
Hortonworks DataFlow

 (June 6, 2018)

Apache NiFi Registry Administration

docs.cloudera.com

http://docs.cloudera.com

Hortonworks DataFlow June 6, 2018

ii

Hortonworks DataFlow: Apache NiFi Registry Administration
Copyright © 2012-2018 Hortonworks, Inc. Some rights reserved.

Hortonworks DataFlow (HDF) is powered by Apache NiFi. A version of this documentation originally
appeared on the Apache NiFi website.

HDF is the first integrated platform that solves the real time challenges of collecting and transporting
data from a multitude of sources and provides interactive command and control of live flows with full and
automated data provenance. HDF is a single combined platform that provides the data acquisition, simple
event processing, transport and delivery mechanism designed to accommodate the diverse dataflows
generated by a world of connected people, systems and things.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. Hortonworks DataFlow is Apache-licensed and completely
open source. We sell only expert technical support, training and partner-enablement services. All of our
technology is, and will remain free and open source.

Please visit the Hortonworks page for more information on Hortonworks technology. For more
information on Hortonworks services, please visit either the Support or Training page. Feel free to Contact
Us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://nifi.apache.org/docs.html
https://hortonworks.com
https://hortonworks.com/support
https://hortonworks.com/training/
https://hortonworks.com/about-us/contact-us/
https://hortonworks.com/about-us/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks DataFlow June 6, 2018

iii

Table of Contents
1. Apache NiFi Registry System Administrator's Guide .. 1

1.1. Apache NiFi Registry System Administrator's Guide .. 1
1.1.1. How to install and start NiFi Registry .. 1
1.1.2. Security Configuration .. 2
1.1.3. User Authentication ... 3
1.1.4. Authorization ... 5
1.1.5. Encrypted Passwords in Configuration Files ... 14
1.1.6. Bootstrap Properties ... 17
1.1.7. Proxy Configuration ... 18
1.1.8. Kerberos Service ... 19
1.1.9. System Properties ... 20

Hortonworks DataFlow June 6, 2018

1

1. Apache NiFi Registry System
Administrator's Guide

1.1. Apache NiFi Registry System Administrator's
Guide

• Requires Java 8, newer than 1.8.0_45

• Supported Operating Systems:

• Linux

• Unix

• Mac OS X

• Supported Web Browsers:

• Google Chrome: Current & (Current - 1)

• Mozilla FireFox: Current & (Current - 1)

• Safari: Current & (Current - 1)

1.1.1. How to install and start NiFi Registry

• Linux/Unix/OS X

• Decompress and untar into desired installation directory

• Make any desired edits in files found under <installdir>/conf

• From the <installdir>/bin directory, execute the following commands by typing ./nifi-
registry.sh <command>:

• start: starts NiFi Registry in the background

• stop: stops NiFi Registry that is running in the background

• status: provides the current status of NiFi Registry

• run: runs NiFi Registry in the foreground and waits for a Ctrl-C to initiate shutdown
of NiFi Registry

• install: installs NiFi Registry as a service that can then be controlled via

• service nifi-registry start

• service nifi-registry stop

Hortonworks DataFlow June 6, 2018

2

• service nifi-registry status

When NiFi Registry first starts up, the following files and directories are created:

• flow_storage directory

• database directory

• work directory

• logs directory

• run directory

See the System Properties section of this guide for more information about NiFi Registry
configuration files.

1.1.2. Security Configuration

NiFi Registry provides several different configuration options for security purposes. The
most important properties are those under the "security properties" heading in the nifi-
registry.properties file. In order to run securely, the following properties must be set:

Property Name Description

nifi.registry.security.keystore Filename of the Keystore that contains the server's private
key.

nifi.registry.security.keystoreType The type of Keystore. Must be either PKCS12 or JKS.
JKS is the preferred type, PKCS12 files will be loaded with
BouncyCastle provider.

nifi.registry.security.keystorePasswd The password for the Keystore.

nifi.registry.security.keyPasswd The password for the certificate in
the Keystore. If not set, the value of
nifi.registry.security.keystorePasswd will be
used.

nifi.registry.security.truststore Filename of the Truststore that will be used to authorize
those connecting to NiFi Registry. A secured instance with
no Truststore will refuse all incoming connections.

nifi.registry.security.truststoreType The type of the Truststore. Must be either PKCS12 or JKS.
JKS is the preferred type, PKCS12 files will be loaded with
BouncyCastle provider.

nifi.registry.security.truststorePasswd The password for the Truststore.

nifi.registry.security.needClientAuth This specifies that connecting clients must authenticate
with a client cert. Setting this to false will specify that
connecting clients may optionally authenticate with
a client cert, but may also login with a username and
password against a configured identity provider. The
default value is true.

Once the above properties have been configured, we can enable the User Interface
to be accessed over HTTPS instead of HTTP. This is accomplished by setting the
nifi.registry.web.https.host and nifi.registry.web.https.port
properties. The nifi.registry.web.https.host property indicates which
hostname the server should run on. If it is desired that the HTTPS interface be

Hortonworks DataFlow June 6, 2018

3

accessible from all network interfaces, a value of 0.0.0.0 should be used for
nifi.registry.web.https.host.

It is important when enabling HTTPS that the
nifi.registry.web.http.port property be unset.

1.1.3. User Authentication

A secured instance of NiFi Registry cannot be accessed anonymously, so a method of user
authentication must be configured.

NiFi Registry does not perform user authentication over
HTTP. Using HTTP, all users will have full permissions.

Any secured instance of NiFi Registry supports authentication via client certificates that are
trusted by the NiFi Registry's SSL Context Truststore. Alternatively, a secured NiFi Registry
can be configured to authenticate users via username/password.

Username/password authentication is performed by an Identity Provider. The Identity
Provider is a pluggable mechanism for authenticating users via their username/password.
Which Identity Provider to use is configured in the nifi-registry.properties file. Currently NiFi
Registry offers Identity Providers for LDAP and Kerberos.

Identity Providers are configured using two properties in the nifi-registry.properties file:

• The nifi.registry.security.identity.providers.configuration.file
property specifies the configuration file where identity providers are defined. By default,
the identity-providers.xml file located in the root installation conf directory is selected.

• The nifi.registry.security.identity.provider property indicates which of
the configured identity providers in the identity-providers.xml file to use. By default, this
property is not configured meaning that username/password must be explicitly enabled.

NiFi Registry can only be configured to use one Identity
Provider at a given time.

1.1.3.1. Lightweight Directory Access Protocol (LDAP)

Below is an example and description of configuring a Identity Provider that integrates with
a Directory Server to authenticate users.

<provider>
 <identifier>ldap-identity-provider</identifier>
 <class>org.apache.nifi.registry.security.ldap.LdapIdentityProvider</class>
 <property name="Authentication Strategy">START_TLS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>

Hortonworks DataFlow June 6, 2018

4

 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url"></property>
 <property name="User Search Base"></property>
 <property name="User Search Filter"></property>

 <property name="Identity Strategy">USE_DN</property>
 <property name="Authentication Expiration">12 hours</property>
</provider>

With this configuration, username/password authentication can be enabled by referencing
this provider in nifi-registry.properties.

nifi.registry.security.identity.provider=ldap-identity-provider

Property Name Description

Authentication Strategy How the connection to the LDAP server is authenticated.
Possible values are ANONYMOUS, SIMPLE, LDAPS, or
START_TLS.

Manager DN The DN of the manager that is used to bind to the LDAP
server to search for users.

Manager Password The password of the manager that is used to bind to the
LDAP server to search for users.

TLS - Keystore Path to the Keystore that is used when connecting to
LDAP using LDAPS or START_TLS.

TLS - Keystore Password Password for the Keystore that is used when connecting to
LDAP using LDAPS or START_TLS.

TLS - Keystore Type Type of the Keystore that is used when connecting to
LDAP using LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Truststore Path to the Truststore that is used when connecting to
LDAP using LDAPS or START_TLS.

TLS - Truststore Password Password for the Truststore that is used when connecting
to LDAP using LDAPS or START_TLS.

TLS - Truststore Type Type of the Truststore that is used when connecting to
LDAP using LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Client Auth Client authentication policy when connecting to LDAP
using LDAPS or START_TLS. Possible values are REQUIRED,
WANT, NONE.

TLS - Protocol Protocol to use when connecting to LDAP using LDAPS or
START_TLS. (i.e. TLS, TLSv1.1, TLSv1.2, etc).

TLS - Shutdown Gracefully Specifies whether the TLS should be shut down gracefully
before the target context is closed. Defaults to false.

Referral Strategy Strategy for handling referrals. Possible values are
FOLLOW, IGNORE, THROW.

Connect Timeout Duration of connect timeout. (i.e. 10 secs).

Authentication Expiration The duration of how long the user authentication is valid
for. If the user never logs out, they will be required to
log back in following this duration.

Hortonworks DataFlow June 6, 2018

5

Property Name Description

Read Timeout Duration of read timeout. (i.e. 10 secs).

Url Space-separated list of URLs of the LDAP servers (i.e.
ldap://<hostname>:<port>).

User Search Base Base DN for searching for users (i.e.
CN=Users,DC=example,DC=com).

User Search Filter Filter for searching for users against the User Search Base.
(i.e. sAMAccountName={0}). The user specified name is
inserted into {0}.

Identity Strategy Strategy to identify users. Possible values are USE_DN
and USE_USERNAME. The default functionality if this
property is missing is USE_DN in order to retain backward
compatibility. USE_DN will use the full DN of the user entry
if possible. USE_USERNAME will use the username the user
logged in with.

Authentication Expiration The duration of how long the user authentication is valid
for. If the user never logs out, they will be required to
log back in following this duration.

1.1.3.2. Kerberos

Below is an example and description of configuring an Identity Provider that integrates
with a Kerberos Key Distribution Center (KDC) to authenticate users.

<provider>
 <identifier>kerberos-identity-provider</identifier>
 <class>org.apache.nifi.registry.web.security.authentication.kerberos.
KerberosIdentityProvider</class>
 <property name="Default Realm">NIFI.APACHE.ORG</property>
 <property name="Kerberos Config File">/etc/krb5.conf</property>
 <property name="Authentication Expiration">12 hours</property>
</provider>

With this configuration, username/password authentication can be enabled by referencing
this provider in nifi-registry.properties.

nifi.registry.security.user.identity.provider=kerberos-identity-provider

Property Name Description

Default Realm Default realm to provide when user enters incomplete user
principal (i.e. NIFI.APACHE.ORG).

Kerberos Config File Absolute path to Kerberos client configuration file.

Authentication Expiration The duration for which the user authentication is valid. If
the user never logs out, they will be required to log back
in following this duration.

See also Kerberos Service to allow single sign-on access via client Kerberos tickets.

1.1.4. Authorization

After you have configured NiFi Registry to run securely and with an authentication
mechanism, you must configure who has access to the system and their level of access. This
is done by defining policies that give users and groups permissions to perform a particular
action. These policies are defined in an authorizer.

Hortonworks DataFlow June 6, 2018

6

1.1.4.1. Authorizer Configuration

An authorizer manages known users and their access policies. Authorizers are configured
using two properties in the nifi-registry.properties file:

• The nifi.registry.security.authorizers.configuration.file
property specifies the configuration file where authorizers are defined. By default, the
authorizers.xml file located in the root installation conf directory is selected.

• The nifi.registry.security.authorizer property indicates which of the
configured authorizers in the authorizers.xml file to use.

1.1.4.2. Authorizers.xml Setup

The authorizers.xml file is used to define and configure available authorizers. The default
authorizer is the StandardManagedAuthorizer. The managed authorizer is comprised of
a UserGroupProvider and a AccessPolicyProvider. The users, group, and access policies will
be loaded and optionally configured through these providers. The managed authorizer will
make all access decisions based on these provided users, groups, and access policies.

During startup there is a check to ensure that there are no two users/groups with the same
identity/name. This check is executed regardless of the configured implementation. This
is necessary because this is how users/groups are identified and authorized during access
decisions.

The default UserGroupProvider is the FileUserGroupProvider, however, you can develop
additional UserGroupProviders as extensions. The FileUserGroupProvider has the following
properties:

• Users File - The file where the FileUserGroupProvider stores users and groups. By default,
users.xml in the conf directory is chosen.

• Initial User Identity - The identity of a user or system to seed an empty Users File. Multiple
Initial User Identity properties can be specified, but the name of each property must be
unique, for example: "Initial User Identity A", "Initial User Identity B", "Initial User Identity
C" or "Initial User Identity 1", "Initial User Identity 2", "Initial User Identity 3"

Initial User Identities are only created if the specified
Users File is missing or empty during NiFi Registry startup.
Changes to the configured Initial Users Identities will not
take effect if the Users File is populated.

Another option for the UserGroupProvider is the LdapUserGroupProvider. By default, this
option is commented out but can be configured in lieu of the FileUserGroupProvider. This
will sync users and groups from a directory server and will present them in NiFi Registry UI
in read only form. The LdapUserGroupProvider has the following properties:

• Authentication Strategy - How the connection to the LDAP server is authenticated.
Possible values are ANONYMOUS, SIMPLE, LDAPS, or START_TLS

• Manager DN - The DN of the manager that is used to bind to the LDAP server to search
for users.

Hortonworks DataFlow June 6, 2018

7

• Manager Password - The password of the manager that is used to bind to the LDAP
server to search for users.

• TLS - Keystore - Path to the Keystore that is used when connecting to LDAP using LDAPS
or START_TLS.

• TLS - Keystore Password - Password for the Keystore that is used when connecting to
LDAP using LDAPS or START_TLS.

• TLS - Keystore Type - Type of the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

• TLS - Truststore - Path to the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS.

• TLS - Truststore Password - Password for the Truststore that is used when connecting to
LDAP using LDAPS or START_TLS.

• TLS - Truststore Type - Type of the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

• TLS - Client Auth - Client authentication policy when connecting to LDAP using LDAPS or
START_TLS. Possible values are REQUIRED, WANT, NONE.

• TLS - Protocol - Protocol to use when connecting to LDAP using LDAPS or START_TLS. (i.e.
TLS, TLSv1.1, TLSv1.2, etc).

• TLS - Shutdown Gracefully - Specifies whether the TLS should be shut down gracefully
before the target context is closed. Defaults to false.

• Referral Strategy - Strategy for handling referrals. Possible values are FOLLOW, IGNORE,
THROW.

• Connect Timeout - Duration of connect timeout. (i.e. 10 secs).

• Read Timeout - Duration of read timeout. (i.e. 10 secs).

• Url - Space-separated list of URLs of the LDAP servers (i.e. ldap://<hostname>:<port>).

• Page Size - Sets the page size when retrieving users and groups. If not specified, no
paging is performed.

• Sync Interval - Duration of time between syncing users and groups. (i.e. 30 mins).

• User Search Base - Base DN for searching for users (i.e. ou=users,o=nifi). Required to
search users.

• User Object Class - Object class for identifying users (i.e. person). Required if searching
users.

• User Search Scope - Search scope for searching users (ONE_LEVEL, OBJECT, or SUBTREE).
Required if searching users.

Hortonworks DataFlow June 6, 2018

8

• User Search Filter - Filter for searching for users against the User Search Base (i.e.
(memberof=cn=team1,ou=groups,o=nifi)). Optional.

• User Identity Attribute - Attribute to use to extract user identity (i.e. cn). Optional. If not
set, the entire DN is used.

• User Group Name Attribute - Attribute to use to define group membership (i.e.
memberof). Optional. If not set group membership will not be calculated through the
users. Will rely on group membership being defined through Group Member Attribute if
set.

• Group Search Base - Base DN for searching for groups (i.e. ou=groups,o=nifi). Required to
search groups.

• Group Object Class - Object class for identifying groups (i.e. groupOfNames). Required if
searching groups.

• Group Search Scope - Search scope for searching groups (ONE_LEVEL, OBJECT, or
SUBTREE). Required if searching groups.

• Group Search Filter - Filter for searching for groups against the Group Search Base.
Optional.

• Group Name Attribute - Attribute to use to extract group name (i.e. cn). Optional. If not
set, the entire DN is used.

• Group Member Attribute - Group Member Attribute - Attribute to use to define group
membership (i.e. member). Optional. If not set group membership will not be calculated
through the groups. Will rely on group member being defined through User Group Name
Attribute if set.

Another option for the UserGroupProvider are composite implementations. This means
that multiple sources/implementations can be configured and composed. For instance, an
admin can configure users/groups to be loaded from a file and a directory server. There are
two composite implementations, one that supports multiple UserGroupProviders and one
that supports multiple UserGroupProviders and a single configurable UserGroupProvider.

The CompositeUserGroupProvider will provide support for retrieving users and groups from
multiple sources. The CompositeUserGroupProvider has the following properties:

• User Group Provider - The identifier of user group providers to load from. The name
of each property must be unique, for example: "User Group Provider A", "User Group
Provider B", "User Group Provider C" or "User Group Provider 1", "User Group Provider 2",
"User Group Provider 3"

The CompositeConfigurableUserGroupProvider will provide support for retrieving
users and groups from multiple sources. Additionally, a single configurable user group
provider is required. Users from the configurable user group provider are configurable,
however users loaded from one of the User Group Provider [unique key] will not be. The
CompositeConfigurableUserGroupProvider has the following properties:

• Configurable User Group Provider - A configurable user group provider.

Hortonworks DataFlow June 6, 2018

9

• User Group Provider - The identifier of user group providers to load from. The name
of each property must be unique, for example: "User Group Provider A", "User Group
Provider B", "User Group Provider C" or "User Group Provider 1", "User Group Provider 2",
"User Group Provider 3"

After you have configured a UserGroupProvider, you must configure an
AccessPolicyProvider that will control Access Policies for the identities in the
UserGroupProvider. The default AccessPolicyProvider is the FileAccessPolicyProvider,
however, you can develop additional AccessPolicyProvider as extensions. The
FileAccessPolicyProvider has the following properties:

• User Group Provider - The identifier for an User Group Provider defined above that will
be used to access users and groups for use in the managed access policies.

• Authorizations File - The file where the FileAccessPolicyProvider will store policies. By
default, authorizations.xml in the conf directory is chosen.

• Initial Admin Identity - The identity of an initial admin user that will be granted access to
the UI and given the ability to create additional users, groups, and policies. For example,
a certificate DN, LDAP identity, or Kerberos principal.

• NiFi Identity - The identity of a NiFi instance/node that will be accessing this registry. Each
NiFi Identity will be granted permission to proxy user requests, as well as read any bucket
to perform synchronization status checks.

The identities configured in the Initial Admin Identity and
NiFi Identity properties must be available in the configured
User Group Provider. Initial Admin Identity and NiFi
Identity properties are only read by NiFi Registry when
the Authorizations File is missing or empty on startup in
order to seed the initial Authorizations File. Changes to
the configured Initial Admin Identity and NiFi Identities
will not take effect if the Authorizations File is populated.

The default Authorizer is the StandardManagedAuthorizer, however, you can develop
additional Authorizers as extensions. The StandardManagedAuthorizer has the following
properties:

• Access Policy Provider - The identifier for an Access Policy Provider defined above.

1.1.4.2.1. Initial Admin Identity (New NiFi Registry Instance)

If you are setting up a secured NiFi Registry instance for the first time, you must manually
designate an "Initial Admin Identity" in the authorizers.xml file. This initial admin user
is granted access to the UI and given the ability to create additional users, groups, and
policies. The value of this property could be a certificate DN , LDAP identity (DN or
username), or a Kerberos principal. If you are the NiFi Registry administrator, add yourself
as the "Initial Admin Identity".

Here is an example LDAP entry using the name John Smith:

<authorizers>

 <userGroupProvider>

Hortonworks DataFlow June 6, 2018

10

 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.registry.security.authorization.file.
FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>
 <property name="Initial User Identity 1">cn=John Smith,ou=people,dc=
example,dc=com</property>
 </userGroupProvider>

 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.registry.security.authorization.file.
FileAccessPolicyProvider</class>
 <property name="User Group Provider">file-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">cn=John Smith,ou=people,dc=
example,dc=com</property
 <property name="NiFi Identity 1"></property>
 </accessPolicyProvider>

 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.registry.security.authorization.
StandardManagedAuthorizer</class>
 <property name="Access Policy Provider">file-access-policy-provider</
property>
 </authorizer>
</authorizers>

Here is an example Kerberos entry using the name John Smith and realm
NIFI.APACHE.ORG:

<authorizers>

 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.registry.security.authorization.file.
FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Initial User Identity 1">johnsmith@NIFI.APACHE.ORG</
property>
 </userGroupProvider>

 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.registry.security.authorization.file.
FileAccessPolicyProvider</class>
 <property name="User Group Provider">file-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">johnsmith@NIFI.APACHE.ORG</
property>
 <property name="NiFi Identity 1"></property>
 </accessPolicyProvider>

 <authorizer>
 <identifier>managed-authorizer</identifier>

Hortonworks DataFlow June 6, 2018

11

 <class>org.apache.nifi.registry.security.authorization.
StandardManagedAuthorizer</class>
 <property name="Access Policy Provider">file-access-policy-provider</
property>
 </authorizer>
</authorizers>

After you have edited and saved the authorizers.xml file, restart NiFi Registry. The users.xml
and authorizations.xml files will be created, and the "Initial Admin Identity" user and
administrative policies are added during start up. Once NiFi Registry starts, the "Initial
Admin Identity" user is able to access the UI and begin managing users, groups, and
policies.

If initial NiFi identities are not provided, they can be added
through the UI at a later time by first creating a user for
the given NiFi identity, and then giving that user Proxy
permissions, and permission to Buckets/READ in order to
read all buckets.

Here is an example loading users and groups from LDAP. Group membership will be driven
through the member attribute of each group. Authorization will still use file based access
policies.

Given the following LDAP entries exist:

dn: cn=User 1,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 1
sn: User1
uid: user1

dn: cn=User 2,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 2
sn: User2
uid: user2

dn: cn=users,ou=groups,o=nifi
objectClass: groupOfNames
objectClass: top
cn: users
member: cn=User 1,ou=users,o=nifi
member: cn=User 2,ou=users,o=nifi

An Authorizer using an LdapUserGroupProvider would be configured as:

<authorizers>
 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.registry.security.ldap.tenants.
LdapUserGroupProvider</class>
 <property name="Authentication Strategy">ANONYMOUS</property>

Hortonworks DataFlow June 6, 2018

12

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url">ldap://localhost:10389</property>
 <property name="Page Size"></property>
 <property name="Sync Interval">30 mins</property>

 <property name="User Search Base">ou=users,o=nifi</property>
 <property name="User Object Class">person</property>
 <property name="User Search Scope">ONE_LEVEL</property>
 <property name="User Search Filter"></property>
 <property name="User Identity Attribute">cn</property>
 <property name="User Group Name Attribute"></property>

 <property name="Group Search Base">ou=groups,o=nifi</property>
 <property name="Group Object Class">groupOfNames</property>
 <property name="Group Search Scope">ONE_LEVEL</property>
 <property name="Group Search Filter"></property>
 <property name="Group Name Attribute">cn</property>
 <property name="Group Member Attribute">member</property>
 </userGroupProvider>

 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.registry.security.authorization.file.
FileAccessPolicyProvider</class>
 <property name="User Group Provider">ldap-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">User 1</property>
 <property name="NiFi Identity 1"></property>
 </accessPolicyProvider>

 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.registry.security.authorization.
StandardManagedAuthorizer</class>
 <property name="Access Policy Provider">file-access-policy-provider</
property>
 </authorizer>
</authorizers>

The Initial Admin Identity value would have loaded from the cn of the User 1 entry based
on the User Identity Attribute value.

Hortonworks DataFlow June 6, 2018

13

Here is an example composite implementation loading users and groups from LDAP
and a local file. Group membership will be driven through the member attribute of each
group. The users from LDAP will be read only while the users loaded from the file will be
configurable in UI.

<authorizers>

 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.registry.security.authorization.file.
FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Initial User Identity 1">cn=nifi-node1,ou=servers,dc=
example,dc=com</property>
 <property name="Initial User Identity 2">cn=nifi-node2,ou=servers,dc=
example,dc=com</property>
 </userGroupProvider>

 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.registry.security.ldap.tenants.
LdapUserGroupProvider</class>
 <property name="Authentication Strategy">ANONYMOUS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url">ldap://localhost:10389</property>
 <property name="Page Size"></property>
 <property name="Sync Interval">30 mins</property>

 <property name="User Search Base">ou=users,o=nifi</property>
 <property name="User Object Class">person</property>
 <property name="User Search Scope">ONE_LEVEL</property>
 <property name="User Search Filter"></property>
 <property name="User Identity Attribute">cn</property>
 <property name="User Group Name Attribute"></property>

 <property name="Group Search Base">ou=groups,o=nifi</property>
 <property name="Group Object Class">groupOfNames</property>
 <property name="Group Search Scope">ONE_LEVEL</property>
 <property name="Group Search Filter"></property>
 <property name="Group Name Attribute">cn</property>
 <property name="Group Member Attribute">member</property>
 </userGroupProvider>

Hortonworks DataFlow June 6, 2018

14

 <userGroupProvider>
 <identifier>composite-user-group-provider</identifier>
 <class>org.apache.nifi.registry.security.authorization.
CompositeUserGroupProvider</class>
 <property name="User Group Provider 1">file-user-group-provider</
property>
 <property name="User Group Provider 2">ldap-user-group-provider</
property>
 </userGroupProvider>

 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.registry.security.authorization.file.
FileAccessPolicyProvider</class>
 <property name="User Group Provider">composite-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">User 1/property>
 <property name="NiFi Identity 1">cn=nifi-node1,ou=servers,dc=example,
dc=com</property>
 <property name="NiFi Identity 2">cn=nifi-node2,ou=servers,dc=example,
dc=com</property>
 </accessPolicyProvider>

 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.registry.security.authorization.
StandardManagedAuthorizer</class>
 <property name="Access Policy Provider">file-access-policy-provider</
property>
 </authorizer>
</authorizers>

In this example, the users and groups are loaded from LDAP but the servers are managed
in a local file. The Initial Admin Identity value came from an attribute in a LDAP entry based
on the User Identity Attribute. The NiFi Identity values are established in the local file using
the Initial User Identity properties.

1.1.5. Encrypted Passwords in Configuration Files

In order to facilitate the secure setup of NiFi Registry, you can use the encrypt-config
command line utility to encrypt raw configuration values that NiFi Registry decrypts in
memory on startup. This extensible protection scheme transparently allows NiFi Registry to
use raw values in operation, while protecting them at rest. In the future, hardware security
modules (HSM) and external secure storage mechanisms will be integrated, but for now, an
AES encryption provider is the default implementation.

If no administrator action is taken, the configuration values remain unencrypted.

The encrypt-config tool for NiFi Registry is
implemented as an additional mode to the existing tool in
the nifi-toolkit. The following sections assume you
have downloaded the binary for the nifi-toolkit.

Hortonworks DataFlow June 6, 2018

15

1.1.5.1. Encrypt-Config Tool

The encrypt-config command line tool can be used to encrypt NiFi Registry
configuration by invoking the tool with the following command:

./bin/encrypt-config nifi-registry [options]

• -h,--help Show usage information (this message)

• -v,--verbose Enables verbose mode (off by default)

• -p,--password <password> Protect the files using a password-derived key. If an
argument is not provided to this flag, interactive mode will be triggered to prompt the
user to enter the password.

• -k,--key <keyhex> Protect the files using a raw hexadecimal key. If an argument is
not provided to this flag, interactive mode will be triggered to prompt the user to enter
the key.

• --oldPassword <password> If the input files are already protected using a
password-derived key, this specifies the old password so that the files can be unprotected
before re-protecting.

• --oldKey <keyhex> If the input files are already protected using a key, this specifies
the raw hexadecimal key so that the files can be unprotected before re-protecting.

• -b,--bootstrapConf <file> The bootstrap.conf file containing no master key or an
existing master key. If a new password/key is specified and no output bootstrap.conf file
is specified, then this file will be overwritten to persist the new master key.

• -B,--outputBootstrapConf <file> The destination bootstrap.conf file to persist
master key. If specified, the input bootstrap.conf will not be modified.

• -r,--nifiRegistryProperties <file> The nifi-registry.properties file containing
unprotected config values, overwritten if no output file specified.

• -R,--outputNifiRegistryProperties <file> The destination nifi-
registry.properties file containing protected config values.

• -a,--authorizersXml <file> The authorizers.xml file containing unprotected
config values, overwritten if no output file specified.

• -A,--outputAuthorizersXml <file> The destination authorizers.xml file
containing protected config values.

• -i,--identityProvidersXml <file> The identity-providers.xml file containing
unprotected config values, overwritten if no output file specified.

• -I,--outputIdentityProvidersXml <file> The destination identity-
providers.xml file containing protected config values.

As an example of how the tool works, assuming that you have installed the tool on a
machine supporting 256-bit encryption and with the following existing values in the nifi-
registry.properties file:

Hortonworks DataFlow June 6, 2018

16

security properties
nifi.registry.security.keystore=/path/to/keystore.jks
nifi.registry.security.keystoreType=JKS
nifi.registry.security.keystorePasswd=thisIsABadKeystorePassword
nifi.registry.security.keyPasswd=thisIsABadKeyPassword
nifi.registry.security.truststore=
nifi.registry.security.truststoreType=
nifi.registry.security.truststorePasswd=

Enter the following arguments when using the tool:

./bin/encrypt-config.sh nifi-registry \
-b bootstrap.conf \
-k 0123456789ABCDEFFEDCBA98765432100123456789ABCDEFFEDCBA9876543210 \
-r nifi-registry.properties

As a result, the nifi-registry.properties file is overwritten with protected properties and
sibling encryption identifiers (aes/gcm/256, the currently supported algorithm):

security properties
nifi.registry.security.keystore=/path/to/keystore.jks
nifi.registry.security.keystoreType=JKS
nifi.registry.security.keystorePasswd=oBjT92hIGRElIGOh||MZ6uYuWNBrOA6usq/
Jt3DaD2e4otNirZDytac/w/KFe0HOkrJR03vcbo
nifi.registry.security.keystorePasswd.protected=aes/gcm/256
nifi.registry.security.keyPasswd=ac/BaE35SL/esLiJ||
+ULRvRLYdIDA2VqpE0eQXDEMjaLBMG2kbKOdOwBk/hGebDKlVg==
nifi.registry.security.keyPasswd.protected=aes/gcm/256
nifi.registry.security.truststore=
nifi.registry.security.truststoreType=
nifi.registry.security.truststorePasswd=

When applied to identity-providers.xml or authorizers.xml, the property elements are
updated with an encryption attribute. For example:

<!-- LDAP Provider -->
<provider>
 <identifier>ldap-provider</identifier>
 <class>org.apache.nifi.registry.security.ldap.LdapProvider</class>
 <property name="Authentication Strategy">START_TLS</property>
 <property name="Manager DN">someuser</property>
 <property name="Manager Password" encryption="aes/gcm/
128">q4r7WIgN0MaxdAKM||SGgdCTPGSFEcuH4RraMYEdeyVbOx93abdWTVSWvh1w+klA</
property>
 <property name="TLS - Keystore">/path/to/keystore.jks</property>
 <property name="TLS - Keystore Password" encryption="aes/gcm/128">Uah59TWX
+Ru5GY5p||B44RT/LJtC08QWA5ehQf01JxIpf0qSJUzug25UwkF5a50g</property>
 <property name="TLS - Keystore Type">JKS</property>
 ...
</provider>

Additionally, the bootstrap.conf file is updated with the encryption key as follows:

Master key in hexadecimal format for encrypted sensitive configuration
 values
nifi.registry.bootstrap.sensitive.key=
0123456789ABCDEFFEDCBA98765432100123456789ABCDEFFEDCBA9876543210

Sensitive configuration values are encrypted by the tool by default,
however you can encrypt any additional properties, if desired. To encrypt

Hortonworks DataFlow June 6, 2018

17

additional properties, specify them as comma-separated values in the
nifi.registry.sensitive.props.additional.keys property.

If the nifi-registry.properties file already has valid protected values and you wish to protect
additional values using the same master key already present in your bootstrap.conf, then
run the tool without specifying a new key:

bootstrap.conf already contains master key property
nifi-registy.properties has been updated for nifi.registry.sensitive.props.
additional.keys=...

./bin/encrypt-config.sh nifi-registry -b bootstrap.conf -r nifi-registry.
properties

1.1.5.2. Sensitive Property Key Migration

In order to change the key used to encrypt the sensitive values, provide the new key or
password using the -k or -p flags as usual, and provide the existing key or password using
--old-key or --old-password respectively. This will allow the toolkit to decrypt the
existing values and re-encrypt them, and update bootstrap.conf with the new key. Only
one of the key or password needs to be specified for each phase (old vs. new), and any
combination is sufficient:

• old key # new key

• old key # new password

• old password # new key

• old password # new password

1.1.6. Bootstrap Properties
The bootstrap.conf file in the conf directory allows users to configure settings for how NiFi
Registry should be started. This includes parameters, such as the size of the Java Heap,
what Java command to run, and Java System Properties.

Here, we will address the different properties that are made available in the file. Any
changes to this file will take effect only after NiFi Registry has been stopped and restarted.

Property Description

java Specifies the fully qualified java command to run. By
default, it is simply java but could be changed to an
absolute path or a reference an environment variable,
such as $JAVA_HOME/bin/java

run.as The username to run NiFi Registry as. For instance, if NiFi
Registry should be run as the nifi_registry user, setting this
value to nifi_registry will cause the NiFi Registry Process to
be run as the nifi_registry user. This property is ignored on
Windows. For Linux, the specified user may require sudo
permissions.

lib.dir The lib directory to use for NiFi Registry. By default, this is
set to ./lib

conf.dir The conf directory to use for NiFi Registry. By default, this
is set to ./conf

graceful.shutdown.seconds When NiFi Registry is instructed to shutdown, the
Bootstrap will wait this number of seconds for the process

Hortonworks DataFlow June 6, 2018

18

to shutdown cleanly. At this amount of time, if the service
is still running, the Bootstrap will "kill" the process, or
terminate it abruptly. By default, this is set to 20.

java.arg.N Any number of JVM arguments can be passed to the NiFi
Registry JVM when the process is started. These arguments
are defined by adding properties to bootstrap.conf that
begin with java.arg.. The rest of the property name
is not relevant, other than to different property names,
and will be ignored. The default includes properties for
minimum and maximum Java Heap size, the garbage
collector to use, etc.

1.1.7. Proxy Configuration
When running Apache NiFi Registry behind a proxy there are a couple of key items to be
aware of during deployment.

• NiFi Registry is comprised of a number of web applications (web UI, web API,
documentation), so the mapping needs to be configured for the root path. That way all
context paths are passed through accordingly.

• If NiFi Registry is running securely, any proxy needs to be authorized to proxy
user requests. These can be configured in the NiFi Registry UI through the Users
administration section, by selecting Proxy for the given user. Once these permissions
are in place, proxies can begin proxying user requests. The end user identity must be
relayed in a HTTP header. For example, if the end user sent a request to the proxy, the
proxy must authenticate the user. Following this the proxy can send the request to NiFi
Registry. In this request an HTTP header should be added as follows.

X-ProxiedEntitiesChain: <end-user-identity>

If the proxy is configured to send to another proxy, the request to NiFi Registry from the
second proxy should contain a header as follows.

X-ProxiedEntitiesChain: <end-user-identity><proxy-1-identity>

An example Apache proxy configuration that sets the required properties may look like the
following. Complete proxy configuration is outside of the scope of this document. Please
refer the documentation of the proxy for guidance for your deployment environment and
use case.

...
<Location "/my-nifi">
 ...
 SSLEngine On
 SSLCertificateFile /path/to/proxy/certificate.crt
 SSLCertificateKeyFile /path/to/proxy/key.key
 SSLCACertificateFile /path/to/ca/certificate.crt
 SSLVerifyClient require
 RequestHeader add X-ProxyScheme "https"
 RequestHeader add X-ProxyHost "proxy-host"
 RequestHeader add X-ProxyPort "443"
 RequestHeader add X-ProxyContextPath "/my-nifi-registry"
 RequestHeader add X-ProxiedEntitiesChain "<%{SSL_CLIENT_S_DN}>"
 ProxyPass https://nifi-registry-host:8443
 ProxyPassReverse https://nifi-registry-host:8443
 ...
</Location>

Hortonworks DataFlow June 6, 2018

19

...

1.1.8. Kerberos Service
NiFi Registry can be configured to use Kerberos SPNEGO (or "Kerberos Service") for
authentication. In this scenario, users will hit the REST endpoint /access/token/
kerberos and the server will respond with a 401 status code and the challenge response
header WWW-Authenticate: Negotiate. This communicates to the browser to
use the GSS-API and load the user's Kerberos ticket and provide it as a Base64-encoded
header value in the subsequent request. It will be of the form Authorization:
Negotiate YII.... NiFi Registry will attempt to validate this ticket with the KDC. If it
is successful, the user's principal will be returned as the identity, and the flow will follow
login/credential authentication, in that a JWT will be issued in the response to prevent
the unnecessary overhead of Kerberos authentication on every subsequent request. If
the ticket cannot be validated, it will return with the appropriate error response code.
The user will then be able to provide their Kerberos credentials to the login form if the
KerberosIdentityProvider has been configured. See Kerberos identity provider for
more details.

NiFi Registry will only respond to Kerberos SPNEGO negotiation over an HTTPS connection,
as unsecured requests are never authenticated.

See Kerberos Properties for complete documentation.

1.1.8.1. Notes

• Kerberos is case-sensitive in many places and the error messages (or lack thereof) may
not be sufficiently explanatory. Check the case sensitivity of the service principal in your
configuration files. The convention is HTTP/fully.qualified.domain@REALM.

• Browsers have varying levels of restriction when dealing with SPNEGO negotiations.
Some will provide the local Kerberos ticket to any domain that requests it, while others
whitelist the trusted domains. See Spring Security Kerberos - Reference Documentation:
Appendix E. Configure browsers for SPNEGO Negotiation for common browsers.

• Some browsers (legacy IE) do not support recent encryption algorithms such as AES, and
are restricted to legacy algorithms (DES). This should be noted when generating keytabs.

• The KDC must be configured and a service principal defined for NiFi and a keytab
exported. Comprehensive instructions for Kerberos server configuration and
administration are beyond the scope of this document (see MIT Kerberos Admin Guide),
but an example is below:

• Kerberos tickets may use AES encryption with keys up to 256-bits in length, and
therefore unlimited strength encryption policies may be required for the Java Runtime
Environment (JRE) used for NiFi Registry when Kerberos SPNEGO is configured.

Adding a service principal for a server at nifi.nifi.apache.org and exporting the
keytab from the KDC:

root@kdc:/etc/krb5kdc# kadmin.local
Authenticating as principal admin/admin@NIFI.APACHE.ORG with password.
kadmin.local: listprincs
K/M@NIFI.APACHE.ORG

http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html

Hortonworks DataFlow June 6, 2018

20

admin/admin@NIFI.APACHE.ORG
...
kadmin.local: addprinc -randkey HTTP/nifi.nifi.apache.org
WARNING: no policy specified for HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG;
 defaulting to no policy
Principal "HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG" created.
kadmin.local: ktadd -k /http-nifi.keytab HTTP/nifi.nifi.apache.org
Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type
 des3-cbc-sha1 added to keytab WRFILE:/http-nifi.keytab.
Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type
 des-cbc-crc added to keytab WRFILE:/http-nifi.keytab.
kadmin.local: listprincs
HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG
K/M@NIFI.APACHE.ORG
admin/admin@NIFI.APACHE.ORG
...
kadmin.local: q
root@kdc:~# ll /http*
-rw------- 1 root root 162 Mar 14 21:43 /http-nifi.keytab
root@kdc:~#

1.1.9. System Properties

The nifi-registry.properties file in the conf directory is the main configuration file for
controlling how NiFi Registry runs. This section provides an overview of the properties in
this file and includes some notes on how to configure it in a way that will make upgrading
easier. After making changes to this file, restart NiFi Registry in order for the changes to
take effect.

Values for periods of time and data sizes must include the
unit of measure, for example "10 secs" or "10 MB", not
simply "10".

1.1.9.1. Web Properties

These properties pertain to the web-based User Interface.

Property Description

nifi.registry.web.war.directory This is the location of the web war directory. The default
value is ./lib.

nifi.registry.web.http.host The HTTP host. It is blank by default.

nifi.registry.web.http.port The HTTP port. The default value is 18080.

nifi.registry.web.https.host The HTTPS host. It is blank by default.

nifi.registry.web.https.port The HTTPS port. It is blank by default. When configuring
NiFi Registry to run securely, this port should be
configured.

nifi.registry.web.jetty.working.directory The location of the Jetty working directory. The default
value is ./work/jetty.

nifi.registry.web.jetty.threads The number of Jetty threads. The default value is 200.

1.1.9.2. Security Properties

These properties pertain to various security features in NiFi Registry. Many of these
properties are covered in more detail in the Security Configuration section of this
Administrator's Guide.

Hortonworks DataFlow June 6, 2018

21

Property Description

nifi.registry.security.keystore The full path and name of the keystore. It is blank by
default.

nifi.registry.security.keystoreType The keystore type. It is blank by default.

nifi.registry.security.keystorePasswd The keystore password. It is blank by default.

nifi.registry.security.keyPasswd The key password. It is blank by default.

nifi.registry.security.truststore The full path and name of the truststore. It is blank by
default.

nifi.registry.security.truststoreType The truststore type. It is blank by default.

nifi.registry.security.truststorePasswd The truststore password. It is blank by default.

nifi.registry.security.needClientAuth This specifies that connecting clients must authenticate
with a client cert. Setting this to false will specify that
connecting clients may optionally authenticate with
a client cert, but may also login with a username and
password against a configured identity provider. The
default value is true.

nifi.registry.security.authorizers.configuration.file This is the location of the file that specifies how
authorizers are defined. The default value is ./conf/
authorizers.xml.

nifi.registry.security.authorizer Specifies which of the configured Authorizers in the
authorizers.xml file to use. By default, it is set to
managed-authorizer.

nifi.registry.security.identity.providers.configuration.file This is the location of the file that specifies
how username/password authentication
is performed. This file is only considered if
nifi.registry.security.identity.provider
is configured with a provider identifier. The default value
is ./conf/identity-providers.xml.

nifi.registry.security.identity.provider This indicates what type of identity provider to
use. The default value is blank, can be set to the
identifier from a provider in the file specified in
nifi.registry.security.identity.providers.configuration.file.
Setting this property will trigger NiFi Registry to support
username/password authentication.

1.1.9.3. Providers Properties

These properties pertain to flow persistence providers. NiFi Registry uses a pluggable flow
persistence provider to store the content of the flows saved to the registry. NiFi Registry
provides the FileSystemFlowPersistenceProvider.

Property Description

nifi.registry.providers.configuration.file This is the location of the file where flow persistence
providers are configured. The default value is ./conf/
providers.xml.

1.1.9.4. Database Properties

These properties define the settings for the Registry database, which keeps track of
metadata about buckets and all items stored in buckets.

Property Description

nifi.registry.db.directory The location of the Registry database directory. The
default value is ./database.

nifi.registry.db.url.append This property specifies additional arguments to add to the
connection string for the Registry database. The default

Hortonworks DataFlow June 6, 2018

22

value should be used and should not be changed. It is:
;LOCK_TIMEOUT=25000;WRITE_DELAY=0;AUTO_SERVER=FALSE.

1.1.9.5. Extension Directories

Each property beginning with "nifi.registry.extension.dir." will be treated as location for an
extension, and a class loader will be created for each location, with the system class loader
as the parent.

Property Description

nifi.registry.extension.dir.1 The full path on the filesystem to the location of the JARs
for the given extension

Multiple extension directories can be specified by using
the nifi.registry.extension.dir. prefix with unique
suffixes and separate paths as values. For example,
to provide an additional extension directory, a user
could also specify additional properties with keys of:
nifi.registry.extension.dir.2=/path/to/
extension2 Providing 2 total locations, including
nifi.registry.extension.dir.1.

1.1.9.6. Kerberos Properties

Property Description

nifi.registry.kerberos.krb5.file The location of the krb5 file, if used. It is blank by default.
At this time, only a single krb5 file is allowed to be
specified per NiFi instance, so this property is configured
here to support SPNEGO and service principals rather
than in individual Processors. If necessary the krb5 file can
support multiple realms. Example: /etc/krb5.conf

nifi.registry.kerberos.spnego.principal The name of the NiFi Registry Kerberos SPNEGO principal,
if used. It is blank by default. Note that this property
is used to authenticate NiFi Registry users. Example:
HTTP/nifi.registry.example.com or HTTP/
nifi.registry.example.com@EXAMPLE.COM

nifi.registry.kerberos.spnego.keytab.location The file path of the NiFi Registry Kerberos SPNEGO keytab,
if used. It is blank by default. Note that this property is
used to authenticate NiFi Registry users. Example: /etc/
http-nifi-registry.keytab

nifi.registry.kerberos.spengo.authentication.expiration The expiration duration of a successful Kerberos user
authentication, if used. The default value is 12 hours.

	Hortonworks DataFlow
	Table of Contents
	1. Apache NiFi Registry System Administrator's Guide
	1.1. Apache NiFi Registry System Administrator's Guide
	1.1.1. How to install and start NiFi Registry
	1.1.2. Security Configuration
	1.1.3. User Authentication
	1.1.3.1. Lightweight Directory Access Protocol (LDAP)
	1.1.3.2. Kerberos

	1.1.4. Authorization
	1.1.4.1. Authorizer Configuration
	1.1.4.2. Authorizers.xml Setup
	1.1.4.2.1. Initial Admin Identity (New NiFi Registry Instance)

	1.1.5. Encrypted Passwords in Configuration Files
	1.1.5.1. Encrypt-Config Tool
	1.1.5.2. Sensitive Property Key Migration

	1.1.6. Bootstrap Properties
	1.1.7. Proxy Configuration
	1.1.8. Kerberos Service
	1.1.8.1. Notes

	1.1.9. System Properties
	1.1.9.1. Web Properties
	1.1.9.2. Security Properties
	1.1.9.3. Providers Properties
	1.1.9.4. Database Properties
	1.1.9.5. Extension Directories
	1.1.9.6. Kerberos Properties

