be changed with caution.
To store flowfiles in memory instead of on
disk (at the risk of data loss in the event of
power/machine failure), set this property to
org.apache.nifi.controller.repository.VolatileFlowFileRepository.

nifi.flowfile.repository.directory* The location of the FlowFile Repository. The default value
is ./flowfile_repository.

nifi.flowfile.repository.partitions The number of partitions. The default value is 256.

Hortonworks DataFlow February 28, 2018

85

nifi.flowfile.repository.checkpoint.interval The FlowFile Repository checkpoint interval. The default
value is 2 mins.

nifi.flowfile.repository.always.sync If set to true, any change to the repository will be
synchronized to the disk, meaning that NiFi will ask the
operating system not to cache the information. This is very
expensive and can significantly reduce NiFi performance.
However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the
operating system crashes. The default value is false.

1.1.14.5. Swap Management

NiFi keeps FlowFile information in memory (the JVM) but during surges of incoming data,
the FlowFile information can start to take up so much of the JVM that system performance
suffers. To counteract this effect, NiFi "swaps" the FlowFile information to disk temporarily
until more JVM space becomes available again. These properties govern how that process
occurs.

Property Description

nifi.swap.manager.implementation The Swap Manager implementation. The default value is
org.apache.nifi.controller.FileSystemSwapManager
and should not be changed.

nifi.queue.swap.threshold The queue threshold at which NiFi starts to swap FlowFile
information to disk. The default value is 20000.

nifi.swap.in.period The swap in period. The default value is 5 sec.

nifi.swap.in.threads The number of threads to use for swapping in. The default
value is 1.

nifi.swap.out.period The swap out period. The default value is 5 sec.

nifi.swap.out.threads The number of threads to use for swapping out. The
default value is 4.

1.1.14.6. Content Repository

The Content Repository holds the content for all the FlowFiles in the system. By default,
it is installed in the same root installation directory as all the other repositories; however,
administrators will likely want to configure it on a separate drive if available. If nothing
else, it is best if the Content Repository is not on the same drive as the FlowFile Repository.
In dataflows that handle a large amount of data, the Content Repository could fill up a
disk and the FlowFile Repository, if also on that disk, could become corrupt. To avoid this
situation, configure these repositories on different drives.

Property Description

nifi.content.repository.implementation The Content Repository
implementation. The default value is
org.apache.nifi.controller.repository.FileSystemRepository
and should only be changed with caution. To
store flowfile content in memory instead of
on disk (at the risk of data loss in the event of
power/machine failure), set this property to
org.apache.nifi.controller.repository.VolatileContentRepository.

1.1.14.7. File System Content Repository Properties

Property Description

nifi.content.repository.implementation The Content Repository
implementation. The default value is

Hortonworks DataFlow February 28, 2018

86

org.apache.nifi.controller.repository.FileSystemRepository
and should only be changed with caution. To
store flowfile content in memory instead of
on disk (at the risk of data loss in the event of
power/machine failure), set this property to
org.apache.nifi.controller.repository.VolatileContentRepository.

nifi.content.claim.max.appendable.size The maximum size for a content claim. The default value is
10 MB.

nifi.content.claim.max.flow.files The maximum number of FlowFiles to assign to one
content claim. The default value is 100.

nifi.content.repository.directory.default* The location of the Content Repository. The default value
is ./content_repository.

NOTE: Multiple content repositories can be specified by
using the nifi.content.repository.directory. prefix with
unique suffixes and separate paths as values.

For example, to provide two additional locations to act as
part of the content repository, a user could also specify
additional properties with keys of:

nifi.content.repository.directory.content1=/repos/
content1

nifi.content.repository.directory.content2=/repos/
content2

Providing three total locations, including
nifi.content.repository.directory.default.

nifi.content.repository.archive.max.retention.period If archiving is enabled (see
nifi.content.repository.archive.enabled below), then this
property specifies the maximum amount of time to keep
the archived data. The default value is 12 hours.

nifi.content.repository.archive.max.usage.percentage If archiving is enabled (see
nifi.content.repository.archive.enabled below), then this
property must have a value that indicates the content
repository disk usage percentage at which archived data
begins to be removed. If the archive is empty and content
repository disk usage is above this percentage, then
archiving is temporarily disabled. Archiving will resume
when disk usage is below this percentage. The default
value is 50%.

nifi.content.repository.archive.enabled To enable content archiving, set this
to true and specify a value for the
nifi.content.repository.archive.max.usage.percentage
property above. Content archiving enables the provenance
UI to view or replay content that is no longer in a dataflow
queue. By default, archiving is enabled.

nifi.content.repository.always.sync If set to true, any change to the repository will be
synchronized to the disk, meaning that NiFi will ask the
operating system not to cache the information. This is very
expensive and can significantly reduce NiFi performance.
However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the
operating system crashes. The default value is false.

nifi.content.viewer.url The URL for a web-based content viewer if one is available.
It is blank by default.

1.1.14.8. Volatile Content Repository Properties
Property Description

nifi.volatile.content.repository.max.size The Content Repository maximum size in memory. The
default value is 100 MB.

Hortonworks DataFlow February 28, 2018

87

nifi.volatile.content.repository.block.size The Content Repository block size. The default value is 32
KB.

1.1.14.9. Provenance Repository

The Provenance Repository contains the information related to Data Provenance. The next
four sections are for Provenance Repository properties.

Property Description

nifi.provenance.repository.implementation The Provenance Repository
implementation. The default value is
org.apache.nifi.provenance.PersistentProvenanceRepository.
Two additional repositories are available as well. To store
provenance events in memory instead of on disk (in which
case all events will be lost on restart, and events will be
evicted in a first-in-first-out order), set this property to
org.apache.nifi.provenance.VolatileProvenanceRepository.
This leaves a configurable number of Provenance Events
in the Java heap, so the number of events that can be
retained is very limited.

As of Apache NiFi 1.2.0, a third
and fourth option are available:
org.apache.nifi.provenance.WriteAheadProvenanceRepository
and
org.apache.nifi.provenance.EncryptedWriteAheadProvenanceRepository.
This implementation was created to replace the
PersistentProvenanceRepository. The
PersistentProvenanceRepository was originally
written with the simple goal of persisting Provenance
Events as they are generated and providing the ability
to iterate over those events sequentially. Later, it was
desired to be able to compress the data so that more
data could be stored. After that, the ability to index and
query the data was added. As requirements evolved
over time, the repository kept changing without any
major redesigns. When used in a NiFi instance that
is responsible for processing large volumes of small
FlowFiles, the PersistentProvenanceRepository
can quickly become a bottleneck. The
WriteAheadProvenanceRepository was then
written to provide the same capabilities as the
PersistentProvenanceRepository while
providing far better performance. Changing to the
WriteAheadProvenanceRepository is easy to
accomplish, as the two repositories support most of the
same properties.

Note Well, however, the following caveat: The
WriteAheadProvenanceRepository will
make use of the Provenance data stored by the
PersistentProvenanceRepository. However,
the PersistentProvenanceRepository
may not be able to read the data written by the
WriteAheadProvenanceRepository. Therefore,
once the Provenance Repository is changed to
use the WriteAheadProvenanceRepository,
it cannot be changed back to the
PersistentProvenanceRepository without
deleting the data in the Provenance Repository. It is
therefore recommended that before changing the
implementation, users ensure that their version of NiFi
is stable, in case any issue arises that causes the user to
need to roll back to a previous version of NiFi that did not
support the WriteAheadProvenanceRepository.

Hortonworks DataFlow February 28, 2018

88

It is for this reason that the default is still set to the
PersistentProvenanceRepository at this time.

1.1.14.10. Persistent Provenance Repository Properties
Property Description

nifi.provenance.repository.directory.default* The location of the Provenance Repository. The default
value is ./provenance_repository.

NOTE: Multiple provenance repositories can be specified
by using the nifi.provenance.repository.directory. prefix
with unique suffixes and separate paths as values.

For example, to provide two additional locations to act as
part of the provenance repository, a user could also specify
additional properties with keys of:

nifi.provenance.repository.directory.provenance1=/repos/
provenance1

nifi.provenance.repository.directory.provenance2=/repos/
provenance2

Providing three total locations, including
nifi.provenance.repository.directory.default.

nifi.provenance.repository.max.storage.time The maximum amount of time to keep data provenance
information. The default value is 24 hours.

nifi.provenance.repository.max.storage.size The maximum amount of data provenance information to
store at a time. The default value is 1 GB.

nifi.provenance.repository.rollover.time The amount of time to wait before rolling over the latest
data provenance information so that it is available in the
User Interface. The default value is 30 secs.

nifi.provenance.repository.rollover.size The amount of information to roll over at a time. The
default value is 100 MB.

nifi.provenance.repository.query.threads The number of threads to use for Provenance Repository
queries. The default value is 2.

nifi.provenance.repository.index.threads The number of threads to use for indexing Provenance
events so that they are searchable. The default value is 2.
For flows that operate on a very high number of FlowFiles,
the indexing of Provenance events could become a
bottleneck. If this is the case, a bulletin will appear,
indicating that "The rate of the dataflow is exceeding
the provenance recording rate. Slowing down flow to
accommodate." If this happens, increasing the value of this
property may increase the rate at which the Provenance
Repository is able to process these records, resulting in
better overall throughput.

nifi.provenance.repository.compress.on.rollover Indicates whether to compress the provenance
information when rolling it over. The default value is
true.

nifi.provenance.repository.always.sync If set to true, any change to the repository will be
synchronized to the disk, meaning that NiFi will ask the
operating system not to cache the information. This is very
expensive and can significantly reduce NiFi performance.
However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the
operating system crashes. The default value is false.

nifi.provenance.repository.journal.count The number of journal files that should be used to serialize
Provenance Event data. Increasing this value will allow
more tasks to simultaneously update the repository but
will result in more expensive merging of the journal files
later. This value should ideally be equal to the number
of threads that are expected to update the repository

Hortonworks DataFlow February 28, 2018

89

simultaneously, but 16 tends to work well in must
environments. The default value is 16.

nifi.provenance.repository.indexed.fields This is a comma-separated list of the fields that should be
indexed and made searchable. Fields that are not indexed
will not be searchable. Valid fields are: EventType,
FlowFileUUID, Filename, TransitURI,
ProcessorID, AlternateIdentifierURI,
Relationship, Details. The default value
is: EventType, FlowFileUUID, Filename,
ProcessorID.

nifi.provenance.repository.indexed.attributes This is a comma-separated list of FlowFile Attributes
that should be indexed and made searchable. It is blank
by default. But some good examples to consider are
'filename', 'uuid', and 'mime.type' as well as any custom
attributes you might use which are valuable for your use
case.

nifi.provenance.repository.index.shard.size Large values for the shard size will result in more Java
heap usage when searching the Provenance Repository
but should provide better performance. The default value
is 500 MB.

nifi.provenance.repository.max.attribute.length Indicates the maximum length that a FlowFile attribute
can be when retrieving a Provenance Event from the
repository. If the length of any attribute exceeds this
value, it will be truncated when the event is retrieved. The
default value is 65536.

1.1.14.11. Volatile Provenance Repository Properties
Property Description

nifi.provenance.repository.buffer.size The Provenance Repository buffer size. The default value is
100000.

1.1.14.12. Write Ahead Provenance Repository Properties
Property Description

nifi.provenance.repository.directory.default* The location of the Provenance Repository. The default
value is ./provenance_repository.

NOTE: Multiple provenance repositories can be specified
by using the nifi.provenance.repository.directory. prefix
with unique suffixes and separate paths as values.

For example, to provide two additional locations to act as
part of the provenance repository, a user could also specify
additional properties with keys of:

nifi.provenance.repository.directory.provenance1=/repos/
provenance1

nifi.provenance.repository.directory.provenance2=/repos/
provenance2

Providing three total locations, including
nifi.provenance.repository.directory.default.

nifi.provenance.repository.max.storage.time The maximum amount of time to keep data provenance
information. The default value is 24 hours.

nifi.provenance.repository.max.storage.size The maximum amount of data provenance information
to store at a time. The default value is 1 GB. The Data
Provenance capability can consume a great deal of storage
space because so much data is kept. For production
environments, values of 1-2 TB or more is not uncommon.
The repository will write to a single "event file" (or set
of "event files" if multiple storage locations are defined,

Hortonworks DataFlow February 28, 2018

90

as described above) for some period of time (defined
by the nifi.provenance.repository.rollover.time and
nifi.provenance.repository.rollover.size properties). Data
is always aged off one file at a time, so it is not advisable
to write to a single "event file" for a tremendous amount
of time, as it will prevent old data from aging off as
smoothly.

nifi.provenance.repository.rollover.time The amount of time to wait before rolling over the "event
file" that the repository is writing to.

nifi.provenance.repository.rollover.size The amount of data to write to a single "event file." The
default value is 100 MB. For production environments
where a very large amount of Data Provenance is
generated, a value of 1 GB is also very reasonable.

nifi.provenance.repository.query.threads The number of threads to use for Provenance Repository
queries. The default value is 2.

nifi.provenance.repository.index.threads The number of threads to use for indexing Provenance
events so that they are searchable. The default value
is 2. For flows that operate on a very high number of
FlowFiles, the indexing of Provenance events could
become a bottleneck. If this happens, increasing the
value of this property may increase the rate at which the
Provenance Repository is able to process these records,
resulting in better overall throughput. It is advisable to
use at least 1 thread per storage location (i.e., if there are
3 storage locations, at least 3 threads should be used).
For high throughput environments, where more CPU and
disk I/O is available, it may make sense to increase this
value significantly. Typically going beyond 2-4 threads
per storage location is not valuable. However, this can
be tuned depending on the CPU resources available
compared to the I/O resources.

nifi.provenance.repository.compress.on.rollover Indicates whether to compress the provenance
information when an "event file" is rolled over. The default
value is true.

nifi.provenance.repository.always.sync If set to true, any change to the repository will be
synchronized to the disk, meaning that NiFi will ask the
operating system not to cache the information. This is very
expensive and can significantly reduce NiFi performance.
However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the
operating system crashes. The default value is false.

nifi.provenance.repository.indexed.fields This is a comma-separated list of the fields that should be
indexed and made searchable. Fields that are not indexed
will not be searchable. Valid fields are: EventType,
FlowFileUUID, Filename, TransitURI,
ProcessorID, AlternateIdentifierURI,
Relationship, Details. The default value
is: EventType, FlowFileUUID, Filename,
ProcessorID.

nifi.provenance.repository.indexed.attributes This is a comma-separated list of FlowFile Attributes
that should be indexed and made searchable. It is blank
by default. But some good examples to consider are
'filename' and 'mime.type' as well as any custom attributes
you might use which are valuable for your use case.

nifi.provenance.repository.index.shard.size The repository uses Apache Lucene to performing indexing
and searching capabilities. This value indicates how large
a Lucene Index should become before the Repository
starts writing to a new Index. Large values for the shard
size will result in more Java heap usage when searching
the Provenance Repository but should provide better
performance. The default value is 500 MB. However, this
is due to the fact that defaults are tuned for very small
environments where most users begin to use NiFi. For

Hortonworks DataFlow February 28, 2018

91

production environments, it is advisable to change this
value to 4 to 8 GB. Once all Provenance Events in the index
have been aged off from the "event files," the index will be
destroyed as well.

nifi.provenance.repository.max.attribute.length Indicates the maximum length that a FlowFile attribute
can be when retrieving a Provenance Event from the
repository. If the length of any attribute exceeds this
value, it will be truncated when the event is retrieved. The
default value is 65536.

nifi.provenance.repository.concurrent.merge.threads Apache Lucene creates several "segments" in an Index.
These segments are periodically merged together in order
to provide faster querying. This property specifies the
maximum number of threads that are allowed to be used
for each of the storage directories. The default value is
2. For high throughput environments, it is advisable to
set the number of index threads larger than the number
of merge threads * the number of storage locations. For
example, if there are 2 storage locations and the number
of index threads is set to 8, then the number of merge
threads should likely be less than 4. While it is not critical
that this be done, setting the number of merge threads
larger than this can result in all index threads being used
to merge, which would cause the NiFi flow to periodically
pause while indexing is happening, resulting in some data
being processed with much higher latency than other
data.

nifi.provenance.repository.warm.cache.frequency Each time that a Provenance query is run, the query must
first search the Apache Lucene indices (at least, in most
cases - there are some queries that are run often and
the results are cached to avoid searching the Lucene
indices). When a Lucene index is opened for the first time,
it can be very expensive and take several seconds. This is
compounded by having many different indices, and can
result in a Provenance query taking much longer. After the
index has been opened, the Operating System's disk cache
will typically hold onto enough data to make re-opening
the index much faster - at least for a period of time, until
the disk cache evicts this data. If this value is set, NiFi will
periodically open each Lucene index and then close it,
in order to "warm" the cache. This will result in far faster
queries when the Provenance Repository is large. As with
all great things, though, it comes with a cost. Warming
the cache does take some CPU resources, but more
importantly it will evict other data from the Operating
System disk cache and will result in reading (potentially
a great deal of) data from the disk. This can result in
lower NiFi performance. However, if NiFi is running in an
environment where CPU and disk are not fully utilized, this
feature can result in far faster Provenance queries. The
default value for this property is blank (i.e. disabled).

1.1.14.13. Encrypted Write Ahead Provenance Repository Properties

All of the properties defined above (see Write Ahead Repository Properties) still apply. Only
encryption-specific properties are listed here. See Encrypted Provenance Repository in the
User Guide for more information.

Property Description

nifi.provenance.repository.debug.frequency Controls the number of events processed between DEBUG
statements documenting the performance metrics of
the repository. This value is only used when DEBUG level
statements are enabled in the log configuration.

https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.1.1/bk_user-guide/content/encrypted-provenance.html

Hortonworks DataFlow February 28, 2018

92

nifi.provenance.repository.encryption.key.provider.implementationThis is the fully-qualified class name of the key
provider. A key provider is the datastore interface
for accessing the encryption key to protect the
provenance events. There are currently two
implementations - StaticKeyProvider which
reads a key directly from nifi.properties, and
FileBasedKeyProvider which reads n many keys from
an encrypted file. The interface is extensible, and HSM-
backed or other providers are expected in the future.

nifi.provenance.repository.encryption.key.provider.location The path to the key definition resource (empty for
StaticKeyProvider, ./keys.nkp or similar path for
FileBasedKeyProvider). For future providers like an
HSM, this may be a connection string or URL.

nifi.provenance.repository.encryption.key.id The active key ID to use for encryption (e.g. Key1).

nifi.provenance.repository.encryption.key The key to use for StaticKeyProvider.
The key format is hex-encoded
(0123456789ABCDEFFEDCBA98765432100123456789ABCDEFFEDCBA9876543210)
but can also be encrypted using the ./encrypt-
config.sh tool in NiFi Toolkit.

nifi.provenance.repository.encryption.key.id.* Allows for additional keys to be specified for the
StaticKeyProvider. For example, the line
nifi.provenance.repository.encryption.key.id.Key2=012…
210 would provide an available key Key2.

The simplest configuration is below:

nifi.provenance.repository.implementation=org.apache.nifi.provenance.
EncryptedWriteAheadProvenanceRepository
nifi.provenance.repository.debug.frequency=100
nifi.provenance.repository.encryption.key.provider.implementation=org.apache.
nifi.security.kms.StaticKeyProvider
nifi.provenance.repository.encryption.key.provider.location=
nifi.provenance.repository.encryption.key.id=Key1
nifi.provenance.repository.encryption.key=
0123456789ABCDEFFEDCBA98765432100123456789ABCDEFFEDCBA9876543210

1.1.14.14. Component Status Repository

The Component Status Repository contains the information for the Component Status
History tool in the User Interface. These properties govern how that tool works.

The buffer.size and snapshot.frequency work together to determine the amount of
historical data to retain. As an example to configure two days worth of historical data with
a data point snapshot occurring every 5 minutes you would configure snapshot.frequency
to be "5 mins" and the buffer.size to be "576". To further explain this example for every 60
minutes there are 12 (60 / 5) snapshot windows for that time period. To keep that data for
48 hours (12 * 48) you end up with a buffer size of 576.

Property Description

nifi.components.status.repository.implementation The Component Status Repository
implementation. The default value is
org.apache.nifi.controller.status.history.VolatileComponentStatusRepository
and should not be changed.

nifi.components.status.repository.buffer.size Specifies the buffer size for the Component Status
Repository. The default value is 1440.

nifi.components.status.snapshot.frequency This value indicates how often to present a snapshot of
the components' status history. The default value is 1
min.

Hortonworks DataFlow February 28, 2018

93

1.1.14.15. Site to Site Properties

These properties govern how this instance of NiFi communicates with remote
instances of NiFi when Remote Process Groups are configured in the dataflow. Remote
Process Groups can choose transport protocol from RAW and HTTP. Properties
named with nifi.remote.input.socket.* are RAW transport protocol specific. Similarly,
nifi.remote.input.http.* are HTTP transport protocol specific properties.

Property Description

nifi.remote.input.host The host name that will be given out to clients
to connect to this NiFi instance for Site-to-Site
communication. By default, it is the value from
InetAddress.getLocalHost().getHostName(). On UNIX-like
operating systems, this is typically the output from the
hostname command.

nifi.remote.input.secure This indicates whether communication between this
instance of NiFi and remote NiFi instances should be
secure. By default, it is set to false. In order for secure
site-to-site to work, set the property to true. Many other
Security Properties (below) must also be configured.

nifi.remote.input.socket.port The remote input socket port for Site-to-Site
communication. By default, it is blank, but it must have a
value in order to use RAW socket as transport protocol for
Site-to-Site.

nifi.remote.input.http.enabled Specifies whether HTTP Site-to-Site should be enabled on
this host. By default, it is set to true.

Whether a Site-to-Site client uses HTTP or HTTPS is
determined by nifi.remote.input.secure. If
it is set to true, then requests are sent as HTTPS to
nifi.web.https.port. If set to false, HTTP requests
are sent to nifi.web.http.port.

nifi.remote.input.http.transaction.ttl Specifies how long a transaction can stay alive on the
server. By default, it is set to 30 secs.

If a Site-to-Site client hasn't proceeded to the next action
after this period of time, the transaction is discarded from
the remote NiFi instance. For example, when a client
creates a transaction but doesn't send or receive flow files,
or when a client sends or receives flow files but doesn't
confirm that transaction.

nifi.remote.contents.cache.expiration Specifies how long NiFi should cache information about a
remote NiFi instance when communicating via Site-to-Site.
By default, NiFi will cache the

responses from the remote system for 30 secs. This
allows NiFi to avoid constantly making HTTP requests to
the remote system, which is particularly important when
this instance of NiFi

has many instances of Remote Process Groups.

1.1.14.16. Web Properties

These properties pertain to the web-based User Interface.

Property Description

nifi.web.war.directory This is the location of the web war directory. The default
value is ./lib.

nifi.web.http.host The HTTP host. It is blank by default.

Hortonworks DataFlow February 28, 2018

94

nifi.web.http.port The HTTP port. The default value is 8080.

nifi.web.http.port.forwarding The port which forwards incoming HTTP requests to
nifi.web.http.host. This property is designed to be
used with 'port forwarding', when NiFi has to be started
by a non-root user for better security, yet it needs to
be accessed via low port to go through a firewall. For
example, to expose NiFi via HTTP protocol on port 80,
but actually listening on port 8080, you need to configure
OS level port forwarding such as iptables (Linux/
Unix) or pfctl (OS X) that redirects requests from 80
to 8080. Then set nifi.web.http.port as 8080, and
nifi.web.http.port.forwarding as 80. It is blank
by default.

nifi.web.http.network.interface* The name of the network interface to which NiFi should
bind for HTTP requests. It is blank by default.

NOTE: Multiple network interfaces can be specified by
using the nifi.web.http.network.interface. prefix with
unique suffixes and separate network interface names as
values.

For example, to provide two additional network
interfaces, a user could also specify additional properties
with keys of:

nifi.web.http.network.interface.eth0=eth0

nifi.web.http.network.interface.eth1=eth1

Providing three total network interfaces, including
nifi.web.http.network.interface.default.

nifi.web.https.host The HTTPS host. It is blank by default.

nifi.web.https.port The HTTPS port. It is blank by default. When configuring
NiFi to run securely, this port should be configured.

nifi.web.https.port.forwarding Same as nifi.web.http.port.forwarding, but with
HTTPS for secure communication. It is blank by default.

nifi.web.https.network.interface* The name of the network interface to which NiFi should
bind for HTTPS requests. It is blank by default.

NOTE: Multiple network interfaces can be specified by
using the nifi.web.https.network.interface. prefix with
unique suffixes and separate network interface names as
values.

For example, to provide two additional network
interfaces, a user could also specify additional properties
with keys of:

nifi.web.https.network.interface.eth0=eth0

nifi.web.https.network.interface.eth1=eth1

Providing three total network interfaces, including
nifi.web.https.network.interface.default.

nifi.web.jetty.working.directory The location of the Jetty working directory. The default
value is ./work/jetty.

nifi.web.jetty.threads The number of Jetty threads. The default value is 200.

nifi.web.max.header.size The maximum size allowed for request and response
headers. The default value is 16 KB.

Hortonworks DataFlow February 28, 2018

95

1.1.14.17. Security Properties

These properties pertain to various security features in NiFi. Many of these properties are
covered in more detail in the Security Configuration section of this Administrator's Guide.

Property Description

nifi.sensitive.props.key This is the password used to encrypt any sensitive property
values that are configured in processors. By default, it
is blank, but the system administrator should provide a
value for it. It can be a string of any length, although the
recommended minimum length is 10 characters. Be aware
that once this password is set and one or more sensitive
processor properties have been configured, this password
should not be changed.

nifi.sensitive.props.algorithm The algorithm used to encrypt sensitive properties. The
default value is PBEWITHMD5AND256BITAES-CBC-
OPENSSL.

nifi.sensitive.props.provider The sensitive property provider. The default value is BC.

nifi.sensitive.props.additional.keys The comma separated list of properties to encrypt in
addition to the default sensitive properties (see Encrypt-
Config Tool).

nifi.security.keystore* The full path and name of the keystore. It is blank by
default.

nifi.security.keystoreType The keystore type. It is blank by default.

nifi.security.keystorePasswd The keystore password. It is blank by default.

nifi.security.keyPasswd The key password. It is blank by default.

nifi.security.truststore* The full path and name of the truststore. It is blank by
default.

nifi.security.truststoreType The truststore type. It is blank by default.

nifi.security.truststorePasswd The truststore password. It is blank by default.

nifi.security.needClientAuth This indicates whether client authentication in the cluster
protocol. It is blank by default.

nifi.security.user.authorizer Specifies which of the configured Authorizers in the
authorizers.xml file to use. By default, it is set to file-
provider.

nifi.security.user.login.identity.provider This indicates what type of login identity provider
to use. The default value is blank, can be set to the
identifier from a provider in the file specified in
nifi.login.identity.provider.configuration.file.
Setting this property will trigger NiFi to support username/
password authentication.

nifi.security.ocsp.responder.url This is the URL for the Online Certificate Status Protocol
(OCSP) responder if one is being used. It is blank by
default.

nifi.security.ocsp.responder.certificate This is the location of the OCSP responder certificate if one
is being used. It is blank by default.

1.1.14.18. Identity Mapping Properties

These properties can be utilized to normalize user identities. When implemented, identities
authenticated by different identity providers (certificates, LDAP, Kerberos) are treated
the same internally in NiFi. As a result, duplicate users are avoided and user-specific
configurations such as authorizations only need to be setup once per user.

The following examples demonstrate normalizing DNs from certificates and principals from
Kerberos:

Hortonworks DataFlow February 28, 2018

96

nifi.security.identity.mapping.pattern.dn=^CN=(.*?), OU=(.*?), O=(.*?), L=(.*?
), ST=(.*?), C=(.*?)$
nifi.security.identity.mapping.value.dn=$1@$2
nifi.security.identity.mapping.pattern.kerb=^(.*?)/instance@(.*?)$
nifi.security.identity.mapping.value.kerb=$1@$2

The last segment of each property is an identifier used to associate the pattern with the
replacement value. When a user makes a request to NiFi, their identity is checked to see if
it matches each of those patterns in lexicographical order. For the first one that matches,
the replacement specified in the nifi.security.identity.mapping.value.xxxx
property is used. So a login with CN=localhost, OU=Apache NiFi, O=Apache,
L=Santa Monica, ST=CA, C=US matches the DN mapping pattern above and the DN
mapping value $1@$2 is applied. The user is normalized to localhost@Apache NiFi.

These mappings are also applied to the "Initial Admin
Identity" and "Cluster Node Identity" properties in the
authorizers.xml file (See Authorizers.xml Setup).

1.1.14.19. Cluster Common Properties

When setting up a NiFi cluster, these properties should be configured the same way on all
nodes.

Property Description

nifi.cluster.protocol.heartbeat.interval The interval at which nodes should emit heartbeats to the
Cluster Coordinator. The default value is 5 sec.

nifi.cluster.protocol.is.secure This indicates whether cluster communications are secure.
The default value is false.

1.1.14.20. Cluster Node Properties

Configure these properties for cluster nodes.

Property Description

nifi.cluster.is.node Set this to true if the instance is a node in a cluster. The
default value is false.

nifi.cluster.node.address The fully qualified address of the node. It is blank by
default.

nifi.cluster.node.protocol.port The node's protocol port. It is blank by default.

nifi.cluster.node.protocol.threads The number of threads that should be used to
communicate with other nodes in the cluster. This
property defaults to 10, but for large clusters, this value
may need to be larger.

nifi.cluster.node.protocol.max.threads The maximum number of threads that should be used
to communicate with other nodes in the cluster. This
property defaults to 50.

nifi.cluster.node.event.history.size When the state of a node in the cluster is changed, an
event is generated and can be viewed in the Cluster page.
This value indicates how many events to keep in memory
for each node. The default value is 25.

nifi.cluster.node.connection.timeout When connecting to another node in the cluster, specifies
how long this node should wait before considering the
connection a failure. The default value is 5 secs.

nifi.cluster.node.read.timeout When communicating with another node in the cluster,
specifies how long this node should wait to receive
information from the remote node before considering the

Hortonworks DataFlow February 28, 2018

97

communication with the node a failure. The default value
is 5 secs.

nifi.cluster.firewall.file The location of the node firewall file. This is a file that may
be used to list all the nodes that are allowed to connect to
the cluster. It provides an additional layer of security. This
value is blank by default, meaning that no firewall file is to
be used.

nifi.cluster.flow.election.max.wait.time Specifies the amount of time to wait before electing
a Flow as the "correct" Flow. If the number of Nodes
that have voted is equal to the number specified by the
nifi.cluster.flow.election.max.candidates
property, the cluster will not wait this long. The default
value is 5 mins. Note that the time starts as soon as the
first vote is cast.

nifi.cluster.flow.election.max.candidates Specifies the number of Nodes required in the cluster to
cause early election of Flows. This allows the Nodes in the
cluster to avoid having to wait a long time before starting
processing if we reach at least this number of nodes in the
cluster.

1.1.14.21. Claim Management

Whenever a request is made to change the dataflow, it is important that all nodes in the
NiFi cluster are kept in-sync. In order to allow for this, NiFi employs a two-phase commit.
The request is first replicated to all nodes in the cluster, simply asking whether or not the
request is allowed. Each node then determines whether or not it will allow the request
and if so issues a "Claim" on the component(s) being modified. This claim can be thought
of as a mutually-exclusive lock that is owned by the requestor. Once all nodes have voted
on whether or not the request is allowed, the node from which the request originated
must decide whether or not to complete the request. If any node voted 'NO' then the
request is canceled and the Claim is canceled with an error message sent back to the user.
However, if the nodes all vote 'YES' then the request is completed. In this sort of distributed
environment, it is possible that the node that made the original request will fail after
the voting has occurred and before the request was completed. This would leave the
component locked indefinitely so that no more changes can be made to the component.
In order to avoid this, the Claim will time out after some period of time. These properties
determines how these locks are managed.

Property Description

nifi.cluster.request.replication.claim.timeout Specifies how long to wait before considering a lock
'expired' and automatically unlocking.

1.1.14.22. ZooKeeper Properties

NiFi depends on Apache ZooKeeper for determining which node in the cluster should play
the role of Primary Node and which node should play the role of Cluster Coordinator. These
properties must be configured in order for NiFi to join a cluster.

Property Description

nifi.zookeeper.connect.string The Connect String that is needed to connect to
Apache ZooKeeper. This is a comma-separated
list of hostname:port pairs. For example,
localhost:2181,localhost:2182,localhost:2183.
This should contain a list of all ZooKeeper instances in the
ZooKeeper quorum. This property must be specified to
join a cluster and has no default value.

Hortonworks DataFlow February 28, 2018

98

nifi.zookeeper.connect.timeout How long to wait when connecting to ZooKeeper before
considering the connection a failure. The default value is 3
secs.

nifi.zookeeper.session.timeout How long to wait after losing a connection to ZooKeeper
before the session is expired. The default value is 3 secs.

nifi.zookeeper.root.node The root ZNode that should be used in ZooKeeper.
ZooKeeper provides a directory-like structure for storing
data. Each 'directory' in this structure is referred to as a
ZNode. This denotes the root ZNode, or 'directory', that
should be used for storing data. The default value is /
root. This is important to set correctly, as which cluster
the NiFi instance attempts to join is determined by which
ZooKeeper instance it connects to and the ZooKeeper
Root Node that is specified.

1.1.14.23. Kerberos Properties

Property Description

nifi.kerberos.krb5.file* The location of the krb5 file, if used. It is blank by default.
At this time, only a single krb5 file is allowed to be
specified per NiFi instance, so this property is configured
here to support SPNEGO and service principals rather
than in individual Processors. If necessary the krb5 file can
support multiple realms. Example: /etc/krb5.conf

nifi.kerberos.service.principal* The name of the NiFi Kerberos service principal, if
used. It is blank by default. Note that this property
is for NiFi to authenticate as a client other systems.
Example: nifi/nifi.example.com or nifi/
nifi.example.com@EXAMPLE.COM

nifi.kerberos.service.keytab.location* The file path of the NiFi Kerberos keytab, if used. It is
blank by default. Note that this property is for NiFi to
authenticate as a client other systems. Example: /etc/
nifi.keytab

nifi.kerberos.spnego.principal* The name of the NiFi Kerberos service principal,
if used. It is blank by default. Note that this
property is used to authenticate NiFi users.
Example: HTTP/nifi.example.com or HTTP/
nifi.example.com@EXAMPLE.COM

nifi.kerberos.spnego.keytab.location* The file path of the NiFi Kerberos keytab, if used. It
is blank by default. Note that this property is used
to authenticate NiFi users. Example: /etc/http-
nifi.keytab

nifi.kerberos.spengo.authentication.expiration* The expiration duration of a successful Kerberos user
authentication, if used. The default value is 12 hours.

1.1.14.24. Custom Properties

To configure custom properties for use with NiFi's Expression Language:

• Create the custom property. Ensure that:

• Each custom property contains a distinct property value, so that it is not overridden by
existing environment properties, system properties, or FlowFile attributes.

• Each node in a clustered environment is configured with the same custom properties.

• Update nifi.variable.registry.properties with the location of the custom
property file(s):

Hortonworks DataFlow February 28, 2018

99

Property Description

nifi.variable.registry.properties This is a comma-separated list of file location paths for one
or more custom property files.

• Restart your NiFi instance(s) for the updates to be picked up.

Custom properties can also be configured in the NiFi UI. See the Variables Window section
in the User Guide for more information.

Upgrading Take care when configuring the properties
above that are marked with an asterisk (*). To make
the upgrade process easier, it is advisable to change the
default configurations to locations outside the main root
installation directory. In this way, these items can remain
in their configured location through an upgrade, and
NiFi can find all the repositories and configuration files
and pick up where it left off as soon as the old version is
stopped and the new version is started. Furthermore, the
administrator may reuse this nifi.properties file and any
other configuration files without having to re-configure
them each time an upgrade takes place. As previously
noted, it is important to check for any changes in the
nifi.properties file of the new version when upgrading and
make sure they are reflected in the nifi.properties file you
use.

Last updated 2018-01-09 02:06:38 -07:00

https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.1.1/bk_user-guide/content/Variables_Window.html

	Hortonworks DataFlow
	Table of Contents
	1. NiFi System Administrator's Guide
	1.1. NiFi System Administrator's Guide
	1.1.1. Configuration Best Practices
	1.1.2. Security Configuration
	1.1.2.1. TLS Generation Toolkit
	1.1.2.1.1. Standalone
	1.1.2.1.2. Client/Server
	1.1.2.1.2.1. Server
	1.1.2.1.2.2. Client

	1.1.3. User Authentication
	1.1.3.1. Lightweight Directory Access Protocol (LDAP)
	1.1.3.2. Kerberos
	1.1.3.3. OpenId Connect
	1.1.3.4. Apache Knox

	1.1.4. Multi-Tenant Authorization
	1.1.4.1. Authorizer Configuration
	1.1.4.2. Authorizers.xml Setup
	1.1.4.2.1. Initial Admin Identity (New NiFi Instance)
	1.1.4.2.2. Legacy Authorized Users (NiFi Instance Upgrade)
	1.1.4.2.2.1. Global Access Policies
	1.1.4.2.2.2. Component Access Policies on the Root Process Group

	1.1.4.2.3. Cluster Node Identities

	1.1.4.3. Configuring Users & Access Policies
	1.1.4.3.1. Creating Users and Groups
	1.1.4.3.2. Access Policies
	1.1.4.3.2.1. Global Access Policies
	1.1.4.3.2.2. Component Level Access Policies
	1.1.4.3.2.3. Access Policy Inheritance

	1.1.4.3.3. Viewing Policies on Users
	1.1.4.3.4. Access Policy Configuration Examples
	1.1.4.3.4.1. Moving a Processor
	1.1.4.3.4.2. Editing a Processor
	1.1.4.3.4.3. Creating a Connection
	1.1.4.3.4.4. Editing a Connection

	1.1.5. Encryption Configuration
	1.1.5.1. Key Derivation Functions
	1.1.5.1.1. Additional Resources

	1.1.5.2. Salt and IV Encoding
	1.1.5.2.1. NiFi Legacy
	1.1.5.2.2. OpenSSL PKCS#5 v1.5 EVP_BytesToKey
	1.1.5.2.3. Bcrypt, Scrypt, PBKDF2

	1.1.5.3. Java Cryptography Extension (JCE) Limited Strength Jurisdiction Policies
	1.1.5.4. Allow Insecure Cryptographic Modes

	1.1.6. Encrypted Passwords in Configuration Files
	1.1.6.1. Encrypt-Config Tool
	1.1.6.2. Sensitive Property Key Migration
	1.1.6.3. Existing Flow Migration
	1.1.6.4. Password Key Derivation
	1.1.6.5. Secure Prompt

	1.1.7. Administrative Tools
	1.1.7.1. Prerequisites for Running Admin Toolkit in a Secure Environment
	1.1.7.2. Notify
	1.1.7.3. Node Manager
	1.1.7.3.1. Expected behavior

	1.1.7.4. File Manager
	1.1.7.5. Expected Behavior

	1.1.8. Clustering Configuration
	1.1.9. State Management
	1.1.9.1. Configuring State Providers
	1.1.9.2. Embedded ZooKeeper Server
	1.1.9.3. ZooKeeper Access Control
	1.1.9.4. Securing ZooKeeper
	1.1.9.4.1. Kerberizing Embedded ZooKeeper Server
	1.1.9.4.2. Kerberizing NiFi's ZooKeeper Client
	1.1.9.4.3. Troubleshooting Kerberos Configuration

	1.1.9.5. ZooKeeper Migrator
	1.1.9.5.1. zk-migrator.sh Command Line Parameters
	1.1.9.5.2. Migrating Between Source and Destination ZooKeepers
	1.1.9.5.2.1. ZooKeeper Migration Steps

	1.1.10. Bootstrap Properties
	1.1.11. Notification Services
	1.1.11.1. Email Notification Service
	1.1.11.2. HTTP Notification Service

	1.1.12. Proxy Configuration
	1.1.13. Kerberos Service
	1.1.13.1. Notes

	1.1.14. System Properties
	1.1.14.1. Core Properties
	1.1.14.2. State Management
	1.1.14.3. H2 Settings
	1.1.14.4. FlowFile Repository
	1.1.14.5. Swap Management
	1.1.14.6. Content Repository
	1.1.14.7. File System Content Repository Properties
	1.1.14.8. Volatile Content Repository Properties
	1.1.14.9. Provenance Repository
	1.1.14.10. Persistent Provenance Repository Properties
	1.1.14.11. Volatile Provenance Repository Properties
	1.1.14.12. Write Ahead Provenance Repository Properties
	1.1.14.13. Encrypted Write Ahead Provenance Repository Properties
	1.1.14.14. Component Status Repository
	1.1.14.15. Site to Site Properties
	1.1.14.16. Web Properties
	1.1.14.17. Security Properties
	1.1.14.18. Identity Mapping Properties
	1.1.14.19. Cluster Common Properties
	1.1.14.20. Cluster Node Properties
	1.1.14.21. Claim Management
	1.1.14.22. ZooKeeper Properties
	1.1.14.23. Kerberos Properties
	1.1.14.24. Custom Properties

