
Hortonworks DataFlow

 (June 6, 2018)

Hortonworks Streaming Analytics Manager User Guide

docs.cloudera.com

http://docs.cloudera.com

Hortonworks DataFlow June 6, 2018

ii

Hortonworks DataFlow: Hortonworks Streaming Analytics Manager
User Guide
Copyright © 2012-2018 Hortonworks, Inc. Some rights reserved.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks DataFlow June 6, 2018

iii

Table of Contents
1. Streaming Analytics Manager Environment Setup and Managing Stream Apps 1

1.1. Managing Service Pools ... 1
1.1.1. Adding a New Service Pool .. 1
1.1.2. Updating Service Pools ... 2

1.2. Managing Environments ... 3
1.2.1. Create New Environment ... 3
1.2.2. Editing Environments ... 4

1.3. Deleting Environments .. 5
2. Building an Application .. 7

2.1. Launch the Stream Builder UI .. 7
2.2. Add a New Stream Application ... 8
2.3. Add a Source .. 9
2.4. Connect Components .. 10
2.5. Join Multiple Streams .. 11
2.6. Filter Events in a Stream ... 12
2.7. Use Aggregate Functions over Windows ... 15
2.8. Deploying a Stream App ... 16

2.8.1. Configure Deployment Settings .. 16
2.8.2. Deploy the App .. 17

3. Creating Visualizations Using Superset ... 20
3.1. Creating Insight Slices .. 20
3.2. Adding Insight Slices to a Dashboard .. 21

3.2.1. Dashboards for the Trucking IOT App .. 22
4. Adding Custom Builder Components .. 25

4.1. Adding Custom Processors .. 25
4.1.1. Creating Custom Processors .. 25
4.1.2. Registering Custom Processors with SAM .. 25
4.1.3. Creating a Custom Streaming Application ... 26

4.2. Adding Custom Functions ... 26
4.2.1. Creating UDAFs .. 26
4.2.2. Creating UDFs .. 28
4.2.3. Building Custom Functions .. 29
4.2.4. Uploading Custom Functions to SAM .. 29

5. Stream Operations ... 31
5.1. My Applications View .. 31
5.2. Application Performance Monitoring ... 31
5.3. Exporting and Importing Stream Applications ... 32
5.4. Troubleshooting and Debugging a Stream Application 33

5.4.1. Monitoring SAM Apps and Identifying Performance Issues 33
5.4.2. Identifying Processor Performance Bottlenecks 38
5.4.3. Debugging an Application through Distributed Log Search 43
5.4.4. Debugging an Application through Sampling .. 45

6. Source, Processor, and Sink Configuration Values ... 47
6.1. Source Configuration Values ... 47
6.2. Processor Configuration Values ... 50
6.3. Sink Configuration Values ... 51

Hortonworks DataFlow June 6, 2018

iv

List of Tables
6.1. Kafka .. 47
6.2. Event Hubs .. 49
6.3. HDFS ... 49
6.4. Aggregate ... 50
6.5. Branch .. 50
6.6. Join ... 50
6.7. PMML ... 51
6.8. Projection Bolt .. 51
6.9. Rule .. 51
6.10. Cassandra .. 51
6.11. Druid ... 52
6.12. Hive ... 53
6.13. HBase .. 53
6.14. HDFS ... 53
6.15. JDBC ... 54
6.16. Kafka .. 54
6.17. Notification ... 56
6.18. Open TSDB .. 56
6.19. Solr ... 57

Hortonworks DataFlow June 6, 2018

1

1. Streaming Analytics Manager
Environment Setup and Managing
Stream Apps

The information in this chapter focuses on the following operational tasks, suited for the
operations persona. When you access Streaming Analytics Manager (SAM) for the first
time, you must perform two operations tasks to get started

• Creating service pools

• Creating environments

Subsequent subsections walk through each of these steps.

1.1. Managing Service Pools
A Service is an entity that an application developer works with to build stream apps.
Examples of services include a Storm cluster to which you want to deploy the stream
application, a Kafka cluster that stream application uses to create a streams, or an HBase
cluster to which the stream application writes.

A Service Pool is a set of services associated with an Ambari managed cluster. To manage
service pools, hover over the Configuration tab and select the Service Pool menu item.

The Service Pool dashboard lists all existing service pools, and allows you to create new
service pools.

1.1.1. Adding a New Service Pool

Prerequisites

You have deployed an Ambari-managed HDF or HDP cluster.

Steps

1. From Configuration / Service Pool, enter the rest endpoint URL for your Ambari
managed cluster.

Hortonworks DataFlow June 6, 2018

2

The syntax of this URL has the following form: http://
[AMBARI_HOST]:8080/api/v1/clusters/[AMBARI_CLUSTER_NAME].

2. Click Auto Add.

3. You are prompted for Ambari credentials. Enter a valid username and password.

Result

SAM retrieves all of the services and creates a new pool. The name of the service pool is the
name of the Ambari cluster.

1.1.2. Updating Service Pools
About This Task

When a service pool is created, all of the configuration to manage and connect to the big
data services in the pool are imported from Ambari into SAM. If a configuration associated
with a service is changed in Ambari, you must manually update the service pool as well.

Hortonworks DataFlow June 6, 2018

3

Steps

1. From Configuration / Service Pool, click the Options dialog inside the service pool you
want to refresh.

2.

3. Click Refresh.

4. Provide your Ambari credentials and click Ok.

1.2. Managing Environments
An environment is a named entity that represents a set of services chosen from different
service pools. A stream application is assigned to an environment. The application can only
use the services associated with that environment.

To manage environments, hover over Configuration and select Environments.

The Environments dashboard lists all existing environments, and allows you to create a new
Environment.

1.2.1. Create New Environment

To add a new environment:

1. From Configuration / Environments, click the + icon.

2. Name the environment, choose the services that you want in the environment, and click
Ok. Selected services are highlighted in blue.

Hortonworks DataFlow June 6, 2018

4

Next Steps

After an Environment is created, an application developer can create new stream
applications, associate it with the environment, and use the big data services with the
application.

More Information

Building an Application [7]

1.2.2. Editing Environments

About This Task

You can edit environments by clicking the Options icon in the environment box you want
to edit.

When an environment is associated with an application, it cannot be deleted or updated.

Steps

1. From Configuration / Environments, click the Options icon for the environment you
want to edit.

Hortonworks DataFlow June 6, 2018

5

2. The Edit Environment dialog displays. Add additional services or update the name and
description of the environment and click Ok.

1.3. Deleting Environments
About This Task

You can delete environments by clicking the Options icon in the environment box you want
to delete.

When an environment is associated with an application, it cannot be deleted or updated.

Steps

1. From Configuration / Environments, click the Options icon for the environment you
want to delete.

Hortonworks DataFlow June 6, 2018

6

2. Click Ok to confirm you want to delete your environment.

Hortonworks DataFlow June 6, 2018

7

2. Building an Application
Prerequisites

• You have integrated SAM

• You have set up appropriate environments and service pools

Use the following tools to build your stream applications.

• Launch the Stream Builder UI [7]

• Add a New Stream Application [8]

• Add a Source [9]

• Connect Components [10]

• Join Multiple Streams [11]

• Filter Events in a Stream [12]

• Use Aggregate Functions over Windows [15]

2.1. Launch the Stream Builder UI
Steps

1. In Ambari, select Streaming Analytics Manager from the left-hand Services pane.

2. Under Quick Links, select SAM UI.

Result

The SAM Stream Builder UI displays. You can return at any time by clicking My Applications
from the left-hand menu.

Hortonworks DataFlow June 6, 2018

8

2.2. Add a New Stream Application
Steps

1. Specify the name of the stream application and the environment you want to use.

Note

The name of the stream app should not have any spaces.

2. SAM displays the Stream Builder canvas. Builder components on the canvas palette
are the building blocks you use to build stream apps. Refer to the HDF Overview for
information about each component building block.

More Information

Hortonworks DataFlow June 6, 2018

9

Component Building Blocks

2.3. Add a Source
About This Task

As described in the HDF Overview, Stream Builder offers four types of builder components:
sources, processors, sinks, and custom components. Start building your application by
adding a source.

Prerequisites

You have configured Schema Registry and integrated with SAM.

Steps

1. Drag a source builder component, Kafka for example, onto the canvas. This creates a
Kafka tile component:

2. Double-click the tile to begin configuring Kafka. After you specify a Kafka topic name,
SAM communicates with Schema Registry and displays the schema:

https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.1.2/bk_overview/content/sam-personas.html#component-building-blocks

Hortonworks DataFlow June 6, 2018

10

3. Add the additional components you want to use to develop your stream app.

Result

When you have added and correctly configured your stream app components, the
component tile displays a green dot on the left. You cannot connect a source to different
processors or sinks until it is correctly configured.

More Information

Component Building Blocks

Integrating Schema Registry with SAM

2.4. Connect Components
About This Task

Once you have added and configured your source, add additional processors and sinks
to the canvas. To pass a stream of events from one component to the next, create a
connection between the two components. In addition to defining data flow, connections
allow you to pass a schema from one component to another.

https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.1.2/bk_overview/content/sam-personas.html#component-building-blocks
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.1.2/bk_schema-registry-user-guide/content/ch_integrating-schema-registry.html#sam-integration

Hortonworks DataFlow June 6, 2018

11

Prerequisite

You have added and configured at least one source.

Steps

1. Click the green dot to the left of your source component.

2. Drag your cursor to the component tile to which you want to connect.

2.5. Join Multiple Streams
About This Task

Joining multiple streams is an important SAM capability. You accomplish this by adding the
Join processor to your stream application.

Steps

1. Drag a Join processor onto your canvas and connect it to a source.

2. Double click the Join tile to open the Configuration dialog.

3. Configure the Join processors according to your streaming application requirements.

Example

Hortonworks DataFlow June 6, 2018

12

2.6. Filter Events in a Stream
About This Task

You can use SAM to filter events in the stream. You accomplish this by using Rule processor,
which translates rules into SQL queries that operate on the stream of data.

Steps

1. Drag the Rule processor to the canvas and connect it to the Join processors.

Hortonworks DataFlow June 6, 2018

13

2. Double click the Rule processor, click the + Add New Rules button, and create a new
rule:

Hortonworks DataFlow June 6, 2018

14

3. Click Ok to save the new rule.

Example

Hortonworks DataFlow June 6, 2018

15

2.7. Use Aggregate Functions over Windows
About This Task

Windowing is the ability to split an unbounded stream of data into finite sets based on
specified criteria such as time or count, so that you can perform aggregate functions (such
as sum or average) on the bounded set of events. In SAM, you accomplish this using the
Aggregate processor. The Aggregate processor supports two window types, tumbling and
sliding windows. You can create a window based on time or count.

Steps

1. Drag the Aggregate processor to the canvas and connect it to the stream application
you are building.

2. Double click the Aggregate tile to configure it according the your stream application
requirements.

Example

Hortonworks DataFlow June 6, 2018

16

2.8. Deploying a Stream App

2.8.1. Configure Deployment Settings

Before deploying the application, it is important to configure deployment settings such as
JVM size, number of ackers, and number of workers. Because this topology uses a number
of joins and windows, you should increase the JVM heap size for the workers. Click the gear
icon on the top right corner of the canvas, and increase the number of workers (e.g.: 5)
and increase the JVM heap memory (-Xmx3072m).

Hortonworks DataFlow June 6, 2018

17

2.8.2. Deploy the App

After the app's deployment settings has been configured, click the Deploy button on the
lower right of the canvas. During the deployment process, Streaming Analytics Manager
completes the following tasks:

1. Construct the configurations for the different big data services used in the stream app.

2. Create a deployable jar of the streaming app.

3. Upload and deploy the app jar to streaming engine server.

The stream app is deployed to a Storm cluster based on the Storm Service defined in the
Environment associated with the app.

Hortonworks DataFlow June 6, 2018

18

After the application has been deployed successfully, Streaming Analytics Manager notifies
you and updates the status to Active, as shown in the following diagram.

Hortonworks DataFlow June 6, 2018

19

Hortonworks DataFlow June 6, 2018

20

3. Creating Visualizations Using Superset
A business analyst can create a wide array of visualizations to gather insights on streaming
data. The platform supports over 30+ visualizations the business analyst can create. For
visualization examples, see the Gallery of Superset Visualizations.

The general process for creating and viewing visualizations is as follows:

1. Whenever you add new data sources to Druid via a Stream App, perform the Refresh
Druid Metadata action on the Superset menu.

2. Using the Superset Stream Insight UI, create one or more "slices". A slice is one business
visualization associated with a data source (for example, Druid cube).

3. Using the Dashboard menu, add the slices to your dashboard and organize their layout.

Note

When a SAM app streams data to a new cube using the Druid processor, it
will take about 30 minutes for the cube to appear in Superset. This is because
Superset has to wait for the first segment to be created in Druid. After the cube
appears, users can analyze the streaming data immediately as it is streaming in.

3.1. Creating Insight Slices
The following steps demonstrate a typical flow for creating a slice:

1. Choose Slices on the Menu.

2. Click + to create a new Slice.

3. Select the Druid Data Source that you want to use for the new visualization:

4. Select a Chart Type from the menu.

The following example creates a "Sunburst" visualization of rolling up multiple
dimensions like route, eventType, and driver info..

Configure the chart and click Execute Query

https://superset.apache.org/gallery.html

Hortonworks DataFlow June 6, 2018

21

5. Another visualization could be integration with MapBox Here we are mapping where
violations are occurring the most based on the lat/long location of the event

6. To save the slice, specify a name and name and click Save.

3.2. Adding Insight Slices to a Dashboard
After you create slices, you can organize them into a dashboards:

https://www.mapbox.com/

Hortonworks DataFlow June 6, 2018

22

1. Click the Dashboard menu item.

2. Click + to create a new Dashboard.

3. Configure the dashboard: specify a name and the slices to include in the Dashboard.

4. Arrange the slices on the dashboard as desired, and then click Save.

3.2.1. Dashboards for the Trucking IOT App

The IOT Trucking application that we implemented using the Stream Builder streams
violation events, alerts, and predictions into three cubes:

• violation-events-cube

• alerts-speeding-drivers-cube

• alerts-violation-predictions-cube

Based on the powerful visualizations that SuperSet offers, you can create the following
powerful dashboards in minutes.

IoT Dashboard

Hortonworks DataFlow June 6, 2018

23

Alerts Dashboard

Hortonworks DataFlow June 6, 2018

24

Hortonworks DataFlow June 6, 2018

25

4. Adding Custom Builder Components
You can use the SAM SDK to add custom components to your SAM applications.

4.1. Adding Custom Processors
To add custom processors to SAM, create the processors and then register it with SAM.

1. Creating Custom Processors [25]

2. Registering Custom Processors with SAM [25]

3. Creating a Custom Streaming Application [26]

4.1.1. Creating Custom Processors

About This Task

Create a custom processor using the SDK, and package it into a jar file with all of its
dependencies.

Steps

1. Create a new maven project using this maven pom file as an example.

2. To implement a custom processor, implement the following interface:

org.apache.streamline.streams.runtime.CustomProcessorRuntime

3. Package the jar file with all dependencies, by running the following commands:

mvn clean package
mvn assembly:assembly

4. In the target directory you should have an uber jar that ends with jar-with-
dependencies.jar. You need this jar file when you register your custom processor
with SAM.

Example

The PhoenixEnrichmentProcessor is a good example of a new custom processor
implementation.

4.1.2. Registering Custom Processors with SAM

About This Task

You have to register each custom processor in SAM before you can use it for the first time.

Steps

1. From the left-hand SAM Global menu, hover over the Configuration menu, click
Application Resources, and then click the Custom Processor tab.

https://github.com/georgevetticaden/sam-custom-extensions/blob/master/pom.xml
https://github.com/georgevetticaden/sam-custom-extensions/tree/master/sam-custom-processor/src/main/java/hortonworks/hdf/sam/custom/processor/enrich/phoenix

Hortonworks DataFlow June 6, 2018

26

2. Click the + icon to add a new processor.

3. Enter details for the custom processor.

Result

It might take a few minutes to upload the jar file to the server. Do not navigate away until
you see a response. If you do not see a response, return to the Custom Processor page
again; do not click Save again.

4.1.3. Creating a Custom Streaming Application

About This Task

After you have registered your custom processor, create a new stream application.

Steps

1. From My Applications click the + icon and launch the Add Application dialog.

2. Find your new processor in the Processor Toolbar, drag it onto the canvas, and
configure it.

Result

When you double-click on your new custom processor, the configuration fields are exposed.
Notice that the configuration is based on the “Config Fields” settings specified during the
registration process.

4.2. Adding Custom Functions
User Defined Aggregate Functions (UDAF) allow you to add custom aggregate functions
to SAM. Once you create and register UADFs they are available for use in the Aggregate
processor.

User Defined Functions (UDFs) allow you to do simple transformations on event streams.
This is used in the Projection processor.

This section provides information on how to create, build, and upload these custom
functions.

1. Creating UDAFs [26]

2. Creating UDFs [28]

3. Registering Custom Processors with SAM [25]

4. Uploading Custom Functions to SAM [29]

4.2.1. Creating UDAFs

About This Task

Hortonworks DataFlow June 6, 2018

27

User Defined Aggregate Functions (UDAF) allow you to add custom aggregate functions
to SAM. Once you create and register UADFs they are available for use in the Aggregate
processor. Use these steps to create a new UADF.

Steps

1. Create a UADF by implement the following interface:

public interface UDAF<A, V, R> {
 A init();
 A add(A aggregate, V val);
 R result(A aggregate);
}

Where:

• A – Is the type of the aggregate that is used to aggregate the values. init returns the
initial value for the aggregate.

• V – is the type of the values we are processing. The add method is invoked with
the current aggregate and the value for each of the events in the window. add is
expected to aggregate the current value and return the updated aggregate.

• R – is the result type and the result function takes the final aggregated value and
returns the result.

2. For aggregate functions that requires two parameters, the UDAF2 interface also requires
implementation. The only difference is that the add function is passed the current value
of the aggregate and two values instead of one.

public interface UDAF2<A, V1, V2, R> {
 A init();
 A add(A aggregate, V1 val1, V2 val2);
 R result(A aggregate);
}

Example

In this example, you want to compute the average values of a particular field for events
within a window. To do that, define an average aggregate function by implementing the
UDAF interface as shown below:

// Here the aggregate is a pair that holds the running sum and the count of
 elements seen so far
// The values are integers and the result is a double.
public class MyAvg implements UDAF<Pair<Integer, Integer>, Integer, Double> {

// Here we initialize the aggregate and return its initial value (sum = 0 and
 count = 0).
@Override
public Pair<Integer, Integer> init() { return Pair.of(0, 0); }

// Here we update the sum and count values in the aggregate and return the
 updated aggregate
@Override
public Pair<Integer, Integer> add(Pair<Integer, Integer> agg, Integer val) {
 return Pair.of(agg.getKey() + val, agg.getValue() + 1);

Hortonworks DataFlow June 6, 2018

28

 }

// Here we return the value of the sum divided by the count which is the
 average of the aggregated values.
 @Override
 public Double result(Pair<Integer, Integer> agg) {
 return (double) agg.getKey() / agg.getValue();
 }
}

4.2.2. Creating UDFs

About This Task

User Defined Functions (UDFs) allow you to do simple transformations on event streams.
This is used in the Projection processor.

Steps

1. Create a UDF by implement the following interface:

public interface UDF<O, I> {
 O evaluate(I i);
}

Where:

• I – Is the input type.

• O – Is the output type.

• The evaluate method is invoked with the corresponding field value for each event in
the stream.

2. For functions that accept two or more parameters, the there are corresponding UDF
interfaces (UDF2 to UDF7).

public interface UDF2<O, I1, I2> {
 O evaluate(I1 input1, I2 input2);
}

Example 1

The ConvertToTimestampLong UDF is a good example of a new UDF implementation.

Example 2

In this example, you to concatenate the values of two fields of an event. To do this, define
a MyConcat function by implementing the UDF2 interface as shown below

pubic class MyConcat implements UDF2<String, String, String> {
 public String evaluate(String s1, String s2) {
 return s1.concat(s2);
 }
}

https://github.com/georgevetticaden/sam-custom-extensions/blob/master/sam-custom-udf/src/main/java/hortonworks/hdf/sam/custom/udf/time/ConvertToTimestampLong.java

Hortonworks DataFlow June 6, 2018

29

4.2.3. Building Custom Functions

About This Task

Once you have created a UDAF, create a new maven project and build the .jar files
to add to SAM. You can have multiple UDAFs in a single maven project. All of them are
bundled into a single jar which can be uploaded.

Steps

1. Create a new maven project and add streamline-sdk. A sample pom.xml file is
provided below.

2. Generate the UDAF .jar file by running:

mvn clean install

Result

The UDAF .jar file is created and you are ready to upload it to SAM.

Example pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/xsd/maven-4.0.0.xsd">
 <groupId>test</groupId>
 <version>0.1</version>
 <modelVersion>4.0.0</modelVersion>

 <artifactId>my-custom-functions</artifactId>

 <dependencies>
 <dependency>
 <groupId>com.hortonworks.streamline</groupId>
 <artifactId>streamline-sdk</artifactId>
 <version>0.1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
</project>

4.2.4. Uploading Custom Functions to SAM

About This Task

Once you have created and built the UDAF, upload it to SAM so that it is available in the
Aggregate processor.

Steps

1. From the left-hand menu, select Configuration, then Application Resources.

2. Click the UDF tab. You use the UDF tab to handle both UDFs and UDAFs.

Hortonworks DataFlow June 6, 2018

30

3. Click the Add icon to display the Add UDF.

4. Supply the following information, and click Ok.

• Name – This is the internal name of the UDAF. This needs to be unique and should not
conflict with any of the built in aggregate functions.

• Display Name – This is what gets displayed in the list of aggregate functions in the
Aggregate processor UI.

• Description – This can be any textual description of the function to assist the user.

• Type – This should be AGGREGATE for UDAFs, or FUNCTION for UDFs.

• Classname – This is the full qualified class name of the UDAF that gets packaged in the
Jar.

• UDF JAR – Browse and select the jar file that you built using the maven project.

Result

Your new UDF or UDAF displays in the list of available functions.

Hortonworks DataFlow June 6, 2018

31

5. Stream Operations
The Stream Operation view provides management of the stream applications, including the
following:

• Application life cycle management: start, stop, edit, delete

• Application performance metrics

• Troubleshooting, debugging

• Exporting and importing applications

5.1. My Applications View
Once a stream application has been deployed, the Stream Operations displays operational
views of the application.

One of these views is called My Application dashboard.

To access the application dashboard in SAM, click My Application tab (the hierarchy icon).
The dashboard displays all applications built using Streaming Analytics Manager.

Each stream application is represented by an application tile. Hovering over the application
tile displays status, metrics, and actions you can perform on the stream application.

5.2. Application Performance Monitoring
To view application performance metrics (APM) for the application, click the application
name on the application tile.

Hortonworks DataFlow June 6, 2018

32

The following diagram describes elements of the APM view.

5.3. Exporting and Importing Stream Applications
Service pool and environment abstractions combined with import and export capabilities
allow you to move a stream application from one environment to another.

To export a stream application, click the Export icon on the My Application dashboard. This
downloads a JSON file that represents your streaming application.

To import a stream application that was exported in JSON format:

1. Click on the + icon in My Applications View and select import application:

2. Select the JSON file that you want to import, provide a unique name for the application,
and specify which environment to use.

Hortonworks DataFlow June 6, 2018

33

5.4. Troubleshooting and Debugging a Stream
Application

Once we have deployed the streaming app, common actions performed by users such as
DevOps, Developers, and Operations teams are the following:

• Monitoring the Application and troubleshooting and identifying performance issues

• Troubleshooting an application through Log Search

• Troubleshooting an application through Sampling

SAM makes performing these tasks easier by using the same visual approach as users have
when developing the application. We will walk through these common use cases in the
below sections.

5.4.1. Monitoring SAM Apps and Identifying Performance
Issues

After deploying SAM and running the test generator for about 30 mins, your Storm
Operation Mode of the app renders important metrics within each component on the
canvas like below.

Hortonworks DataFlow June 6, 2018

34

You can click on Show Metrics to get more details on the metrics and drill down on
individual metrics. Note the detailed level metrics for All Components, TruckGeoEvent
Kafka source, and Dashboard-Predictions Druid Sink.

Hortonworks DataFlow June 6, 2018

35

Key metrics include the following:

Metric Name Description

Execute Latency The average time it takes an event to be processed by a
given component

Process Latency The average time it takes an event to be acked. Bolts
that join, aggregate or batch may not Ack a tuple until a
number of other Tuples have been received

Complete Latency How much time an event from source takes to be fully
processed and acked by the topology. This metrics is only
available for sources (e.g.: Kafka Source)

Emitted The number of events emitted for the given time period.
For example, for a Kafka Source, it is the number of events
consumed for the given time period

Acked The number of events acked for the given time period. For
example, for a Kafka Source, it is the number of events
consumed and then acked.

Hortonworks DataFlow June 6, 2018

36

5.4.1.1. Identifying Throughput Bottlenecks

Looking through the metrics the Source and Sink metrics, we want to increase the
throughput such that we emit/consume more events from the Kafka Topic and send more
events to Druid sink over time. We make some changes to the app to increase throughput.

Increase the parallelism of TruckGeoEvent (kafka topic: truck_events_avro) and
TruckSpeedEvent (kafka topic: truck_speed_events_avro) from 1 to 3. Note that each of
these kafka topics have three partitions.

Increase the parallelism of the Join from 1 to 3. Since the join is grouped by driverId, we can
configure the connection to use fields grouping to send all events with driverId to the same
instance of the Join.

Increase the parallelism of the DriverAvgSpeed aggregate window from 1 to 3. Since the
window groups by driverId,driverName and route, we can configure the connection to
use fields grouping to send all events with those field values to the same instance of the
window.

Increase the parallelism of the Dashboard-Predictions Druid sink from 1 to 3 so we can have
multiple JVM instances of Druid writing to the cube.

Hortonworks DataFlow June 6, 2018

37

After making these changes, we re-deploy the app using SAM and run the data generator
for about 15 minutes and view seeing the following metrics.

SAM’s overview and detailed metrics makes it very easy to verify if the performance
changes we made had the desired effect.

5.4.1.2. Throughput Improvements for the Kafka Source

The below is the before and after metrics for the TruckGeoEvent Kafka Sink:

Hortonworks DataFlow June 6, 2018

38

The below is the before and after metrics for the Dashboard-Predictions Druid Sink:

5.4.2. Identifying Processor Performance Bottlenecks

In this scenario, we identify a custom processor that has high latency. After running the
data simulator for 30 mins, we view the Overview Metrics of the topology.

Hortonworks DataFlow June 6, 2018

39

Scanning over the metrics, we see that the NORMALIZE-MODEL-FEATURES custom
processor has high execute latency of 2 seconds. This means that over the last 30 minutes
the average time an event spends in this component is 2 seconds.

After making changes to the custom processor to address the latench, we re-deploy
the app via SAM and run the data generator for about 15 minutes and view seeing the
following metrics.

SAM’s overview and detailed metrics makes it very easy to verify if the performance
changes we made had the desired effect.

5.4.2.1. Latency Improvements

The below is the before and after metrics for the NORMALIZE-MODEL-FEATURES custom
processor.

Hortonworks DataFlow June 6, 2018

40

In the metric details view, the graphs provides an easy way to compare metrics before and
after the code change.

Hortonworks DataFlow June 6, 2018

41

Hortonworks DataFlow June 6, 2018

42

You can also select the Metrics tab to validate the performance improvement.

Hortonworks DataFlow June 6, 2018

43

If you zoom in on the NORMALIZE-MODEL-FEATURES component, you will see that after
the code change is made, throughput increases and the wait drops to 0.

5.4.3. Debugging an Application through Distributed Log
Search

About This Task

In a distributed system, searching for logs on different hosts for different components can
be extremely tedious and time consuming. With SAM, all the application logs are indexed
via the Ambari Log Search Server via Solr. SAM makes it easy to drill into and search for
logs for specific components directly from the DAG view. Follow the below steps to use
distributed log search:

Hortonworks DataFlow June 6, 2018

44

Steps

1. To enable Log Search in SAM, perform the following actions in Ambari.

a. In Ambari, select the Log Search service and select ‘Log Search UI’ from Quick Links

b. Select the filter icon on the top right menu

c. For the storm_worker component, configure the filter like the following and click
Save.

2. In SAM, you can dynamically change the logging level. For example, in SAM view mode
of an application, click on the Log link, select the log level and the duration you want
that log level.

3. Then click on the component you want to search logs for and under Actions select Logs.

4. This brings you to the Log Search page where you can search by component (s), log
level(s) and search for strings using wildcard notation.

Hortonworks DataFlow June 6, 2018

45

5.4.4. Debugging an Application through Sampling

About This Task

For troubleshooting, a convenient tool is to turn on sampling for a component or for the
entire topology based on a sample percentage. Sampling allows you to log the emitted
values of a component in the SAM App.

Steps

1. To enable Log Search in SAM, perform the following actions in Ambari.

a. In Ambari, select the Log Search service and select ‘Log Search UI’ from Quick Links

b. Select the filter icon on the top right menu

c. For the storm_worker_event component, configure the filter like the following and
click Save.

Hortonworks DataFlow June 6, 2018

46

2. In SAM view mode of the App, click on the component you want to turn on sampling for
and enter a sampling percentage.

3. Click the ‘SAMPLE’ Tab .

4. Use the Sample Search UI to search for different events that were logged.

Hortonworks DataFlow June 6, 2018

47

6. Source, Processor, and Sink
Configuration Values

As you build your streaming applications, use this reference material to help configure the
source, processor, and sink Stream Builder components.

• Source Configuration Values [47]

• Processor Configuration Values [50]

• Sink Configuration Values [51]

6.1. Source Configuration Values
Table 6.1. Kafka

Configuration Field Description, requirements, tips for configuration

Cluster Name Mandatory. Service pool defined in SAM to get metadata
information about Kafka cluster

Security Protocol Mandatory. Protocol to be used to communicate with
kafka brokers. E.g. PLAINTEXT. Auto suggest with a list
of protocols supported by Kafka service based on cluster
name selected. If you select a protocol with SSL or SASL
make sure to fill out the related config fields

Bootstrap Servers Mandatory. A comma separated string of host:port
representing Kafka broker listeners. Auto suggest with a
list of options based on security protocol selected above

Kafka topic Mandatory. Kafka topic to read data from. Make sure
that corresponding schema for topic is defined in Schema
Registry

Consumer Group Id Mandatory. A unique string that identifies the consumer
group it belongs to. Used to keep track of consumer
offsets

Reader schema version Optional. Version of schema for topic to read from.
Default value is the version used by producer to write data
to topic

Kerberos client principal Optional(Mandatory for SASL). Client principal to use to
connect to brokers while using SASL GSSAPI mechanism
for Kerberos(used in case of security protocol being
SASL_PLAINTEXT or SASL_SSL)

Kerberos keytab file Optional(Mandatory for SASL). Keytab file location on
worker node containing the secret key for client principal
while using SASL GSSAPI mechanism for Kerberos(used
in case of security protocol being SASL_PLAINTEXT or
SASL_SSL)

Kafka service name Optional(Mandatory for SASL). Service name that Kafka
broker is running as(used in case of security protocol being
SASL_PLAINTEXT or SASL_SSL)

Fetch minimum bytes Optional. The minimum number of bytes the broker
should return for a fetch request. Default value is 1

Maximum fetch bytes per partition Optional. The maximum amount of data per-partition the
broker will return. Default value is 1048576

Maximum records per poll Optional. The maximum number of records a poll will
return. Default value is 500

Hortonworks DataFlow June 6, 2018

48

Poll timeout(ms) Optional. Time in milliseconds spent waiting in poll if data
is not available. Default value is 200

Offset commit period(ms) Optional. Period in milliseconds at which offsets are
committed. Default value is 30000

Maximum uncommitted offsets Optional.Defines the max number of polled records that
can be pending commit, before another poll can take
place. Default value is 10000000. This value should depend
on the size of each message in Kafka and the memory
available to the worker jvm process

First poll offset strategy Optional. Offset used by the Kafka spout in the first
poll to Kafka broker. Pick one from enum values.
["EARLIEST", "LATEST", "UNCOMMITTED_EARLIEST",
"UNCOMMITTED_LATEST"]. Default value is
EARLIEST_UNCOMMITTED. It means that by default it
will start from the earliest uncommitted offset for the
consumer group id provided above

Partition refresh period(ms) Optional. Period in milliseconds at which Kafka will be
polled for new topics and/or partitions. Default value is
2000

Emit null tuples? Optional. A flag to indicate if null tuples should be emitted
to downstream components or not. Default value is false

First retry delay(ms) Optional. Interval delay in milliseconds for first retry for a
failed Kafka spout message. Default value is 0

Retry delay period(ms) Optional. Retry delay period(geometric progression) in
milliseconds for second and subsequent retries for a failed
Kafka spout message. Default value is 2

Maximum retries Optional. Maximum number of times a failed message is
retried before it is acked and committed. Default value is
2147483647

Maximum retry delay(ms) Optional. Maximum interval in milliseconds to wait before
successive retries for a failed Kafka spout message. Default
value is 10000

Consumer startup delay(ms) Optional. Delay in milliseconds after which Kafka will be
polled for records. This value is to make sure all executors
come up before first poll from each executor happens so
that partitions are well balanced among executors and
onPartitionsRevoked and onPartitionsAssigned is not
called later causing duplicate tuples to be emitted. Default
value is 60000

SSL keystore location Optional. The location of the key store file. Used when
Kafka client connectivity is over SSL

SSL keystore location Optional. The store password for the key store file

SSL key password Optional. The password of the private key in the key store
file

SSL truststore location Optional(Mandatory for SSL). The location of the trust
store file

SSL truststore password Optional(Mandatory for SSL). The password for the trust
store file

SSL enabled protocols Optional. Comma separated list of protocols enabled for
SSL connections

SSL keystore type Optional. File format of keystore file. Default value is JKS

SSL truststore type Optional. File format of truststore file. Default value is JKS

SSL protocol Optional. SSL protocol used to generate SSLContext.
Default value is TLS

SSL provider Optional. Security provider used for SSL connections.
Default value is default security provider for JVM

Hortonworks DataFlow June 6, 2018

49

SSL cipher suites Optional. Comma separated list of cipher suites. This is
a named combination of authentication, encryption,
MAC and key exchange algorithm used to negotiate the
security settings for a network connection using TLS or SSL
network protocol. By default all the available cipher suites
are supported

SSL endpoint identification algorithm Optional. The endpoint identification algorithm to validate
server hostname using server certificate

SSL key manager algorithm Optional. The algorithm used by key manager factory for
SSL connections. Default value is SunX509

SSL secure random implementation Optional. The SecureRandom PRNG implementation to use
for SSL cryptographic operations

SSL trust manager algorithm Optional. The algorithm used by trust manager factory for
SSL connections. Default value is the trust manager factory
algorithm configured for the Java Virtual Machine. Default
value is PKIX

Table 6.2. Event Hubs

Configuration Field Description, requirements, tips for configuration

Username The Event Hubs user name (policy name in Event Hubs
Portal)

Password The Event Hubs password (shared access key in Event Hubs
Portal)

Namespace The Event Hubs namespace

Entity Path The Event Hubs entity path

Partition Count The number of partitions in the Event Hubs

ZooKeeper Connection String The ZooKeeper connection string

Checkpoint Interval The frequency at which offsets are checkpointed

Receiver Credits Receiver credits

Max Pending Messages Per Partition The max pending messages per partition

Enqueue Time Filter The enqueue time filter

Consumer Group Name The consumer group name

Table 6.3. HDFS

Configuration Field Description, requirements, tips for configuration

Cluster Name Service pool defined in SAM to get metadata information
about HDFS cluster

HDFS URL HDFS namenode URL

Input File Format The format of the file being consumed dictates the
type of reader used to read the file. Currently only
‘com.hortonworks.streamline.streams.runtime.storm.spout.JsonFileReader’
is supported

Source Dir The HDFS directory from which to read the files.

Archive Dir Files from source dir will be moved to this HDFS location
after being completely read.

Bad Files Dir Files from Source Dir will be moved to this HDFS location if
there is an error encountered while processing them.

Lock Dir Lock files (used to synchronize multiple reader instances)
will be created in this location. Defaults to a '.lock'
subdirectory under the source directory.

Commit Frequency Count Records progress in the lock file after specified number of
records are processed. Setting it to 0 disables this.

Hortonworks DataFlow June 6, 2018

50

Commit Frequency Secs Records progress in the lock file after specified secs have
elapsed. Must be greater than 0.

Max Outstanding Limits the number of unACKed tuples by pausing tuple
generation (if ACKers are used in the topology).

Lock Timeout Seconds Duration of inactivity after which a lock file is considered
to be abandoned and ready for another spout to take
ownership.

Ignore Suffix File names with this suffix in the source dir will not be
processed.

6.2. Processor Configuration Values
Table 6.4. Aggregate

Configuration Field Description, requirements, tips for configuration

General Processor description Performs aggregate operations on a stream of events
within a window.

Select Keys These are the keys to “group by” for computing the
aggregate.

Window Interval Type Time - for time based windows.

Count - for count based windows.

Window Interval The length or duration of the window

Sliding Interval The interval at which the window slides

Timestamp Field A field in the event that represents the event timestamp as
a long value. If specified the timestamp at which the event
occurred will be used for the window computations.

Output Fields -- Input The field on which to apply aggregate function

Output Fields -- Aggregate Function The aggregate function to apply

Output Fields -- Output The output field name

Table 6.5. Branch

Configuration Field Description, requirements, tips for configuration

General processor description Conditionally redirects tuples from one incoming stream to
one or more outbound streams.

Process all checkbox If disabled, stops processing further rules after a rule
evaluates successfully.

Rule Name Rule name. Must be unique within the Branch processor.

Rule Description Description of rule

Field Name Field name used in the condition for the rule

Rule Operation The comparison operator for the condition

Table 6.6. Join

Configuration Field Description, requirements, tips for configuration

General Processor Description Joins one or more event streams into one output stream,
based on user defined join criteria

Select Stream Name of stream to join

Select Field Name of field to use for join

Window Interval Type Determines the type of windowing (count/time based) to
use for buffering streams to be joined

Window Interval The window size.

Hortonworks DataFlow June 6, 2018

51

Sliding Interval The interval between the start of two consecutive
windows

Output Fields Select which of the fields to include in the resulting event

Table 6.7. PMML

Configuration Field Description, requirements, tips for configuration

General Processor Description Allows users to score tuples according to a choice of
PMML model registered in the model registry. The scored
results are put in the predicted fields as defined in the
PMML XML descriptor file. Predicted fields are available to
send downstream, in addition to input fields

Model Name Name of the PPML model in model registry to use

Table 6.8. Projection Bolt

Configuration Field Description, requirements, tips for configuration

General Processor Description This allows user to choose specific fields from the
input events to be passed to output event and apply a
transformation using UDF on chosen fields and add result
as a field in the output event.

Projection Fields Input event fields to be projected into output event.

Function UDF to be applied on the given input fields and output is
added as a new field in the output event.

Arguments Field names to be passed as arguments to the chosen
function

Fields Name Name of the inu

Plus icon Add a new transformation

Table 6.9. Rule

Configuration Field Description, requirements, tips for configuration

General Processor Description Design time definition of a rule whose scope is the input
fields. The condition of the rule is defined in the Create
Query section. Only runtime values whose rule condition
evaluates to true will be sent downstream.

Rule Name Name of the rule. It must be unique only within a Rule
processor. Can be reused across rule processors.

Description Documentation detailing the purpose of the rule. For user
reference only.

Create Query The condition of the rule is a composition of boolean
expressions built with operators on input fields. These
boolean expressions are parsed as SQL like query.

6.3. Sink Configuration Values
Table 6.10. Cassandra

Configuration Field Description, requirements, tips for configuration

General Sink Description This allows users to send events into given cassandra table.

Table Name Name of the table into which events should be written to.

Column Name Column name to which a respective field is mapped.

Field Name Field name to be mapped as respective column name.

Cassandra Configurations- User Name User name to connect to Cassandra cluster.

Hortonworks DataFlow June 6, 2018

52

Password Password to connect to Cassandra cluster.

Keyspace Keyspace in which table exists

Nodes Cassandra nodes configuration to be passed

Port Port number for Cassandra cluster

Row Batch Size Maximum number of rows to be taken in a batch

Retry Policy Class name of the retry policy to be applied.
Default value is “DefaultRetryPolicy”. Valid
options are "DowngradingConsistencyRetryPolicy",
"FallthroughRetryPolicy" and "DefaultRetryPolicy"

Consistency Level Consistency level at which data is inserted. Default value is:
QUORUM, valid values are ["ANY", "ONE", "TWO", "THREE",
"QUORUM", "ALL", "LOCAL_QUORUM", "EACH_QUORUM",
"SERIAL", "LOCAL_SERIAL", "LOCAL_ONE"]

Reconnection Base Delay Base delay (in milliseconds) while reconnecting to target.

Reconnection Maximum Delay Maximum delay (in milliseconds) while reconnecting to
target.

Table 6.11. Druid

Configuration Field Description, requirements, tips for configuration

General Sink Description Druid sink is used to push data Druid data store. This sink
uses Druid’s Tranquility library to push data. More details :
http://druid.io/docs/latest/ingestion/stream-push.html

Name of the Indexing Service The druid.service name of the indexing service overlord
node.

It is mandatory parameter.

Service Discovery path Curator service discovery path. It is mandatory parameter.

ZooKeeper Connect String ZooKeeper connect string. It is mandatory parameter.

Datasource name The name of the ingested data source. Datasources can be
thought of as tables. It is mandatory parameter.

Dimensions Specifies the dimensions(columns) of the data. It is
mandatory parameter.

TimeStamp Field Name Specifies the column and format of the timestamp.It is
mandatory parameter.

Window Period Window Period takes ISO 8601 Period format (https://
en.wikipedia.org/wiki/ISO_8601). It is mandatory
parameter.

Index Retry Period If an indexing service overlord call fails for some
apparently-transient reason, retry for this long before
giving up. It takes ISO 8601 Period format (https://
en.wikipedia.org/wiki/ISO_8601). It is mandatory
parameter.

Segment Granularity The granularity to create segments.

Query Granularity The minimum granularity to be able to query results at
and the granularity of the data inside the segment.

Batch Size Maximum number of messages to send at once

Max Pending Batches Maximum number of batches that may be in flight

Linger millis Wait this long for batches to collect more messages (up to
maxBatchSize) before sending them.

Block On Full Whether send will block (true) or throw an exception
(false) when called while the outgoing queue is full

Druid partitions Number of Druid partitions to create.

Partition Replication Number of instances of each Druid partition to create.

http://druid.io/docs/latest/ingestion/stream-push.html
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

Hortonworks DataFlow June 6, 2018

53

Aggregator Info A list of aggregators. Currently we support Count
Aggregator, Double Sum Aggregator, Double Max
Aggregator, Double Min Aggregator, Long Sum
Aggregator, Long Max Aggregator, Long Min
Aggregators.

Table 6.12. Hive

Configuration Field Description, requirements, tips for configuration

General Sink Description Hive sink is used to write data to Hive tables

Metastore URI URI of the metastore to connect to e.g.: thrift://
localhost:9083

Database Name Name of the Hive database

Table name Name of table to stream to

Fields The event fields to stream to hive

Partition fields The event fields on which to partition the data

Flush Interval The interval (in seconds) at which a transaction batch is
committed

Transactions per batch The number of transactions per batch

Max open connections The maximum number of open connections to Hive

Batch size The number of events per batch

Idle timeout The idle timeout

Call timeout The call timeout

Heartbeat Interval The heart beat interval

Auto create partitions If true, the partition specified in the endpoint will be auto
created if it does not exist

Kerberos keytab Kerberos keytab file path

Kerberos principal Kerberos principal name

Table 6.13. HBase

Configuration Field Description, requirements, tips for configuration

General Sink Description Writes to events to HBase

HBase table Hbase table to write to

Column Family Hbase table column family

Batch Size Number of records in the batch to trigger flushing. Note
that every batch needs to be full before it can be flushed
as tick tuple is not supported currently due to the fact that
all bolts in topology receive a tick tuple if enabled

Row Key Field Field to be used as row key for table

Table 6.14. HDFS

Configuration Field Description, requirements, tips for configuration

General Sink Description Writes events to HDFS

Hdfs URL Hdfs Namenode URL

Path Directory to which the files will be written

Flush Count Number of records to wait for before flushing to Hdfs

Rotation Policy Strategy to rotate files in Hdfs

Rotation Interval Multiplier Rotation interval multiplier for timed rotation policy

Rotation Interval Unit Rotation interval unit for timed rotation policy

Output fields Specify the output fields, in the desired order

Hortonworks DataFlow June 6, 2018

54

Prefix Prefix for default file name format

Extension Extension for default file name format

Table 6.15. JDBC

Configuration Field Description, requirements, tips for configuration

General Sink Description Writes events to a database using JDBC.

Driver Class Name The driver class name. E.g. com.mysql.jdbc.Driver

JDBC URL JDBC Url, E.g. jdbc:mysql://localhost:3306/test

User Name Database username.

Password Database password.

Table Name Table to write to.

Column Names Names of the database columns

Table 6.16. Kafka

Configuration Field Description, requirements, tips for configuration

General Sink Description Kafka sink to write SAM events to a kafka topic

Cluster Name Mandatory. Service pool defined in SAM to get metadata
information about Kafka cluster

Kafka Topic Mandatory. Kafka topic to write data to. Make sure that
the schema for the corresponding topic exists in SR. The
incoming SAM event into Kafka sink should adhere to the
version of schema selected

Security Protocol Mandatory. Protocol to be used to communicate with
kafka brokers. E.g. PLAINTEXT. Auto suggest with a list
of protocols supported by Kafka service based on cluster
name selected. If you select a protocol with SSL or SASL
make sure to fill out the related config fields

Bootstrap Servers Mandatory. A comma separated string of host:port
representing Kafka broker listeners. Auto suggest with a
list of options based on security protocol selected above

Fire And Forget? Optional. A flag to indicate if kafka producer should wait
for ack or not. Default value is false

Async? Optional. A flag to indicate whether to use async kafka
producer or not. Default value is true

Key serializer Optional. Type of key serializer to use. Options are
["String", "Integer", "Long", "ByteArray"]. Default value is
ByteArray. Note that this field does not save any key in the
kafka message. Incoming SAM event is stored as value in
Kafka message with key being null

Key field Optional. Name of the key field. One of the fields from
incoming event schema

Writer schema version Optional. Version of schema for topic to use for serializing
the message. Default is the latest version for the schema

Ack mode Optional. Ack mode used in producer request for a record
sent to server(None|Leader|Min in-sync replicas). Options
are [“None”, “Leader”, “All”]. Default value is “Leader”

Buffer memory Optional. The total bytes of memory the producer can use
to buffer records waiting to be sent to the server. Default
value is 33554432

Compression type Optional. The compression type for all data generated by
the producer. Options are ["none", "gzip", "snappy", "lz4"].
Default value is “none”

Hortonworks DataFlow June 6, 2018

55

Retries Optional. Number of retry attempts for a record send
failure. Default value is 0

Batch size Optional. Producer batch size in bytes for records sent to
same partition. Default value is 16384

Client id Optional. Id sent to server in producer request for tracking
in server logs

Max connection idle Optional. Time in milliseconds for which connections can
be idle before getting closed. Default value is 540000

Linger time Optional. Time in milliseconds to wait before sending a
record out when batch is not full. Default value is 0

Max block Optional. Time in milliseconds that send and partitionsFor
methods will block for. Default value is 60000

Max request size Optional. Maximum size of a request in bytes. Default
value is 1048576

Receive buffer size Optional. Size in bytes of TCP receive buffer (SO_RCVBUF)
to use when reading data. Default value is 32768

Request timeout Optional. Maximum amount of time in milliseconds the
producer will wait for the response of a request. Default
value is 30000

Kerberos client principal Optional(Mandatory for SASL). Client principal to use to
connect to brokers while using SASL GSSAPI mechanism
for Kerberos(used in case of security protocol being
SASL_PLAINTEXT or SASL_SSL)

Kerberos keytab file Optional(Mandatory for SASL). Keytab file location on
worker node containing the secret key for client principal
while using SASL GSSAPI mechanism for Kerberos(used
in case of security protocol being SASL_PLAINTEXT or
SASL_SSL)

Kafka service name Optional(Mandatory for SASL). Service name that Kafka
broker is running as(used in case of security protocol being
SASL_PLAINTEXT or SASL_SSL)

Send buffer size Optional. Size in bytes of TCP send buffer (SO_SNDBUF) to
use when sending data. Default value is 131072

Timeout Optional. Maximum amount of time in milliseconds server
will wait for acks from followers. Default value is 30000

Block on buffer full? Optional. Boolean to indicate whether to block on a full
buffer or throw an exception.Default value is true

Max in-flight requests Optional. Maximum number of unacknowledged requests
producer will send per connection before blocking.
Default value is 5

Metadata fetch timeout Optional. Timeout in milliseconds for a topic metadata
fetch request. Default value is 60000

Metadata max age Optional. Time in milliseconds after which a metadata
fetch request is forced. Default value is 300000

Reconnect backoff Optional. Amount of time in milliseconds to wait before
attempting to reconnect to a host. Default value is 50

Retry backoff Optional. Amount of time in milliseconds to wait before
attempting to retry a failed fetch request. Default value is
100

SSL keystore location Optional. The location of the key store file. Used when
Kafka client connectivity is over SSL

SSL keystore location Optional. The store password for the key store file

SSL key password Optional. The password of the private key in the key store
file

SSL truststore location Optional(Mandatory for SSL). The location of the trust
store file

Hortonworks DataFlow June 6, 2018

56

SSL truststore password Optional(Mandatory for SSL). The password for the trust
store file

SSL enabled protocols Optional. Comma separated list of protocols enabled for
SSL connections

SSL keystore type Optional. File format of keystore file. Default value is JKS

SSL truststore type Optional. File format of truststore file. Default value is JKS

SSL protocol Optional. SSL protocol used to generate SSLContext.
Default value is TLS

SSL provider Optional. Security provider used for SSL connections.
Default value is default security provider for JVM

SSL cipher suites Optional. Comma separated list of cipher suites. This is
a named combination of authentication, encryption,
MAC and key exchange algorithm used to negotiate the
security settings for a network connection using TLS or SSL
network protocol. By default all the available cipher suites
are supported

SSL endpoint identification algorithm Optional. The endpoint identification algorithm to validate
server hostname using server certificate

SSL key manager algorithm Optional. The algorithm used by key manager factory for
SSL connections. Default value is SunX509

SSL secure random implementation Optional. The SecureRandom PRNG implementation to use
for SSL cryptographic operations

SSL trust manager algorithm Optional. The algorithm used by trust manager factory for
SSL connections. Default value is the trust manager factory
algorithm configured for the Java Virtual Machine. Default
value is PKIX

Table 6.17. Notification

Configuration Field Description, requirements, tips for configuration

General Sink Description Can be used to send out notifications (currently supports
email)

Username The username for the mail server

Password The password for the mail server

Host Mail server host name

Port Mail server port

SSL? If the connection should be over SSL

Start TLS Flag to indicate the TLS setting

Debug? Whether to log debug messages

Email Server Protocol The email server protocol. E.g. smtp

Authenticate Flag to indicate if authentication is to be performed

Table 6.18. Open TSDB

Configuration Field Description, requirements, tips for configuration

General Sink Description Sink to which events can be written given OpenTSDB
cluster.

REST API URL The URL of the REST API (ex: http://localhost:4242)

Metric Field Name Field name of the metric

Timestamp Field Name Field name of the timestamp

Tags Field Name Field name of tags.

Value Field Name Field name of the value

Fail Tuple for Failed Metrics? Whether to fail tuple for any failed metrics to OpenTSDB

Hortonworks DataFlow June 6, 2018

57

Sync? Flag to indicate whether to sync or not.

Sync Timeout Sync timeout in (milliseconds), this is taken into account
only when Sync is true.

Return Summary? Whether to return summary or not

Return Details? Whether to return details or not.

Enable Chunked Encoding? Whether to enable chunked encoding or not for REST API
calls to OpenTSDB

Table 6.19. Solr

Configuration Field Description, requirements, tips for configuration

General Sink Description Enables indexing of live input data into Apache Solr
collections

Apache Solr ZooKeeper Host String Info about the zookeeper ensemble used
to coordinate the Solr cluster. This string is
specified in a comma separated value as follows:
zk1.host.com:2181,zk2.host.com:2181,zk3.example.com:2181

Apache Solr Collection Name The name of the Apache Solr collection where to index live
data

Commit Batch Size Defines how often the indexed data is committed into
Apache Solr. It is specified using an integral number. For
instance, if set to 100, every 100 tuples Apache Solr will
commit the data

	Hortonworks DataFlow
	Table of Contents
	1. Streaming Analytics Manager Environment Setup and Managing Stream Apps
	1.1. Managing Service Pools
	1.1.1. Adding a New Service Pool
	1.1.2. Updating Service Pools

	1.2. Managing Environments
	1.2.1. Create New Environment
	1.2.2. Editing Environments

	1.3. Deleting Environments

	2. Building an Application
	2.1. Launch the Stream Builder UI
	2.2. Add a New Stream Application
	2.3. Add a Source
	2.4. Connect Components
	2.5. Join Multiple Streams
	2.6. Filter Events in a Stream
	2.7. Use Aggregate Functions over Windows
	2.8. Deploying a Stream App
	2.8.1. Configure Deployment Settings
	2.8.2. Deploy the App

	3. Creating Visualizations Using Superset
	3.1. Creating Insight Slices
	3.2. Adding Insight Slices to a Dashboard
	3.2.1. Dashboards for the Trucking IOT App

	4. Adding Custom Builder Components
	4.1. Adding Custom Processors
	4.1.1. Creating Custom Processors
	4.1.2. Registering Custom Processors with SAM
	4.1.3. Creating a Custom Streaming Application

	4.2. Adding Custom Functions
	4.2.1. Creating UDAFs
	4.2.2. Creating UDFs
	4.2.3. Building Custom Functions
	4.2.4. Uploading Custom Functions to SAM

	5. Stream Operations
	5.1. My Applications View
	5.2. Application Performance Monitoring
	5.3. Exporting and Importing Stream Applications
	5.4. Troubleshooting and Debugging a Stream Application
	5.4.1. Monitoring SAM Apps and Identifying Performance Issues
	5.4.1.1. Identifying Throughput Bottlenecks
	5.4.1.2. Throughput Improvements for the Kafka Source

	5.4.2. Identifying Processor Performance Bottlenecks
	5.4.2.1. Latency Improvements

	5.4.3. Debugging an Application through Distributed Log Search
	5.4.4. Debugging an Application through Sampling

	6. Source, Processor, and Sink Configuration Values
	6.1. Source Configuration Values
	6.2. Processor Configuration Values
	6.3. Sink Configuration Values

