
Configuring Fault Tolerance 3

Configuring Fault Tolerance
Date of Publish: 2018-12-11

http://docs.hortonworks.com

http://docs.hortonworks.com

Configuring Fault Tolerance | Contents | ii

Contents

Configuring Fault Tolerance... 4

High Availability on Non-Ambari Clusters... 4
Configuring High Availability for the Hive Metastore... 4

Use Cases and Failover Scenarios... 4
Software Configuration...5

Deploying Multiple HiveServer2 Instances for High Availability.. 6
Adding an Additional HiveServer2 to Your Cluster Manually... 7
Adding an Additional HiveServer2 to a Cluster with Ambari.. 8

Configuring HiveServer2 High Availability Using ZooKeeper.. 9
How ZooKeeper Manages HiveServer2 Requests... 9
Dynamic Service Discovery Through ZooKeeper... 10
Rolling Upgrade for HiveServer2 Through ZooKeeper.. 12

Configuring High Availability for HBase..12
Introduction to HBase High Availability... 13
Propagating Writes to Region Replicas... 15
Timeline Consistency..17
Configuring HA Reads for HBase... 18
Creating Highly Available HBase Tables with the HBase Java API.. 21
Creating Highly Available HBase Tables with the HBase Shell...21
Querying Secondary Regions... 21
Monitoring Secondary Region Replicas...22
HBase Cluster Replication for Geographic Data Distribution...23

Configuring NameNode High Availability.. 33
NameNode Architecture... 34
Preparing the Hardware Resources for NameNode High Availability.. 35
Deploying the NameNode HA Cluster.. 35
Operating a NameNode HA cluster... 43
Configuring and Deploying NameNode Automatic Failover.. 44
Administrative Commands... 47

Configuring ResourceManager High Availability... 48
Preparing the Hardware Resources.. 48
Deploying ResourceManager HA Cluster..48

Configuring Apache Ranger High Availability... 56
Configuring Ranger Admin HA...56

Data Protection... 72
Preventing Accidental Deletion of Files.. 72
Backing Up HDFS Metadata... 74

Introduction to HDFS Metadata Files and Directories.. 74
Back Up HDFS Metadata...80

Using HDFS snapshots for data protection... 81
Considerations for working with HDFS snapshots..81
Enable snapshot creation on a directory.. 82
Create snapshots on a directory... 82
Recover data from a snapshot..83
Options to determine differences between contents of snapshots..83

Configuring Fault Tolerance | Contents | iii

Snapshot operations.. 84

Configuring Fault Tolerance Configuring Fault Tolerance

Configuring Fault Tolerance

You can configure fault tolerance in Hortonworks Data Platform using Ambari and also on non-Ambari clusters.

You can configure fault tolerance in Hortonworks Data Platform in the following ways:

• Configure high availability using Apache Ambari - Use the Ambari's wizard-driven interface to configure high
availability of the components.

• Configure high availability on non-Ambari clusters - You can configure HA on Hive Metastore, HiveServer2
instances, HBase, and NameNodes on HDFS. You can also configure HA for Resource Manager on YARN and
Apache Ranger.

• Protect HDFS data and metadata - You can configure accidental deletion of files and use HDFS snapshots for data
protection.

Apache Ambari High Availability

Ambari web provides a wizard-driven user experience that enables you to configure high availability of the
components in many Hortonworks Data Platform (HDP) stack services. High availability is assured through
establishing primary and secondary components. In the event that the primary component fails or becomes
unavailable, the secondary component is available. After configuring high availability for a service, Ambari enables
you to manage and disable (roll back) high availability of components in that service.

See the Ambari documentation for more information about configuring High Availability using Ambari.

High Availability on Non-Ambari Clusters

Configuring High Availability (HA) on your cluster is essential for avoiding instances of service failures or cluster
downtimes.

Configuring High Availability for the Hive Metastore
Configuring and deploying the Hive Metastore service in High Availability mode can address instances of service
failure.

Important:

The relational database that backs the Hive Metastore itself should also be made highly available using best
practices defined for the database system in use.

Use Cases and Failover Scenarios
Deploying the Metastore service in High Availability (HA) mode can help in handling service failures. You should
deploy the Metastore service on multiple systems concurrently.

Use Cases

The Metastore HA solution is designed to handle Metastore service failures. Whenever a deployed Metastore service
goes down, Metastore service can remain unavailable for a considerable time until service is brought back up. To
avoid such outages, deploy the Metastore service in HA mode.

Deployment Scenarios

4

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Hortonworks recommends deploying the Metastore service on multiple systems concurrently. Each Hive Metastore
client will read the configuration property hive.metastore.uris to get a list of Metastore servers with which it can try to
communicate.

<property>
 <name> hive.metastore.uris </name>
 <value> thrift://$Hive_Metastore_Server_Host_Machine_FQDN </value>
 <description> A comma separated list of Metastore uris on which Metastore
 service is running </description>
</property>

Note that the relational database that backs the Hive Metastore itself should also be made highly available using the
best practices defined for the database system in use.

In the case of a secure cluster, add the following configuration property to the hive-site.xml file for each Metastore
server:

<property>
 <name> hive.cluster.delegation.token.store.class</name>
 <value>org.apache.hadoop.hive.thrift.ZooKeeperTokenStore</value>
</property>

Failover Scenario

The Hive metastore client randomly chooses a metastore URI when multiple metastores are configured, which helps
in load-balancing.

Software Configuration
To configure high availability for Hive, you must install HDP, update the Hive Metastore, and validate the Hive
configuration.

About this task
Complete the following tasks to configure Hive High Availability solution:

Procedure

1. Install Hortonworks Data Platform.

2. Update the Hive Metastore.

3. Validate the configuration.

Install Hortonworks Data Platform
Install Hortonworks Data Platform on your cluster hardware and later configure high availability.

Procedure

1. Make sure that you specify the virtual machine as your NameNode.

2. Download the Apache Ambari repository.

Note:

Do not start the Ambari server until you have configured the relevant templates as outlined in the
following steps.

3. Edit the <master-install-machine-for-Hive-Metastore>/etc/hive/conf.server/hive-site.xml configuration file to add
the following properties:

• Provide the URI for the client to contact Metastore server. The following property can have a comma
separated list when your cluster has multiple Hive Metastore servers.

<property>

5

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

 <name>hive.metastore.uris</name>
 <value>thrift://$Hive_Metastore_Server_Host_Machine_FQDN</value>
 <description>URI for client to contact Metastore server</description>
</property>

• Configure Hive cluster delegation token storage class.

<property>
 <name>hive.cluster.delegation.token.store.class</name>
 <value>org.apache.hadoop.hive.thrift.ZooKeeperTokenStore</value>
</property>

• Complete Hortonworks Data Platform installation.

See the Ambari documentation for installing, configuring, and deploying the HDP cluster.

Update the Hive Metastore
Hortonworks Data Platform components configured for High Availability must use a NameService rather than a
NameNode.

About this task
Use the following instructions to update the Hive Metastore to reference the NameService rather than a Name Node.

Note: Hadoop administrators also often use the following procedure to update the Hive Metastore with the
new URI for a node in a Hadoop cluster. For example, administrators sometimes rename an existing node as
their cluster grows.

Procedure

1. Open a command prompt on the machine hosting the Hive Metastore.

2. Set the HIVE_CONF_DIR environment variable:

export HIVE_CONF_DIR=/etc/hive/conf.server

3. Execute the following command to retrieve a list of URIs for the filesystem roots, including the location of the
NameService:

hive --service metatool -listFSRoot

4. Execute the following command with the -dryRun option to test your configuration change before implementing
it:

hive --service metatool -updateLocation <nameservice-uri> <namenode-uri> -
 dryRun

5. Execute the command again, this time without the -dryRun option:

hive --service metatool -updateLocation <nameservice-uri> <namenode-uri>

Validate configuration
You must test various failover scenarios to validate your configuration.

Deploying Multiple HiveServer2 Instances for High Availability
Deploy and configure a second instance of HiveServer2 (HS2) that runs in parallel with your primary instance of HS2
to enhance availability.

6

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Adding an Additional HiveServer2 to Your Cluster Manually
You must add the additional HiveServer2 to your cluster manually.

Procedure

1. Install Hive on the new node. For example, use one of the following commands in RHEL/CentOS/Oracle Linux
environments:

a) If the new node is part of a cluster where Hadoop and HDFS have not been installed, use the following
command:

yum install hive-hcatalog hadoop hadoop-hdfs hadoop-libhdfs hadoop-yarn
 hadoop-mapreduce hadoop-client openssl

b) If the new node is part of a cluster where Hadoop and HDFS are installed, you need only install the hive-
hcatalog package. For example, in RHEL/CentOS/Oracle Linux environments use the following command:

2. Copy the following configuration files from your existing HS2 instance to the new HS2 instance:

a) Under /etc/hive/conf, copy the hive-site.xml file.

For HDP version 2.2 and later, you must also copy the hiveserver2-site.xml file.
b) Under /etc/hadoop/conf, copy the core-site.xml, hdfs-site.xml, mapred-site.xml, and yarn-site.xml files.

3. Copy the database driver file for the Metastore database from the /usr/hdp/current/hive-server2/lib folder of the
existing HS2 instance to the /usr/hdp/current/hive-server2/lib folder of the new instance. For example, postgresql-
jdbc.jar is the database driver file for a PostgreSQL database, and mysql-connector-java.jar is the database driver
file for a MySQL database.

Note:

Before HDP version 2.2.0, the database driver file for the Metastore database is located in the /usr/lib
folder.

4. Start the HS2 service:

su $HIVE_USER
/usr/lib/hive/bin/hiveserver2 -hiveconf hive.metastore.uris=" "
-hiveconf hive.log.file=hiveserver2.log
>$HIVE_LOG_DIR/hiveserver2.out 2
>$HIVE_LOG_DIR/hiveserver2.log &

If you are using HDP 2.1.15 and earlier, the HS2 service startup script is located in the /usr/lib/hive/bin directory.
For more information about starting the HS2 service, see the

a) If you are using HDP 2.1.15 and earlier, the HS2 service startup script is located in the /usr/lib/hive/bin
directory.

b) Specifying –hiveconf hive.metastore.uris=" " when you start the HS2 service causes HS2 to use an embedded
Metastore, which improves the performance when HS2 retrieves data from the back-end data store (RDBMS).
If you are using HDP 2.3.0 or later and have added the hive.metastore.uris=" " property to the hiveserver2-
site.xml file, it is not necessary to specify it on the command line when you start the service.

5. Validate your installation by connecting to the new HS2 instance using Beeline.

a) Open Beeline command-line shell to interact with HS2:

/usr/hdp/current/hive-server2/bin/beeline

b) Establish a connection to HS2:

!connect jdbc:hive2://$hive.server.full.hostname:<port_number>
 $HIVE_USER password org.apache.hive.jdbc.HiveDriver

7

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

c) Run sample commands

show databases;
create table test2(a int, b string);
show tables;

This completes the manual installation of an additional HiveServer2 on a cluster.

Adding an Additional HiveServer2 to a Cluster with Ambari
If you have a new HiveServer2 (HS2) instance installed on a new host that has not been added to your cluster, you
can add it with Ambari.

Procedure

1. Open Ambari in a browser and click the Hosts tab.

2. On the Hosts page, click Actions, and select Add New Hosts.

3. Follow the Add Host Wizard instructions.

4. When you have completed adding the host to your cluster, click the Services tab.

5. On the Services page, click Hive in the list of services on the left side of the browser.

6. On the upper right side of the Hive Services page, click Service Actions, and select Add HiveServer2:

8

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

7. In the Confirmation dialog box, select the host that you added in Steps 1 -3, and click Confirm Add.

The progress of adding the HS2 is displayed in the Background Operation Running dialog box. Click OK when it
is finished to dismiss the dialog box.

Configuring HiveServer2 High Availability Using ZooKeeper
You can implement HiveServer2 High Availability using ZooKeeper.

This section describes how to implement HiveServer2 High Availability through ZooKeeper.

• How ZooKeeper Manages HiveServer2 Requests
• Dynamic Service Discovery Through ZooKeeper
• Rolling Upgrade for HiveServer2 Through ZooKeeper

How ZooKeeper Manages HiveServer2 Requests
Multiple HiveServer2 (HS2) instances can register themselves with ZooKeeper and then the client (client driver) can
find a HS2 through ZooKeeper.

9

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

When a client requests an HS2 instance, ZooKeeper returns one randomly-selected registered HS2.

This enables the following scenarios:

• High Availability

If more than one HS2 instance is registered with ZooKeeper, and all instances fail except one, ZooKeeper passes
the link to the instance that is running and the client can connect successfully. (Failed instances must be restarted
manually.)

• Load Balancing

If there is more than one HS2 instance registered with ZooKeeper, ZooKeeper responds to client requests by
randomly passing a link to one of the HS2 instances. This ensures that all HS2 instances get roughly the same
workload.

The following situation is not handled:

• Automatic Failover

If an HS2 instance failed while a client is connected, the session is lost. Since this situation need to be handed at
the client, there is no automatic failover; the client needs to reconnect using ZooKeeper.

Dynamic Service Discovery Through ZooKeeper
You can implement dynamic service discovery by including an additional indirection step through ZooKeeper.

The HS2 instances register with ZooKeeper under a namespace. When a HiveServer2 instance comes up, it registers
itself with ZooKeeper by adding a znode in ZooKeeper. The znode name has the format:

/<hiveserver2_namespace>/serverUri=<host:port>;version=<versionInfo>; sequence=<sequence_number>,

The znode stores the server host:port as its data.

The server instance sets a watch on the znode; when the znode is modified, that watch sends a notification to the
server. This notification helps the server instance keep track of whether or not it is on the list of servers available for
new client connections.

When a HiveServer2 instance is de-registered from ZooKeeper, it is removed from the list of servers available for
new client connections. (Client sessions on the server are not affected.) When the last client session on a server is
closed, the server is closed.

To de-register a single HiveServer2, enter hive --service hiveserver2 --deregister <package ID>

Query Execution Path Without ZooKeeper

As shown in the illustration below, query execution without ZooKeeper happens in the traditional client/server model
used by most databases:

1. The JDBC / ODBC driver is given a host:port to an existing HS2 instance.

This establishes a session where multiple queries can be executed.

For each query...
2. Client submits a query to HS2 which in turn submits it for execution to Hadoop.
3. The results of query are written to a temporary file.
4. The client driver retrieves the records from HS2 which returns them from the temporary file.

10

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Query Execution Path With ZooKeeper

Query execution with ZooKeeper takes advantage of dynamic discovery. Thus, the client driver needs to know how to
use this capability, which is available in HDP 2.2 and later with the JDBC driver and ODBC driver 2.0.0.

Dynamic discovery is implemented by including an additional indirection step through ZooKeeper. As shown in the
figure below...

1. Multiple HiveServer2 instances are registered with ZooKeeper.
2. The client driver connects to the ZooKeeper ensemble:

jdbc:hive2://<zookeeper_ensemble>;serviceDiscoveryMode=zooKeeper;
 zooKeeperNamespace=<hiveserver2_namespace

In the figure below, <zookeeper_ensemble> is Host1:Port1, Host2:Port2, Host3:Port3; <hiveserver_namespace) is
hiveServer2.

3. ZooKeeper randomly returns <host>:<port> for one of the registered HiveServer2 instances.
4. The client driver can not connect to the returned HiveServer instance and proceed as shown in the previous section

(as if ZooKeeper was not present).

11

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Rolling Upgrade for HiveServer2 Through ZooKeeper
There are additional configuration settings and procedures that need to be implemented to support rolling upgrade for
HiveServer.

Set Configuration Parameters for HiveServer2 Rolling Upgrade
Set the Zookeeper Quorum Configuration parameters before performing rolling upgrade for HiveServer2.

Procedure

1. Set hive.zookeeper.quorum to the ZooKeeper ensemble (a comma separated list of ZooKeeper server host:ports
running at the cluster)

2. Customize hive.zookeeper.session.timeout so that it closes the connection between the HiveServer2’s client and
ZooKeeper if a heartbeat is not received within the timeout period.

3. Set hive.server2.support.dynamic.service.discovery to true

4. Set hive.server2.zookeeper.namespace to the value that you want to use as the root namespace on ZooKeeper. The
default value is hiveserver2.

5. The adminstrator should ensure that the ZooKeeper service is running on the cluster, and that each HiveServer2
instance gets a unique host:port combination to bind to upon startup.

Perform Rolling Upgrade for HiveServer2
After setting the required configuration parameters, perform the rolling upgrade for HiveServer2.

Procedure

1. Without altering the old version of HiveServer2, bring up instances of the new version of HiveServer2. Make sure
they start up successfully.

2. To de-register instances of the old version of HiveServer2, enter hive service hiveserver2 deregister

3. Do not shut down the older instances of HiveServer2, as they might have active client sessions. When sessions
complete and the last client connection is closed, the server instances shut down on their own. Eventually all
instances of the older version of HiveServer2 will become inactive.

Perform Rollback of HiveServer2
Based on your requirements, you can roll back HiveServer2 upgrades.

Procedure

1. Bring up instances of the older version of HiveServer2. Make sure they start up successfully.

2. To explicitly de-register the instances of the newer version of HiveServer2, enter: hive service hiveserver2
deregister

3. Do not shut down the newer instances of HiveServer2, as they might have active client sessions. When sessions
complete and the last client connection is closed, the server instances shut down on their own. Eventually all
instances of the newer version of HiveServer2 will become inactive.

Configuring High Availability for HBase
HDP enables HBase administrators to configure HBase clusters with read-only High Availability, or HA.

This feature benefits HBase applications that require low-latency queries and can tolerate minimal (near-zero-second)
staleness for read operations. Examples include queries on remote sensor data, distributed messaging, object stores,
and user profile management.

High Availability for HBase features the following functionality:

• Data is safely protected in HDFS
• Failed nodes are automatically recovered

12

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

• No single point of failure
• All HBase API and region operations are supported, including scans, region split/merge, and META table support

(the META table stores information about regions)

However, HBase administrators should carefully consider the following costs associated with using High Availability
features:

• Double or triple MemStore usage
• Increased BlockCache usage
• Increased network traffic for log replication
• Extra backup RPCs for secondary region replicas

HBase is a distributed key-value store designed for fast table scans and read operations at petabyte scale. Before
configuring HA for HBase, you should understand the concepts in the following table.

Table 1: Basic HBase Concepts

HBase Concept Description

Region A group of contiguous rows in an HBase table. Tables start with one
region; additional regions are added dynamically as the table grows.
Regions can be spread across multiple hosts to balance workloads and
recover quickly from failure.

There are two types of regions: primary and secondary. A secondary
region is a copy of a primary region, replicated on a different
RegionServer.

RegionServer A RegionServer serves data requests for one or more regions. A single
region is serviced by only one RegionServer, but a RegionServer
may serve multiple regions. When region replication is enabled,
a RegionServer can serve regions in primary and secondary mode
concurrently.

Column family A column family is a group of semantically related columns that are
stored together.

Memstore Memstore is in-memory storage for a RegionServer. RegionServers
write files to HDFS after the MemStore reaches a configurable
maximum value specified with the hbase.hregion.memstore.flush.size
property in the hbase-site.xml configuration file.

Write Ahead Log (WAL) The WAL is a log file that records all changes to data until the data
is successfully written to disk (MemStore is flushed). This protects
against data loss in the event of a failure before MemStore contents are
written to disk.

Compaction When operations stored in the MemStore are flushed to disk, HBase
consolidates and merges many smaller files into fewer large files.
This consolidation is called compaction, and it is usually very fast.
However, if many RegionServers hit the data limit (specified by the
MemStore) at the same time, HBase performance may degrade from
the large number of simultaneous major compactions. Administrators
can avoid this by manually splitting tables over time.

Introduction to HBase High Availability
HBase provides a feature called region replication to achieve high availability for reads.

HBase, architecturally, has had a strong consistency guarantee from the start. All reads and writes are routed through
a single RegionServer, which guarantees that all writes happen in order, and all reads access the most recently
committed data.

However, because of this "single homing" of reads to a single location, if the server becomes unavailable, the regions
of the table that are hosted in the RegionServer become unavailable for some time until they are recovered. There
are three phases in the region recovery process: detection, assignment, and recovery. Of these, the detection phase is

13

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

usually the longest, currently on the order of 20 to 30 seconds depending on the ZooKeeper session timeout setting (if
the RegionServer became unavailable but the ZooKeeper session is alive). After that we recover data from the Write
Ahead Log and assign the region to a different server. During this time -- until the recovery is complete -- clients are
not able to read data from that region.

For some use cases the data may be read-only, or reading some amount of stale data is acceptable. With timeline-
consistent highly available reads, HBase can be used for these kind of latency-sensitive use cases where the
application can expect to have a time bound on the read completion.

For achieving high availability for reads, HBase provides a feature called “region replication”. In this model, for each
region of a table, there can be multiple replicas that are opened in different RegionServers. By default, the region
replication is set to 1, so only a single region replica is deployed and there are no changes from the original model. If
region replication is set to 2 or more, then the master assigns replicas of the regions of the table. The Load Balancer
ensures that the region replicas are not co-hosted in the same Region Servers and also in the same rack (if possible).

All of the replicas for a single region have a unique replica ID, starting with 0. The region replica with replica ID = 0
is called the "primary region." The others are called “secondary region replicas,” or "secondaries". Only the primary
region can accept writes from the client, and the primary always contains the latest changes. Since all writes must go
through the primary region, the writes are not highly available (meaning they might be blocked for some time if the
region becomes unavailable).

In the following image, for example, RegionServer 1 is responsible for responding to queries and scans for keys 10
through 40. If RegionServer 1 crashes, the region holding keys 10-40 is unavailable for a short time until the region
recovers.

HA provides a way to access keys 10-40 even if RegionServer 1 is not available, by hosting replicas of the region
and assigning the region replicas to other RegionServers as backups. In the following image, RegionServer 2
hosts secondary region replicas for keys 10-20, and RegionServer 3 hosts the secondary region replica for keys
20-40. RegionServer 2 also hosts the secondary region replica for keys 80-100. There are no separate RegionServer
processes for secondary replicas. Rather, RegionServers can serve regions in primary or secondary mode. When
RegionServer 2 services queries and scans for keys 10-20, it acts in secondary mode.

14

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Note:

Regions acting in secondary mode are also known as Secondary Region Replicas. However, there is no
separate RegionServer process. A region in secondary mode can read but cannot write data. In addition, the
data it returns may be stale, as described in the following section.

Timeline and Strong Data Consistency

HBase guarantees timeline consistency for all data served from RegionServers in secondary mode, meaning all HBase
clients see the same data in the same order, but that data may be slightly stale. Only the primary RegionServer is
guaranteed to have the latest data. Timeline consistency simplifies the programming logic for complex HBase queries
and provides lower latency than quorum-based consistency.

In contrast, strong data consistency means that the latest data is always served. However, strong data consistency can
greatly increase latency in case of a RegionServer failure, because only the primary RegionServer is guaranteed to
have the latest data. The HBase API allows application developers to specify which data consistency is required for a
query.

Note:

The HBase API contains a method called Result.isStale(), which indicates whether data returned in secondary
mode is "stale" -- the data has not been updated with the latest write operation to the primary RegionServer.

Propagating Writes to Region Replicas
StoreFile Refresher and Async WAL Replication are the mechanisms used to propagate writes from the primary
replica to secondary replicas.

Writes are written only to the primary region replica.

The following two mechanisms are used to propagate writes from the primary replica to secondary replicas.

Note:

By default, HBase tables do not use High Availability features. After configuring your cluster for High
Availability, designate tables as HA by setting region replication to a value greater than 1 at table creation
time.

15

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

For read-only tables, you do not need to use any of the following methods. Disabling and enabling the table
should make the data available in all region replicas.

StoreFile Refresher

The first mechanism is the store file refresher, which was introduced in Phase 1 (Apache HBase 1.0.0 and HDP 2.1).

Store file refresher is a thread per RegionServer, which runs periodically, and does a refresh operation for the store
files of the primary region for the secondary region replicas. If enabled, the refresher ensures that the secondary
region replicas see the new flushed, compacted or bulk loaded files from the primary region in a timely manner.
However, this means that only flushed data can be read back from the secondary region replicas, and after the
refresher is run, making the secondaries lag behind the primary for an a longer time.

To enable this feature, configure hbase.regionserver.storefile.refresh.period to a value greater than zero.

Async WAL Replication

The second mechanism for propagating writes to secondaries is done via the Async WAL Replication feature.

Async WAL replication works similarly to HBase’s multi-datacenter replication, but the data from a region is
replicated to its secondary regions. Each secondary replica always receives writes in the same order that the primary
region committed them. In some sense, this design can be thought of as "in-cluster replication"; instead of replicating
to a different datacenter, the data goes to secondary regions. This process keeps the secondary region’s in-memory
state up to date. Data files are shared between the primary region and the other replicas, so there is no extra storage
overhead. However, secondary regions have recent non-flushed data in their MemStores, which increases memory
overhead. The primary region writes flush, compaction, and bulk load events to its WAL as well, which are also
replicated through WAL replication to secondaries. When secondary replicas detect a flush/compaction or bulk load
event, they replay the event to pick up the new files and drop the old ones.

Committing writes in the same order as in the primary region ensures that the secondaries won’t diverge from the
primary region's data, but because the log replication is asynchronous, the data might still be stale in secondary
regions. Because this feature works as a replication endpoint, performance and latency characteristics should be
similar to inter-cluster replication.

Async WAL Replication is disabled by default. To enable this feature, set hbase.region.replica.replication.enabled to
true.

When you create a table with High Availability enabled, the Async WAL Replication feature adds a new replication
peer (named region_replica_replication).

Once enabled, to disable this feature you'll need to perform the following two steps:

• Set hbase.region.replica.replication.enabled to false in hbase-site.xml.
• In your cluster, disable the replication peer named region_replica_replication, using hbase shell or

ReplicationAdmin class: hbase> disable_peer 'region_replica_replication'

Store File TTL

In phase 1 and 2 of the write propagation approaches mentioned above, store files for the primary replica are opened
in secondaries independent of the primary region. Thus, for files that the primary region compacted and archived, the
secondaries might still refer to these files for reading.

Both features use HFileLinks to refer to files, but there is no guarantee that the file is not deleted prematurely. To
prevent I/O exceptions for requests to replicas, set the configuration property hbase.master.hfilecleaner.ttl to a
sufficient time range such as 1 hour.

Region Replication for the META Table’s Region

Currently, Async WAL Replication is not done for the META table’s WAL -- the META table’s secondary
replicas still refresh themselves from the persistent store files. To ensure that the META store files are refreshed,
set hbase.regionserver.meta.storefile.refresh.period to a non-zero value. This is configured differently than
hbase.regionserver.storefile.refresh.period.

Related Tasks
Creating Highly Available HBase Tables with the HBase Java API

16

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Creating Highly Available HBase Tables with the HBase Shell

Configuring HA Reads for HBase

Timeline Consistency
With timeline consistency, HBase introduces a consistency definition that can be provided per read operation.

The Consistency definition that can be provided per read operation (get or scan) is as follows:

public enum Consistency {
 STRONG,
 TIMELINE
 }

Consistency.STRONG is the default consistency model provided by HBase. If a table has region replication = 1, or
has region replicas but the reads are done with time consistency enabled, the read is always performed by the primary
regions. This preserves previous behavior; the client receives the latest data.

If a read is performed with Consistency.TIMELINE, then the read RPC is sent to the primary RegionServer first.
After a short interval (hbase.client.primaryCallTimeout.get, 10ms by default), a parallel RPC for secondary region
replicas is sent if the primary does not respond back. HBase returns the result from whichever RPC finishes first. If
the response is from the primary region replica, the data is current. You can use Result.isStale() API to determine the
state of the resulting data:

• If the result is from a primary region, Result.isStale() is set to false.
• If the result is from a secondary region, Result.isStale() is set to true.

TIMELINE consistency as implemented by HBase differs from pure eventual consistency in the following respects:

• Single homed and ordered updates: Whether region replication is enabled or not, on the write side, there is still
only one defined replica (primary) that can accept writes. This replica is responsible for ordering the edits and
preventing conflicts. This guarantees that two different writes are not committed at the same time by different
replicas, resulting in divergent data. With this approach, there is no need to do read-repair or last-timestamp-wins
types of of conflict resolution.

• The secondary replicas also apply edits in the order that the primary committed them, thus the secondaries contain
a snapshot of the primary's data at any point in time. This is similar to RDBMS replications and HBase’s own
multi-datacenter replication, but in a single cluster.

• On the read side, the client can detect whether the read is coming from up-to-date data or is stale data. Also, the
client can issue reads with different consistency requirements on a per-operation basis to ensure its own semantic
guarantees.

• The client might still read stale data if it receives data from one secondary replica first, followed by reads from
another secondary replica. There is no stickiness to region replicas, nor is there a transaction ID-based guarantee.
If required, this can be implemented later.

Memory Accounting

Secondary region replicas refer to data files in the primary region replica, but they have their own MemStores (in HA
Phase 2) and use block cache as well. However, one distinction is that secondary region replicas cannot flush data
when there is memory pressure for their MemStores. They can only free up MemStore memory when the primary
region does a flush and the flush is replicated to the secondary.

Because a RegionServer can host primary replicas for some regions and secondaries for others, secondary replicas
might generate extra flushes to primary regions in the same host. In extreme situations, there might be no memory for
new writes from the primary, via WAL replication.

To resolve this situation, the secondary replica is allowed to do a “store file refresh.” A file
system list operation picks up new files from the primary, possibly dropping its MemStore. This
refresh is only performed if the MemStore size of the biggest secondary region replica is at least
hbase.region.replica.storefile.refresh.memstore.multiplier times bigger than the biggest MemStore of a primary
replica. (The default value for hbase.region.replica.storefile.refresh.memstore.multiplier is 4.)

17

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Note:

If this operation is performed, the secondary replica might obtain partial row updates across column families
(because column families are flushed independently). We recommend that you configure HBase to not do this
operation frequently.

You can disable this feature by setting the value to a large number, but this might cause replication to be
blocked without resolution.

Secondary Replica Failover

When a secondary region replica first comes online, or after a secondary region fails over, it may have contain edits
from its MemStore. The secondary replica must ensure that it does accesss stale data (data that has been overwritten)
before serving requests after assignment. Therefore, the secondary waits until it detects a full flush cycle (start flush,
commit flush) or a “region open event” replicated from the primary.

Until the flush cycle occurs, the secondary region replica rejects all read requests via an IOException with the
following message:

The region's reads are disabled

Other replicas are probably still be available to read, thus not causing any impact for the RPC with TIMELINE
consistency.

To facilitate faster recovery, the secondary region triggers a flush request from the primary when it is opened. The
configuration property hbase.region.replica.wait.for.primary.flush (enabled by default) can be used to disable this
feature if needed.

Configuring HA Reads for HBase
To enable High Availability for HBase reads, specify the server-side and client-side configuration properties in your
hbase-site.xml configuration file, and then restart the HBase Master and RegionServers.

Procedure

1. Set the server-side properties in your hbase-site.xml configuration file for all servers in your HBase cluster that
use region replicas. The following table describes server-side properties.

Table 2: Server-Side Configuration Properties for HBase HA

Property Example value Description

hbase.regionserver. storefile.refresh.period 30000 Specifies the period (in milliseconds) for
refreshing the store files for secondary
regions. The default value is 0, which
indicates that the feature is disabled.
Secondary regions receive new files from the
primary region after the secondary replica
refreshes the list of files in the region.

Note: Too-frequent refreshes might cause
extra Namenode pressure. If files cannot
be refreshed for longer than HFile TTL,
specified with hbase.master.hfilecleaner.ttl,
the requests are rejected.

Refresh period should be a non-zero
number if META replicas are enabled (see
hbase.meta.replica.count).

If you specify refresh period, we recommend
configuring HFile TTL to a larger value than
its default.

18

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Property Example value Description

hbase.region.replica. replication.enabled true Determines whether asynchronous WAL
replication is enabled or not. The value can
be true or false. The default is false.

If this property is enabled, a replication peer
named region_replica_replication is created.
The replication peer replicates changes
to region replicas for any tables that have
region replication set to 1 or more.

After enabling this property, disabling it
requires setting it to false and disabling
the replication peer using the shell or
the ReplicationAdmin java class. When
replication is explicitly disabled and then re-
enabled, you must set hbase.replication to
true.

hbase.master. hfilecleaner.ttl 3600000 Specifies the period (in milliseconds) to
keep store files in the archive folder before
deleting them from the file system.

hbase.master. loadbalancer.class org.apache.hadoop.hbase. master.balancer.
StochasticLoadBalancer

Specifies the Java class used for balancing
the load of all HBase clients.

The default value is
org.apache.hadoop.hbase. master.balancer.
StochasticLoadBalancer, which is the only
load balancer that supports reading data from
RegionServers in secondary mode.

hbase.meta.replica.count 3 Region replication count for the meta
regions. The default value is 1.

hbase.regionserver.
meta.storefile.refresh.period

30000 Specifies the period in milliseconds for
refreshing the store files for the HBase
META tables secondary regions. If this is set
to 0, the feature is disabled.

When the secondary region refreshes the
list of files in the region, the secondary
regions see new files that are flushed and
compacted from the primary region. There is
no notification mechanism.

Note: If the secondary region is refreshed
too frequently, it may cause Namenode
pressure. Requests are rejected if the
files cannot be refreshed for longer than
HFile TTL, which is specified with
hbase.master.hfilecleaner.ttl. Configuring
HFile TTL to a larger value is recommended
with this setting.

If META replicas are enabled, set
this to a non-zero number by setting
hbase.meta.replica.count to a value greater
than 1.

hbase.region.replica.wait. for.primary.flush true Specifies whether to wait for a full flush
cycle from the primary before starting to
serve data in a secondary replica.

Disabling this feature might cause secondary
replicas to read stale data when a region is
transitioning to another RegionServer.

19

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Property Example value Description

hbase.region.replica. storefile.refresh.
memstore.multiplier

4 Multiplier for a “store file refresh” operation
for the secondary region replica.

This multiplier is used to refresh a secondary
region instead of flushing a primary region.
The default value (4) configures the file
refresh so that the biggest secondary region
replica is 4 times bigger than the biggest
primary region.

Disabling this feature is not recommended.
However, if you want to do so, set this
property to a large value.

2. Set the client-side properties in your hbase-site.xml configuration file for all clients, applications, and servers in
your HBase cluster that use region replicas. The following table lists client-side properties.

Table 3: Client-Side Properties for HBase HA

Property Example value Description

hbase.ipc.client. specificThreadForWriting true Specifies whether to enable interruption
of RPC threads at the client side. This is
required for region replicas with fallback
RPC’s to secondary regions.

hbase.client. primaryCallTimeout.get 10000 Specifies the timeout (in microseconds)
before secondary fallback RPC’s
are submitted for get requests with
Consistency.TIMELINE to the secondary
replicas of the regions. The default value is
10ms.

Setting this to a smaller value increases the
number of RPC’s, but lowers 99th-percentile
latencies.

hbase.client. primaryCallTimeout. multiget 10000 Specifies the timeout (in microseconds)
before secondary fallback RPC’s
are submitted for multi-get requests
(HTable.get(List<Get>)) with
Consistency.TIMELINE to the secondary
replicas of the regions. The default value is
10ms.

Setting this to a smaller value increases the
number of RPC’s, but lowers 99th-percentile
latencies.

hbase.client. primaryCallTimeout.scan 1000000 Specifies the timeout (in microseconds)
before secondary fallback RPC’s
are submitted for scan requests with
Consistency.TIMELINE to the secondary
replicas of the regions. The default value is 1
second.

Setting this to a smaller value increases the
number of RPC’s, but lowers 99th-percentile
latencies.

hbase.meta.replicas.use true Specifies whether to use META table
replicas or not. The default value is false.

3. Restart the HBase Master and RegionServers.

Related Concepts
Propagating Writes to Region Replicas

20

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Creating Highly Available HBase Tables with the HBase Java API
HBase tables are not highly available by default. To enable high availability, designate a table as HA during table
creation.

HBase Java API

Create highly available HBase tables programmatically, using the Java API, as shown in the following example:

HTableDescriptor htd =
 new HTableDesscriptor(TableName.valueOf("test_table"));
htd.setRegionReplication(2);
...
admin.createTable(htd);

This example creates a table named test_table that is replicated to one secondary region. To replicate test_table to two
secondary replicas, pass 3 as a parameter to the setRegionReplication() method.

Related Concepts
Propagating Writes to Region Replicas

Creating Highly Available HBase Tables with the HBase Shell
Create HA tables using the HBase shell using the REGION_REPLICATION keyword.

HBase Shell

Valid values are 1, 2, and 3, indicating the total number of copies. The default value is 1.

The following example creates a table named t1 that is replicated to one secondary replica:

 CREATE 't1', 'f1', {REGION_REPLICATION => 2}

To replicate t1 to two secondary regions, set REGION_REPLICATION to 3:

 CREATE 't1', 'f1', {REGION_REPLICATION => 3}

Related Concepts
Propagating Writes to Region Replicas

Querying Secondary Regions
You can query HA-enabled HBase tables with the Java API or HBase Shell.

This section describes how to query HA-enabled HBase tables.

Querying HBase with the Java API

The HBase Java API allows application developers to specify the desired data consistency for a query using the
setConsistency() method, as shown in the following example. A new enum, CONSISTENCY, specifies two levels of
data consistency: TIMELINE and STRONG.

Get get = new Get(row);
get.setConsistency(CONSISTENCY.TIMELINE);
...
Result result = table.get(get);

HBase application developers can also pass multiple gets:

Get get1 = new Get(row);
get1.setConsistency(Consistency.TIMELINE);
...
ArrayList<Get> gets = new ArrayList<Get>();
...

21

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Result[] results = table.get(gets);

The setConsistency() method is also available for Scan objects:

Scan scan = new Scan();
scan.setConsistency(CONSISTENCY.TIMELINE);
...
ResultScanner scanner = table.getScanner(scan);

In addition, you can use the Result.isStale() method to determine whether the query results arrived from the primary
or a secondary replica:

Result result = table.get(get);
if (result.isStale()) {
 ...
}

Querying HBase Interactively

To specify the desired data consistency for each query, use the HBase shell:

hbase(main):001:0> get 't1', 'r6', {CONSISTENCY => "TIMELINE"}

Interactive scans also accept this syntax:

hbase(main):001:0> scan 't1', {CONSISTENCY => 'TIMELINE'}

Note:

This release of HBase does not provide a mechanism to determine if the results from an interactive query
arrived from the primary or a secondary replica.

You can also request a specific region replica for debugging:

hbase> get 't1', 'r6', {REGION_REPLICA_ID=>0, CONSISTENCY=>'TIMELINE'}
hbase> get 't1', 'r6', {REGION_REPLICA_ID=>2, CONSISTENCY=>'TIMELINE'}

Monitoring Secondary Region Replicas
You can access the HBase Master server user interface and monitor the secondary region replicas.

HBase provides highly available tables by replicating table regions. All replicated regions have a unique replica
ID. The replica ID for a primary region is always 0. The HBase web-based interface displays the replica IDs for all
defined table regions. In the following example, the table t1 has two regions. The secondary region is identified by a
replica ID of 1.

22

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

To access the HBase Master Server user interface, point your browser to port 16010.

HBase Cluster Replication for Geographic Data Distribution
HBase provides a cluster replication mechanism which allows you to keep one cluster’s state synchronized with that
of another cluster, using the write-ahead log (WAL) of the source cluster to propagate the changes.

The use cases for cluster replication include the following scenarios:

• Backup and disaster recovery
• Data aggregation
• Geographic data distribution, such as data centers
• Online data ingestion combined with offline data analytics

Note:

Replication is enabled at the granularity of the column family. Before enabling replication for a column
family, create the table and all column families to be replicated on the destination cluster.

HBase Cluster Replication Overview
An HBase cluster can either be an active cluster or passive cluster to ensure cluster replication.

Cluster replication uses a source-push methodology. An HBase cluster can be a 'source' cluster, which means it is
the source of the new data (also known as a 'master' or 'active' cluster), a 'destination' cluster, which means that it is
the cluster that receives the new data by way of replication (also known as a 'slave' or 'passive' cluster), or an HBase
cluster can fulfill both roles at once. Replication is asynchronous, and the goal of replication is eventual consistency.
When the source receives an edit to a column family with replication enabled, that edit is propagated to all destination
clusters using the WAL for that column family on the RegionServer that manages the relevant region.

When data is replicated from one cluster to another, the original source of the data is tracked by using a cluster ID
which is part of the metadata. In HBase 0.96 and newer, all clusters that have already consumed the data are also
tracked. This prevents replication loops.

The WALs for each RegionServer must be kept in HDFS as long as they are needed to replicate data to a slave
cluster. Each RegionServer reads from the oldest log it needs to replicate and keeps track of its progress by processing
WALs inside ZooKeeper to simplify failure recovery. The position marker which indicates a slave cluster’s progress,
as well as the queue of WALs to process, may be different for every slave cluster.

23

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

The clusters participating in replication can be of different sizes. The master cluster relies on randomization to
attempt to balance the stream of replication on the slave clusters. It is expected that the slave cluster has storage
capacity to hold the replicated data, as well as any data it is responsible for ingesting. If a slave cluster runs out
of room, or is inaccessible for other reasons, it throws an error, the master retains the WAL, and then retries the
replication at intervals.

HBase Cluster Topologies
Clusters can propagate changes to single or multiple destination clusters.

• A central source cluster might propagate changes out to multiple destination clusters, for failover or due to
geographic distribution.

• A source cluster might push changes to a destination cluster, which might also push its own changes back to the
original cluster.

• Many different low-latency clusters might push changes to one centralized cluster for backup or resource-
intensive data analytics jobs. The processed data might then be replicated back to the low-latency clusters.

Multiple levels of replication may be chained together to suit your organization’s needs. The following diagram
shows a hypothetical scenario for a complex cluster replication configuration. The arrows indicate the data paths.

Example of a Complex Cluster Replication Configuration

HBase replication borrows many concepts from the statement-based replication design used by MySQL. Instead of
SQL statements, entire WALEdits, which consist of multiple cell inserts that come from Put and Delete operations on
the clients, are replicated in order to maintain atomicity.

Managing and Configuring HBase Cluster Replication
Implementing HBase cluster replication enables you to achieve High Availability (HA). HBase supports replication
across multiple clusters. This can help you setup HA and enable disaster recovery.
Related Tasks
Setting Up HBase Replication Among Kerberos Secured Clusters

24

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Manually Enable HBase Replication
After ensuring that HBase is running on both the source and destination clusters, you must configure certain
parameters to manually enable replication.

Procedure

1. Configure the source and destination clusters and ensure that you have HBase running in both clusters. HBase
master and region servers in the source cluster must be able to communicate with the master and all region servers
in the destination cluster.

2. On both clusters, create tables with the same names and column families, so that the destination cluster stores the
data that it receives in a logical location:

hbase shell>create "t1","cf1"

3. All hosts in the source and destination clusters should be reachable to each other. If both clusters use the same
ZooKeeper cluster, you must use a different zookeeper.znode.parent, because they cannot write in the same folder.

4. On the source cluster, in HBase shell, add the destination cluster as a peer:

hbase shell>add_peer “us_east”,”hostname.of.zookeeper:2181:/path-to-hbase”

5. On HDP, path-to-hbase is either “/hbase-unsecure” or “/hbase-secure”. On the destination cluster, open the hbase-
site.xml file and look at the value of zookeeper.znode.parent to find out the HBase directory.

6. Ensure that replication has not been disabled. Ensure that the hbase.replication setting is set to true.

7. On the source cluster, in HBase shell, enable the table replication:

Run

hbase shell>enable_table_replication "t1"

8. Copy the HBase data from the source cluster to the destination cluster:

$>hbase org.apache.hadoop.hbase.mapreduce.CopyTable --
peer.adr=hostname.of.zookeeper:2181:/hbase-unsecure t1

Pause and Stop HBase Replication
Run HBase table replication commands to pause or stop HBase replication.

Procedure

1. To pause HBase cluster replication, use the disable_table_replication command:

Run

hbase shell>disable_table_replication "t1"

With this, you can temporarily stop replication. To re-enable the replication, use the enable_table_replication
command.

2. To permanently disable replication, remove the replication relationship:

Run

hbase shell>remove_peer “us_east”

HBase Cluster Management Commands
You can use the common HBase Cluster Management commands to perform operations related to replication.

25

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Table 4: Table of HBase Cluster Management Commands and Descriptions

Command Description

add_peer <ID> <CLUSTER_KEY> Adds a replication relationship between two clusters:

• ID: A unique string, which must not contain a hyphen.
• CLUSTER_KEY: Composed using the following format:

hbase.zookeeper.quorum:hbase.zookeeper.
property.clientPort:zookeeper.znode.parent

list_peers Lists all replication relationships known by the cluster.

enable_peer <ID> Enables a previously-disabled replication relationship.

disable_peer <ID> Disables a replication relationship. After disabling, HBase no longer
sends edits to that peer cluster, but continues to track the new WALs
that are required for replication to commence again if it is re-enabled.

remove_peer <ID> Disables and removes a replication relationship. After removal, HBase
no longer sends edits to that peer cluster nor does it track WALs.

enable_table_replication <TABLE_NAME> Enables the table replication switch for all of the column families
associated with that table. If the table is not found in the destination
cluster, one is created with the same name and column families.

disable_table_replication <TABLE_NAME> Disables the table replication switch for all of the column families
associated with that table.

Verifying Replicated HBase Data
The VerifyReplication MapReduce job, which is included in HBase, performs a systematic comparison of replicated
data between two different clusters.

Run the VerifyReplication job on the master cluster, supplying it with the peer ID and table name to use for
validation. You can limit the verification further by specifying a time range or specific column families. The job short
name is verifyrep. To run the job, use a command like the following:

$ HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase classpath`
"${HADOOP_HOME}/bin/hadoop" jar "${HBASE_HOME}/hbase-server-VERSION.jar"
verifyrep --starttime=<timestamp> --stoptime=<timestamp> --families=<myFam>
 <ID> <tableName>

The VerifyReplication command prints out GOODROWS and BADROWS counters to indicate rows that did and did
not replicate correctly.

HBase Cluster Replication Details
A Write Ahead Log edit goes through a series of steps to complete the replication process.

26

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

WAL (Write Ahead Log) Edit Process

A single WAL edit goes through the following steps when it is replicated to a slave cluster:

1. An HBase client uses a Put or Delete operation to manipulate data in HBase.
2. The RegionServer writes the request to the WAL in such a way that it can be replayed if the write operation is not

successful.
3. If the changed cell corresponds to a column family that is scoped for replication, the edit is added to the queue for

replication.
4. In a separate thread, the edit is read from the log as part of a batch process. Only the KeyValues that are eligible

for replication are kept. KeyValues that are eligible for replication are those KeyValues that are:

• Part of a column family whose schema is scoped GLOBAL.
• Not part of a catalog such as hbase:meta.
• Have not originated from the target slave cluster.
• Have not already been consumed by the target slave cluster.

5. The WAL edit is tagged with the master’s UUID and added to a buffer. When the buffer is full or the reader
reaches the end of the file, the buffer is sent to a random RegionServer on the slave cluster.

6. The RegionServer reads the edits sequentially and separates them into buffers, one buffer per table. After all edits
are read, each buffer is flushed using Table, the HBase client. The UUID of the master RegionServer and the
UUIDs of the slaves, which have already consumed the data, are preserved in the edits when they are applied. This
prevents replication loops.

7. The offset for the WAL that is currently being replicated in the master is registered in ZooKeeper.
8. The edit is inserted as described in Steps 1, 2, and 3.
9. In a separate thread, the RegionServer reads, filters, and edits the log edits as described in Step 4. The slave

RegionServer does not answer the RPC call.
10. The master RegionServer sleeps and tries again. The number of attempts can be configured.
11. If the slave RegionServer is still not available, the master selects a new subset of RegionServers to replicate to,

and tries again to send the buffer of edits.

27

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

12. Meanwhile, the WALs are rolled and stored in a queue in ZooKeeper. Logs that are archived by their
RegionServer (by moving them from the RegionServer log directory to a central log directory) update their paths
in the in-memory queue of the replicating thread.

13. When the slave cluster is finally available, the buffer is applied in the same way as during normal processing. The
master RegionServer then replicates the backlog of logs that accumulated during the outage.

Related Information
Table HBase Client

Spreading Queue Failover Load
Set configuration parameters to maintain an even distribution of replication activity over the servers in the cluster.

When replication is active, a subset of RegionServers in the source cluster is responsible for shipping edits to the
sink. This responsibility must be failed over like all other RegionServer functions if a process or node crashes. The
following configuration settings are recommended for maintaining an even distribution of replication activity over the
remaining live servers in the source cluster:

• Set replication.source.maxretriesmultiplier to 300.
• Set replication.source.sleepforretries to 1 (1 second). This value, combined with the value of

replication.source.maxretriesmultiplier, causes the retry cycle to last about 5 minutes.
• Set replication.sleep.before.failover to 30000 (30 seconds) in the source cluster site configuration.

Preserving Tags During Replication
Configure the codecs to prevent stripping of the tags during replication.

By default, the codec used for replication between clusters strips tags, such as cell-level ACLs, from cells.
To prevent the tags from being stripped, you can use a different codec which does not strip them. Configure
hbase.replication.rpc.codec to use org.apache.hadoop.hbase.codec.KeyValueCodecWithTags, on both the source and
the sink RegionServers which are involved in the replication.

HBase Replication Internals
The state of HBase replication is contained in the base node /hbase/replication. The peers znode contains a list of all
peer replication clusters with their respective statuses. The rs znode contains a list of WAL logs to be replicated.

Replication State in ZooKeeper

HBase replication maintains its state in ZooKeeper. By default, the state is contained in the base node /hbase/
replication. This node contains two child nodes, the Peers znode and the RS znode.

The Peers Znode

The peers znode is stored in /hbase/replication/peers by default. It consists of a list of all peer replication clusters
along with the status of each of them. The value of each peer is its cluster key, which is provided in the HBase shell.
The cluster key contains a list of ZooKeeper nodes in the cluster quorum, the client port for the ZooKeeper quorum,
and the base znode for HBase in HDFS on that cluster.

The RS Znode

The rs znode contains a list of WAL logs which need to be replicated. This list is divided into a set of queues
organized by Region Server and the peer cluster that the RegionServer is shipping the logs to. The rs znode has one
child znode for each RegionServer in the cluster. The child znode name is the RegionServer hostname, client port,
and start code. This list includes both live and dead RegionServers.

Choosing RegionServers to Replicate to
The master cluster RegionServers chooses potential recipients for replication and the Zookeeper watcher monitors
changes in the composition of the slave clusters.

When a master cluster RegionServer initiates a replication source to a slave cluster, it first connects to the ZooKeeper
ensemble of the slave using the provided cluster key. Then it scans the rs/ directory to discover all the available
'sinks' (RegionServers that are accepting incoming streams of edits to replicate) and randomly chooses a subset
of them using a configured ratio which has a default value of 10 per cent. For example, if a slave cluster has 150
servers, 15 are chosen as potential recipients for edits sent by the master cluster RegionServer. Because this selection
is performed by each master RegionServer, the probability that all slave RegionServers are used is very high. This

28

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Table.html

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

method works for clusters of any size. For example, a master cluster of 10 servers replicating to a slave cluster of 5
servers with a ratio of 10 per cent causes the master cluster RegionServers to choose one server each at random.

A ZooKeeper watcher is placed on the ${zookeeper.znode.parent}/rs node of the slave cluster by each of the master
cluster RegionServers. This watcher monitors changes in the composition of the slave cluster. When nodes are
removed from the slave cluster, or if nodes go down or come back up, the master cluster RegionServers respond by
selecting a new pool of slave Region Servers to which to replicate.

Keeping Track of Logs
Replication of logs is done atomically and does not generate an exception when the reader is currently reading a log.

Each master cluster RegionServer has its own znode in the replication znodes hierarchy. It contains one znode per
peer cluster. For example, if there are 5 slave clusters, 5 znodes are created, and each of these contain a queue of
WALs to process. Each of these queues tracks the WALs created by that RegionServer, but they can differ in size. For
example, if one slave cluster becomes unavailable for some time, the WALs should not be deleted. They need to stay
in the queue while the others are processed.

When a source is instantiated, it contains the current WAL that the RegionServer is writing to. During log rolling,
the new file is added to the queue of each slave cluster znode just before it is made available. This ensures that all
the sources are aware that a new log exists before the RegionServer is able to append edits into it. However, this
operation is now more expensive. The queue items are discarded when the replication thread cannot read more entries
from a file because it reached the end of the last block and there are other files in the queue. This means that if a
source is up to date and replicates from the log that the RegionServer writes to, reading up to the end of the current
file does not delete the item in the queue.

A log can be archived if it is no longer used or if the number of logs exceeds the hbase.regionserver.maxlogs setting
because the insertion rate is faster than the rate at which the regions are flushed. When a log is archived, the source
threads are notified that the path for that log changed. If a particular source has already finished with an archived
log, it ignores the message. If the log is in the queue, the path is updated in memory. If the log is currently being
replicated, the change is done atomically so that the reader does not attempt to open the file when it has already been
moved. Because moving a file is a NameNode operation, if the reader is currently reading the log, it does not generate
an exception.

Related Concepts
RegionServer Failover

Reading, Filtering, and Sending Edits
The rate at which the source attempts to read the data depends on the filtering of log entries and and the total size of
the list edits to replicate per slave.

By default, a source attempts to read from a WAL and ships log entries to a sink as quickly as possible. Speed is
limited by the filtering of log entries. Only Key-Values that are scoped GLOBAL and that do not belong to catalog
tables are retained. Speed is limited by total size of the list of edits to replicate per slave, which is limited to 64 MB
by default. With this configuration, a master cluster Region Server with three slaves would use at most 192 MB to
store data to replicate. This does not account for the data which was filtered but not garbage collected.

Once the maximum size of edits has been buffered or the reader reaches the end of the WAL, the source thread stops
reading and chooses at random a sink to replicate to from the list that was generated by keeping only a subset of
slave Region Servers. It directly issues an RPC to the chosen RegionServer and waits for the method to return. If the
RPC is successful, the source determines whether the current file has been emptied or whether it contains more data
that needs to be read. If the file has been emptied, the source deletes the znode in the queue. Otherwise, it registers
the new offset in the log znode. If the RPC throws an exception, the source retries 10 times before trying to find a
different sink.

Cleaning Logs
If replication is not enabled, the log-cleaning thread of the master deletes old logs using a configured TTL (Time To
Live).

This TTL-based method does not work well with replication because archived logs that have exceeded their TTL may
still be in a queue. The default behavior is augmented so that if a log is past its TTL, the cleaning thread looks up

29

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

every queue until it finds the log. During this process, queues that are found are cached. If the log is not found in any
queues, the log is deleted. The next time the cleaning process needs to look for a log, it starts by using its cached list.

RegionServer Failover
When no RegionServers are failing, keeping track of the logs in ZooKeeper adds no value. Unfortunately,
RegionServers do fail, and since ZooKeeper is highly available, it is useful for managing the transfer of the queues in
the event of a failure.

Each of the master cluster RegionServers keeps a watcher on every other RegionServer, in order to be notified when
one becomes unavailable just as the master does. When a failure happens, they all race to create a znode called lock
inside the unavailable RegionServer znode that contains its queues. The RegionServer that creates it successfully then
transfers all the queues to its own znode, one at a time since ZooKeeper does not support renaming queues. After all
queues are transferred, they are deleted from the old location. The recovered znodes are then renamed with the slave
cluster ID appended to the name of the server that failed.

Next, the master cluster RegionServer creates one new source thread per copied queue. Each of the source threads
follows the 'read/filter/ship pattern.' Those queues never receive new data because they do not belong to their
new RegionServer. When the reader hits the end of the last log, the queue znode is deleted and the master cluster
RegionServer closes that replication source.

For example, the following hierarchy represents what the znodes layout might be for a master cluster with 3
RegionServers that are replicating to a single slave with the ID of 2. The RegionServer znodes contain a peers znode
that contains a single queue. The znode names in the queues represent the actual file names on HDFS in the form
address,port.timestamp:

/hbase/replication/rs/
 1.1.1.1,60020,123456780/
 2/
 1.1.1.1,60020.1234 (Contains a position)
 1.1.1.1,60020.1265
 1.1.1.2,60020,123456790/
 2/
 1.1.1.2,60020.1214 (Contains a position)
 1.1.1.2,60020.1248
 1.1.1.2,60020.1312
 1.1.1.3,60020, 123456630/
 2/
 1.1.1.3,60020.1280 (Contains a position)

Assume that 1.1.1.2 loses its ZooKeeper session. The survivors race to create a lock, and, arbitrarily, 1.1.1.3 wins. It
then starts transferring all the queues to the znode of its local peers by appending the name of the server that failed.
Right before 1.1.1.3 is able to clean up the old znodes, the layout looks like the following:

/hbase/replication/rs/
 1.1.1.1,60020,123456780/
 2/
 1.1.1.1,60020.1234 (Contains a position)
 1.1.1.1,60020.1265
 1.1.1.2,60020,123456790/
 lock
 2/
 1.1.1.2,60020.1214 (Contains a position)
 1.1.1.2,60020.1248
 1.1.1.2,60020.1312
 1.1.1.3,60020,123456630/
 2/
 1.1.1.3,60020.1280 (Contains a position)

 2-1.1.1.2,60020,123456790/
 1.1.1.2,60020.1214 (Contains a position)
 1.1.1.2,60020.1248

30

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

 1.1.1.2,60020.1312

Some time later, but before 1.1.1.3 is able to finish replicating the last WAL from 1.1.1.2, it also becomes
unavailable. Some new logs were also created in the normal queues. The last RegionServer then tries to lock 1.1.1.3’s
znode and begins transferring all the queues. Then the new layout is:

/hbase/replication/rs/
 1.1.1.1,60020,123456780/
 2/
 1.1.1.1,60020.1378 (Contains a position)

 2-1.1.1.3,60020,123456630/
 1.1.1.3,60020.1325 (Contains a position)
 1.1.1.3,60020.1401

 2-1.1.1.2,60020,123456790-1.1.1.3,60020,123456630/
 1.1.1.2,60020.1312 (Contains a position)
 1.1.1.3,60020,123456630/
 lock
 2/
 1.1.1.3,60020.1325 (Contains a position)
 1.1.1.3,60020.1401

 2-1.1.1.2,60020,123456790/
 1.1.1.2,60020.1312 (Contains a position)

Related Concepts
Keeping Track of Logs

HBase Replication Metrics
Replication metrics are exposed at the global RegionServer level and at the peer level (since HBase 0.95).

Metric Description

source.sizeOfLogQueue Number of WALs to process (excludes the one which is being
processed) at the replication source.

source.shippedOps Number of of mutations shipped.

source.logEditsRead Number of mutations read from WALs at the replication source.

source.ageOfLastShippedOp Age of last batch shipped by the replication source.

Replication Configuration Options
You can configure replication using the various available options.

Option Description Default Setting

zookeeper.znode.parent Name of the base ZooKeeper znode that is
used for HBase.

/hbase

zookeeper.znode.replication Name of the base znode used for replication. replication

zookeeper.znode.replication. peers Name of the peer znode. peers

zookeeper.znode.replication. peers.state Name of the peer-state znode. peer-state

zookeeper.znode.replication. rx Name of the rs znode. rs

hbase.replication Whether replication is enabled or disabled on
the cluster.

false

31

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Option Description Default Setting

replication.sleep.before. failover Number of milliseconds a worker should sleep
before attempting to replicate the WAL queues
for a dead RegionServer.

--

replication.executor.workers Number of RegionServers a RegionServer
should attempt to failover simultaneously.

1

Monitoring Replication Status
You can use the HBase shell command status 'replication' to monitor the replication status on your cluster.

The command has three variations:

Command Description

* status 'replication' Prints the status of each source and its sinks, sorted by hostname.

* status 'replication', 'source' Prints the status for each replication source, sorted by hostname.

* status 'replication', 'sink' Prints the status for each replication sink, sorted by hostname.

Setting Up HBase Replication Among Kerberos Secured Clusters
HBase replication supports Kerberos, if you want to ensure secure communication between two clusters.

Before you begin

Prerequisite

You have configured HBase replication in two separate clusters.

Prior to configuring secure HBase, you must configure cross realm authentication for Kerberos, ZooKeeper, and
Apache Hadoop.

Procedure

1. Create krbtgt principals for the two realms.

For example, if you have two realms called HDP1.COM and HDP2.COM, the realms must share a key. In this
case, you add the following principles in both the realms:

krbtgt/HDP1.COM@HDP2.COM and krbtgt/HDP2.COM@HDP1.COM

There must be at least one common encryption mode between these two realms:

HDP1 Cluster
 kadmin.local:addprinc krbtgt/HDP1.COM@HDP2.COM
 kadmin.local:addprinc krbtgt/HDP2.COM@HDP1.COM

HDP2 Cluster
 kadmin.local:addprinc krbtgt/HDP1.COM@HDP2.COM
 kadmin.local:addprinc krbtgt/HDP2.COM@HDP1.COM

Note:

To ensure, there is at least one common encryption mode between the realms, you can use the -e option in
addprinc to specify the list of encryption types. Refer to the “Supported Encryption Types” in mit kerberos
manual in your deployment to view all possible options.

kadmin.local:addprinc -e "<enc_type_list >" krbtgt/HDP1.COM@HDP2.COM

2. Add rules in the slave ZooKeeper to create short names based on the incoming principal.

To do this, add a system level property in java.env, as defined in the conf directory.

32

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

a) On the HDP1 cluster, add support for the realm called HDP2.COM, and have two members in the principal
(such as service/instance@HDP2.com):

-Dzookeeper.security.auth_to_local=RULE:[2:\$1@\$0](.*@\\QHDP2.COM\\E
$)s/@\\QHDP2.COM\\E$//DEFAULT

b) On the HDP2 cluster, add support for the realm called HDP1.COM, and have two members in the principal
(such as service/instance@HDP1.com):

-Dzookeeper.security.auth_to_local=RULE:[2:\$1@\$0](.*@\\QHDP1.COM\\E
$)s/@\\QHDP1.COM\\E$//DEFAULT

The DEFAULT value defines the default rule.

3. Add rules for creating short names in the Hadoop processes. To do this, add the hadoop.security.auth_to_local
property in the core-site.xml file in the replica cluster.

a) On the HDP1 cluster, add the following:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[2:\$1@\$0](.*@\\QHDP2.COM\\E$)s/@\\QHDP2.COM\\E$//DEFAULT
 </value>

b) On the HDP2 cluster, add the following:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[2:\$1@\$0](.*@\\QHDP1.COM\\E$)s/@\\QHDP1.COM\\E$//DEFAULT
 </value>

4. Manage and configure HBase cluster replication to complete the replication process.

Related Tasks
Managing and Configuring HBase Cluster Replication

Configuring NameNode High Availability
The HDFS NameNode High Availability feature enables you to run redundant NameNodes in the same cluster in an
Active/Passive configuration with a hot standby. This eliminates the NameNode as a potential single point of failure
(SPOF) in an HDFS cluster. As of Hadoop 3.0, you can configure more than one backup NameNode.

Prior to Hadoop 2.0, the NameNode represented a single point of failure (SPOF) in an HDFS cluster. Each cluster had
a single NameNode, and if that machine or process became unavailable, the cluster as a whole would be unavailable
until the NameNode was either restarted or brought up on a separate machine. This situation impacted the total
availability of the HDFS cluster in two major ways:

• In the case of an unplanned event such as a machine crash, the cluster would be unavailable until an operator
restarted the NameNode.

• Planned maintenance events such as software or hardware upgrades on the NameNode machine would result in
periods of cluster downtime.

HDFS NameNode HA avoids this by facilitating either a fast failover to one or more backup NameNodes during
machine crash, or a graceful administrator-initiated failover during planned maintenance.

This guide provides an overview of the HDFS NameNode High Availability (HA) feature, instructions on how to
deploy Hue with an HA cluster, and instructions on how to enable HA on top of an existing HDP cluster using the
Quorum Journal Manager (QJM) and ZooKeeper Failover Controller for configuration and management. Using

33

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

the QJM and ZooKeeper Failover Controller enables the sharing of edit logs between the Active and Standby
NameNodes.

Note:

This guide assumes that an existing HDP cluster has been manually installed and deployed. If your existing
HDP cluster was installed using Ambari, configure NameNode HA using the Ambari wizard, as described in
the Ambari documentation.

NameNode Architecture
In a typical HA cluster, two or more separate machines are configured as NameNodes. In a working cluster, one of
the NameNode machine is in the Active state, and the others are in the Standby state.

The Active NameNode is responsible for all client operations in the cluster, while the Standby NameNode acts as a
backup. The Standby machine maintains enough state to provide a fast failover (if required).

In order for the Standby node to keep its state synchronized with the Active node, both nodes communicate with a
group of separate daemons called JournalNodes (JNs). When the Active node performs any namespace modification,
the Active node durably logs a modification record to a majority of these JNs. The Standby node reads the edits from
the JNs and continuously watches the JNs for changes to the edit log. Once the Standby Node observes the edits,
it applies these edits to its own namespace. When using QJM, JournalNodes act as the shared editlog storage. In a
failover event, the Standby ensures that it has read all of the edits from the JounalNodes before promoting itself to the
Active state. (This mechanism ensures that the namespace state is fully synchronized before a failover completes.)

Note:

Secondary NameNode is not required in HA configuration because the Standby node also performs the tasks
of the Secondary NameNode.

To provide a fast failover, it is also necessary that the Standby node have up-to-date information on the location of
blocks in your cluster. To get accurate information about the block locations, DataNodes are configured with the
location of all the NameNodes, and send block location information and heartbeats to all the NameNode machines.

It is vital for the correct operation of an HA cluster that only one of the NameNodes should be Active at a time.
Failure to do so would cause the namespace state to quickly diverge between the NameNode machines, thus causing
potential data loss. (This situation is referred to as a split-brain scenario.)

To prevent the split-brain scenario, the JournalNodes allow only one NameNode to be a writer at a time. During
failover, the NameNode, that is chosen to become active, takes over the role of writing to the JournalNodes. This
process prevents the other NameNode from continuing in the Active state and thus lets the new Active node proceed
with the failover safely.

34

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Preparing the Hardware Resources for NameNode High Availability
Make sure that you prepare the required hardware resources for High Availability.

• NameNode machines: The machines where you run Active and Standby NameNodes, should have exactly the
same hardware. .

• JournalNode machines: The machines where you run the JournalNodes. The JournalNode daemon is relatively
lightweight, so these daemons may reasonably be co- located on machines with other Hadoop daemons, for
example the NameNodes or the YARN ResourceManager.

Note:

There must be at least three JournalNode daemons, because edit log modifications must be written to a
majority of JNs. This lets the system tolerate failure of a single machine. You may also run more than
three JournalNodes, but in order to increase the number of failures that the system can tolerate, you must
run an odd number of JNs (3, 5, 7, and so on).

Note that when running with N JournalNodes, the system can tolerate at most (N - 1) / 2 failures and
continue to function normally.

• ZooKeeper machines: For automated failover functionality, there must be an existing ZooKeeper cluster available.
The ZooKeeper service nodes can be co-located with other Hadoop daemons.

In an HA cluster, the Standby NameNode also performs checkpoints of the namespace state. Therefore, do not deploy
a Secondary NameNode, CheckpointNode, or BackupNode in an HA cluster.

Deploying the NameNode HA Cluster
HA configuration is backward compatible and works with your existing single NameNode configuration.

The following instructions describe how to set up NameName HA on a manually-installed cluster. If you installed
with Ambari and manage HDP on Ambari 2.0.0 or later, instead of the manual instructions use the Ambari
documentation for the NameNode HA wizard.

Note:

HA cannot accept HDFS cluster names that include an underscore (_).

To deploy a NameNode HA cluster, use the steps in the following subsections.

Related Tasks
Configure and Deploy Automatic Failover

Configuring the NameNode HA Cluster
First, add High Availability configurations to your HDFS configuration files. Start by taking the HDFS configuration
files from the original NameNode in your HDP cluster, and use that as the base, adding various properties to those
files.

About this task
After you have added the configurations below, ensure that the same set of HDFS configuration files are propagated
to all nodes in the HDP cluster. This ensures that all the nodes and services are able to interact with the highly
available NameNode.

Add the following configuration options to your hdfs-site.xml file:

Procedure

• dfs.nameservices

Choose an arbitrary but logical name (for example, mycluster) as the value for dfs.nameservices option. This
name will be used for both configuration and authority component of absolute HDFS paths in the cluster.

<property>
 <name>dfs.nameservices</name>

35

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

 <value>mycluster</value>
 <description>Logical name for this new nameservice</description>
</property>

If you are also using HDFS Federation, this configuration setting should also include the list of other
nameservices, HA or otherwise, as a comma-separated list.

• dfs.ha.namenodes.[$nameservice ID]

Provide a list of comma-separated NameNode IDs. DataNodes use this this property to determine all the
NameNodes in the cluster.

For example, for the nameservice ID mycluster and individual NameNode IDs nn1, nn2, and nn3, the value of this
property is:

<property>
 <name>dfs.ha.namenodes.mycluster</name>
 <value>nn1,nn2,nn3</value>
 <description>Unique identifiers for each NameNode in the
 nameservice</description>
</property>

Note:

The minimum number of NameNodes for HA is two, but you can configure more. You should not exceed
five NameNodes due to communication overhead. Three NameNodes are recommended.

• dfs.namenode.rpc-address.[$nameservice ID].[$name node ID]

Use this property to specify the fully-qualified RPC address for each NameNode to listen on.

Continuing with the previous example, set the full address and IPC port of the NameNode process for the
NameNode IDs above -- nn1, nn2, and nn3.

Note that there will be three separate configuration options.

<property>
 <name>dfs.namenode.rpc-address.mycluster.nn1</name>
 <value>machine1.example.com:8020</value>
</property>

<property>
 <name>dfs.namenode.rpc-address.mycluster.nn2</name>
 <value>machine2.example.com:8020</value>
</property>

<property>
 <name>dfs.namenode.rpc-address.mycluster.nn3</name>
 <value>machine3.example.com:9820</value>
</property>

• dfs.namenode.http-address.[$nameservice ID].[$name node ID]

Use this property to specify the fully-qualified HTTP address for each NameNode to listen on.

Set the addresses for the NameNodes HTTP servers to listen on. For example:

<property>
 <name>dfs.namenode.http-address.mycluster.nn1</name>
 <value>machine1.example.com:9870</value>
</property>

<property>
 <name>dfs.namenode.http-address.mycluster.nn2</name>
 <value>machine2.example.com:9870</value>
</property>

36

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

<property>
 <name>dfs.namenode.http-address.mycluster.nn3</name>
 <value>machine3.example.com:9870</value>
</property>

Note:

If you have Hadoop security features enabled, set the https-address for each NameNode.
• dfs.namenode.shared.edits.dir

Use this property to specify the URI that identifies a group of JournalNodes (JNs) where the NameNode will
write/read edits.

Configure the addresses of the JNs that provide the shared edits storage. The Active nameNode writes to this
shared storage and the Standby NameNode reads from this location to stay up-to-date with all the file system
changes.

Although you must specify several JournalNode addresses, you must configure only one of these URIs for your
cluster.

The URI should be of the form:

qjournal://host1:port1;host2:port2;host3:port3/journalId

The Journal ID is a unique identifier for this nameservice, which allows a single set of JournalNodes to provide
storage for multiple federated namesystems. You can reuse the nameservice ID for the journal identifier.

For example, if the JournalNodes for a cluster were running on node1.example.com, node2.example.com, and
node3.example.com, and the nameservice ID were mycluster, you would use the following value for this setting:

<property>
 <name>dfs.namenode.shared.edits.dir</name>
 <value>qjournal://node1.example.com:8485;node2.example.com:
 8485;node3.example.com:8485/mycluster</value>
</property>

Note:

Note that the default port for the JournalNode is 8485.
• dfs.client.failover.proxy.provider.[$nameservice ID]

This property specifies the Java class that HDFS clients use to contact the Active NameNode. DFS Client uses
this Java class to determine which NameNode is the current Active and therefore which NameNode is currently
serving client requests.

Use the ConfiguredFailoverProxyProvider implementation if you are not using a custom implementation.

For example:

<property>
 <name>dfs.client.failover.proxy.provider.mycluster</name>
 <value>org.apache.hadoop.hdfs.server.namenode.ha.
 ConfiguredFailoverProxyProvider</value>
</property>

• dfs.ha.fencing.methods

This property specifies a list of scripts or Java classes that will be used to fence the Active NameNode during a
failover.

For maintaining system correctness, it is important to have only one NameNode in the Active state at any
given time. When using the Quorum Journal Manager, only one NameNode will ever be allowed to write to
the JournalNodes, so there is no potential for corrupting the file system metadata from a split-brain scenario.

37

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

However, when a failover occurs, it is still possible that the previous Active NameNode could serve read requests
to clients, which may be out of date until that NameNode shuts down when trying to write to the JournalNodes.

For this reason, it is still recommended to configure some fencing methods even when using the Quorum Journal
Manager. To improve the availability of the system in the event the fencing mechanisms fail, it is advisable to
configure a fencing method which is guaranteed to return success as the last fencing method in the list. Note that
if you choose to use no actual fencing methods, you must set some value for this setting, for example shell(/bin/
true).

The fencing methods used during a failover are configured as a carriage-return-separated list, which will
be attempted in order until one indicates that fencing has succeeded. The following two methods are
packaged with Hadoop: shell and sshfence. For information on implementing custom fencing method, see the
org.apache.hadoop.ha.NodeFencer class.

sshfence: SSH to the Active NameNode and kill the process.

The sshfence option SSHes to the target node and uses fuser to kill the process listening on the service's TCP port.
In order for this fencing option to work, it must be able to SSH to the target node without providing a passphrase.
Ensure that you configure the dfs.ha.fencing.ssh.private-key-files option, which is a comma-separated list of SSH
private key files.

For example:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>sshfence</value>
</property>

<property>
 <name>dfs.ha.fencing.ssh.private-key-files</name>
 <value>/home/exampleuser/.ssh/id_rsa</value>
</property>

Optionally, you can also configure a non-standard username or port to perform the SSH. You can also configure
a timeout, in milliseconds, for the SSH, after which this fencing method will be considered to have failed. To
configure non-standard username or port and timeout, see the properties given below:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>sshfence([[username][:port]])</value>
</property>

<property>
 <name>dfs.ha.fencing.ssh.connect-timeout</name>
 <value>30000</value>
</property>

shell: Run an arbitrary shell command to fence the Active NameNode.

The shell fencing method runs an arbitrary shell command:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>shell(/path/to/my/script.sh arg1 arg2 ...)</value>
</property>

The string between '(' and ')' is passed directly to a bash shell and may not include any closing parentheses.

The shell command will be run with an environment set up to contain all of the current Hadoop configuration
variables, with the '_' character replacing any '.' characters in the configuration keys. The configuration
used has already had any namenode-specific configurations promoted to their generic forms -- for example

38

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

dfs_namenode_rpc-address will contain the RPC address of the target node, even though the configuration may
specify that variable as dfs.namenode.rpc-address.ns1.nn1.

Additionally, the following variables (referring to the target node to be fenced) are also available:

• $target_host: Hostname of the node to be fenced.
• $target_port: IPC port of the node to be fenced
• $target_address: The combination of $target_host and $target_port as host:port
• $target_nameserviceid: The nameservice ID of the NN to be fenced
• $target_namenodeid: The namenode ID of the NN to be fenced

These environment variables may also be used as substitutions in the shell command. For example:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>shell(/path/to/my/script.sh --nameservice=$target_nameserviceid
 $target_host:$target_port)</value>
</property>

If the shell command returns an exit code of 0, the fencing is successful.

Note:

This fencing method does not implement any timeout. If timeouts are necessary, they should be
implemented in the shell script itself (for example, by forking a subshell to kill its parent in some number
of seconds).

• fs.defaultFS The default path prefix used by the Hadoop FS client. Optionally, you may now configure the default
path for Hadoop clients to use the new HA-enabled logical URI. For example, for mycluster nameservice ID, this
will be the value of the authority portion of all of your HDFS paths. Configure this property in the core-site.xml
file:

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://mycluster</value>
</property>

• dfs.journalnode.edits.dir This is the absolute path on the JournalNode machines where the edits and other local
state (used by the JNs) will be stored. You may only use a single path for this configuration. Redundancy for this
data is provided by either running multiple separate JournalNodes or by configuring this directory on a locally-
attached RAID array. For example:

<property>
 <name>dfs.journalnode.edits.dir</name>
 <value>/path/to/journal/node/local/data</value>
</property>

Note:

NameNode and NameNode HA failure may occur if the hadoop.security.authorization property in the
core-site.xml file is set to true without Kerberos enabled on a NameNode HA cluster. Therefore you
should only set this property to true when configuring HDP for Kerberos.

Deploying a NameNode HA Cluster
To deploy a NameNode HA cluster, you must initialize JournalNodes, run the required configurations for HA on the
NameNodes, and validate the HA configuration.

About this task

In this task, we convert a non-HA cluster to HA. We use NN1 to denote the original NameNode in the non-HA setup,
and NN2 to denote the other NameNode that is to be added in the HA setup. If you are using more than one standby
NameNode, repeat the steps for NN2 on NN3.

39

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Note:

HA clusters reuse the NameService ID to identify a single HDFS instance (that may consist of multiple HA
NameNodes).

A new abstraction called NameNode ID is added with HA. Each NameNode in the cluster has a distinct
NameNode ID to distinguish it.

To support a single configuration file for all of the NameNodes, the relevant configuration parameters are
suffixed with both the NameService ID and the NameNode ID.

Procedure

1. Start the JournalNode daemons on those set of machines where the JNs are deployed. On each machine, execute
the following command:

su –l hdfs –c "/usr/hdp/current/hadoop-hdfs-journalnode/../hadoop/sbin/
hdfs-daemon.sh start journalnode"

2. Wait for the daemon to start on each of the JN machines.

3. Initialize JournalNodes.

• At the NN1 host machine, execute the following command:

su –l hdfs –c "hdfs namenode -initializeSharedEdits -force"

This command formats all the JournalNodes. This by default happens in an interactive way: the command
prompts users for “Y/N” input to confirm the format. You can skip the prompt by using option -force or -
nonInteractive.

It also copies all the edits data after the most recent checkpoint from the edits directories of the local
NameNode (NN1) to JournalNodes.

• Initialize HA state in ZooKeeper. Execute the following command on NN1:

hdfs zkfc -formatZK -force

This command creates a znode in ZooKeeper. The failover system stores uses this znode for data storage.
• Check to see if ZooKeeper is running. If not, start ZooKeeper by executing the following command on the

ZooKeeper host machine(s).

su - zookeeper -c "export ZOOCFGDIR=/usr/hdp/current/zookeeper-server/
conf ; export ZOOCFG=zoo.cfg; source /usr/hdp/current/zookeeper-
server/conf/zookeeper-env.sh ; /usr/hdp/current/zookeeper-server/bin/
zkServer.sh start"

• At the standby namenode host, execute the following command:

su -l hdfs -c "hdfs namenode -bootstrapStandby -force"

4. Start NN1. At the NN1 host machine, execute the following command:

su -l hdfs -c "/usr/hdp/current/hadoop-hdfs-namenode/../hadoop/sbin/hdfs-
daemon.sh start namenode"

Make sure that NN1 is running correctly.

5. Format NN2 and copy the latest checkpoint (FSImage) from NN1 to NN2 by executing the following command:

su -l hdfs -c "hdfs namenode -bootstrapStandby -force"

40

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

This command connects with HH1 to get the namespace metadata and the checkpointed fsimage. This command
also ensures that NN2 receives sufficient editlogs from the JournalNodes (corresponding to the fsimage). This
command fails if JournalNodes are not correctly initialized and cannot provide the required editlogs.

6. Start NN2. Execute the following command on the NN2 host machine:

su -l hdfs -c "/usr/hdp/current/hadoop-hdfs-namenode/../hadoop/sbin/
hadoop-daemon.sh start namenode"

Ensure that NN2 is running correctly.

7. If you are deploying an additional NameNode NN3, repeat steps 5 and 6 for NN3.

8. Start DataNodes. Execute the following command on all the DataNodes:

su -l hdfs -c "/usr/hdp/current/hadoop-hdfs-datanode/../hadoop/sbin/
hadoop-daemon.sh start datanode"

9. Validate the HA configuration.

Go to the NameNodes' web pages separately by browsing to their configured HTTP addresses. Under the
configured address label, you should see that HA state of the NameNode. The NameNode can be either in
"standby" or "active" state.

Note:

The HA NameNode is initially in the Standby state after it is bootstrapped. You can also use either JMX
(tag.HAState) to query the HA state of a NameNode. The following command can also be used to query
the HA state of a NameNode:

hdfs haadmin -getServiceState

10. Transition one of the HA NameNodes to the Active state.

Initially, all the NameNodes are in the Standby state. Therefore you must transition one of the NameNodes to the
Active state. This transition can be performed using one of the following options (ZooKeeper is not required for
Option I).

• Option I: Using CLI – Use the command line interface (CLI) to transition one of the NameNode to the Active
State. Execute the following command on that NameNode host machine:

hdfs haadmin -failover --forcefence --forceactive <serviceId>
 <namenodeId>

• Option II: Deploying Automatic Failover – You can configure and deploy automatic failover.

Deploying Hue with an HA Cluster
If you are going to use Hue with an HA Cluster, make changes to /etc/hue/conf/hue.ini file.

41

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Procedure

1. Install the Hadoop HttpFS component on the Hue server.

For RHEL/CentOS/Oracle Linux:

yum install hadoop-httpfs

For SLES:

zypper install hadoop-httpfs

2. Modify /etc/hadoop-httpfs/conf/httpfs-env.sh to add the JDK path. In the file, ensure that JAVA_HOME is set:

export JAVA_HOME=/usr/jdk64/jdk1.7.0_67

3. Configure the HttpFS service script by setting up the symlink in /etc/init.d:

> ln -s /usr/hdp/{HDP2.4.x version number}
/hadoop-httpfs/etc/rc.d/init.d/hadoop-httpfs /etc/init.d/hadoop-httpfs

4. Modify /etc/hadoop-httpfs/conf/httpfs-site.xml to configure HttpFS to talk to the cluster, by confirming that the
following properties are correct:

<property>
 <name>httpfs.proxyuser.hue.hosts</name>
 <value>*</value>
</property>

<property>
 <name>httpfs.proxyuser.hue.groups</name>
 <value>*</value>
</property>

5. Start the HttpFS service.

service hadoop-httpfs start

6. Modify the core-site.xml file. On the NameNodes and all the DataNodes, add the following properties to the
$HADOOP_CONF_DIR /core-site.xml file, where $HADOOP_CONF_DIR is the directory for storing the
Hadoop configuration files. For example, /etc/hadoop/conf.

<property>
 <name>hadoop.proxyuser.httpfs.groups</name>
 <value>*</value>
</property>

<property>
 <name>hadoop.proxyuser.httpfs.hosts</name>
 <value>*</value>
</property>

7. In the hue.ini file, under the [hadoop][[hdfs_clusters]][[[default]]] subsection, use the following variables to
configure the cluster:

Property Description Example

fs_defaultfs NameNode URL using the logical name for
the new name service. For reference, this
is the dfs.nameservices property in hdfs-
site.xml in your Hadoop configuration.

hdfs://mycluster

webhdfs_url URL to the HttpFS server. http://c6401.apache.org:14000/ webhdfs/v1/

42

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

8. Restart Hue for the changes to take effect.

service hue restart

Deploying Oozie with an HA Cluster
You can configure multiple Oozie servers against the same database to provide High Availability (HA) for the Oozie
service.

About this task

You need the following prerequisites:

Procedure

• A database that supports multiple concurrent connections. In order to have full HA, the database should also have
HA support, or it becomes a single point of failure.

Note:

The default derby database does not support this.
• A ZooKeeper ensemble. Apache ZooKeeper is a distributed, open-source coordination service for distributed

applications; the Oozie servers use it for coordinating access to the database and communicating with each other.
In order to have full HA, there should be at least 3 ZooKeeper servers.

• Multiple Oozie servers.

Important:

While not strictly required, you should configure all ZooKeeper servers to have identical properties.
• A Loadbalancer, Virtual IP, or Round-Robin DNS. This is used to provide a single entry-point for users and for

callbacks from the JobTracker.

The load balancer should be configured for round-robin between the Oozie servers to distribute the requests. Users
(using either the Oozie client, a web browser, or the REST API) should connect through the load balancer. In
order to have full HA, the load balancer should also have HA support, or it becomes a single point of failure.

Related Tasks
Configure Oozie Failover

Related Information
Apache ZooKeeper

Operating a NameNode HA cluster
The dfsadmin command can be run on both active and standby NameNodes to operate the HA cluster.

• While operating an HA cluster, the Active NameNode cannot commit a transaction if it cannot write successfully
to a quorum of the JournalNodes.

• When restarting an HA cluster, the steps for initializing JournalNodes and NN2 can be skipped.
• Start the services in the following order:

1. JournalNodes
2. NameNodes

Note:

Verify that the ZKFailoverController (ZKFC) process on each node is running so that one of the
NameNodes can be converted to active state.

3. DataNodes
• In a NameNode HA cluster, the following dfsadmin command options will run only on the active NameNode:

-rollEdits
-setQuota

43

http://zookeeper.apache.org/

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

-clrQuota
-setSpaceQuota
-clrSpaceQuota
-setStoragePolicy
-getStoragePolicy
-finalizeUpgrade
-rollingUpgrade
-printTopology
-allowSnapshot <snapshotDir>
-disallowSnapshot <snapshotDir>

The following dfsadmin command options will run on both the active and standby NameNodes:

-safemode enter
-saveNamespace
-restoreFailedStorage
-refreshNodes
-refreshServiceAcl
-refreshUserToGroupsMappings
-refreshSuperUserGroupsConfiguration
-refreshCallQueue
-metasave
-setBalancerBandwidth

The -refresh <host:ipc_port> <key> arg1..argn command will be sent to the corresponding host according to its
command arguments.

The -fetchImage <local directory> command attempts to identify the active NameNode through a RPC call, and
then fetch the fsimage from that NameNode. This means that usually the fsimage is retrieved from the active
NameNode, but it is not guaranteed because a failover can happen between the two operations.

The following dfsadmin command options are sent to the DataNodes:

-refreshNamenodes
-deleteBlockPool
-shutdownDatanode <datanode_host:ipc_port> upgrade
-getDatanodeInfo <datanode_host:ipc_port>

Configuring and Deploying NameNode Automatic Failover
Automatic Failover adds Zookeper Quorum and ZK FailoverController process components to an HDFS deployment.

The preceding sections describe how to configure manual failover. In that mode, the system will not automatically
trigger a failover from the active to the standby NameNode, even if the active node has failed. This section describes
how to configure and deploy automatic failover.

Automatic failover adds following components to an HDFS deployment

• ZooKeeper quorum
• ZKFailoverController process (abbreviated as ZKFC).

The ZKFailoverController (ZKFC) is a ZooKeeper client that monitors and manages the state of the NameNode. Each
of the machines which run NameNode service also runs a ZKFC. ZKFC is responsible for:

• Health monitoring: ZKFC periodically pings its local NameNode with a health-check command.
• ZooKeeper session management: When the local NameNode is healthy, the ZKFC holds a session open in

ZooKeeper. If the local NameNode is active, it also holds a special "lock" znode. This lock uses ZooKeeper's
support for "ephemeral" nodes; if the session expires, the lock node will be automatically deleted.

• ZooKeeper-based election: If the local NameNode is healthy and no other node currently holds the lock znode,
ZKFC will try to acquire the lock. If ZKFC succeeds, then it has "won the election" and will be responsible for
running a failover to make its local NameNode active. The failover process is similar to the manual failover

44

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

described above: first, the previous active is fenced if necessary and then the local NameNode transitions to active
state.

Prerequisites for Configuring NameNode Automatic Failover
Make sure you have a working Zookeeper service and you shut down your HA cluster before you try to configure and
deploy automatic failover.

Complete the following prerequisites:

• Make sure that you have a working ZooKeeper service. If you have an Ambari-deployed HDP cluster with
ZooKeeper, you can use that.

Note:

In a typical deployment, ZooKeeper daemons are configured to run on three or five nodes. It is however
acceptable to co-locate the ZooKeeper nodes on the same hardware as the HDFS NameNode and Standby
Node. Many operators choose to deploy the third ZooKeeper process on the same node as the YARN
ResourceManager. To achieve performance and improve isolation, Hortonworks recommends configuring
the ZooKeeper nodes such that the ZooKeeper data and HDFS metadata is stored on separate disk drives.

• Shut down your HA cluster (configured for manual failover).

Currently, you cannot transition from a manual failover setup to an automatic failover setup while the cluster is
running.

Configure and Deploy Automatic Failover
Configure automatic failover, initialize HA state in Zookeeper, and start the nodes in the cluster.

Procedure

1. Configure automatic failover.

• Set up your cluster for automatic failover. Add the following property to the hdfs-site.xml file for all of the
NameNode machines:

<property>
 <name>dfs.ha.automatic-failover.enabled</name>
 <value>true</value>

45

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

 </property>

• List the host-port pairs running the ZooKeeper service. Add the following property to the core-site.xml file for
all of the NameNode machines:

<property>
 <name>ha.zookeeper.quorum</name>
 <value>zk1.example.com:2181,zk2.example.com:2181,
 zk3.example.com:2181</value>
</property>

Note:

Suffix the configuration key with the nameservice ID to configure the above settings on a per-
nameservice basis. For example, in a cluster with federation enabled, you can explicitly enable
automatic failover for only one of the nameservices by setting dfs.ha.automatic-failover.enabled.$my-
nameservice-id.

2. Initialize HA state in ZooKeeper.

Execute the following command on NN1:

hdfs zkfc -formatZK -force

This command creates a znode in ZooKeeper. The automatic failover system stores uses this znode for data
storage.

3. Check to see if ZooKeeper is running. If not, start ZooKeeper by executing the following command on the
ZooKeeper host machines.

su - zookeeper -c "export ZOOCFGDIR=/usr/hdp/current/zookeeper-server/
conf ; export ZOOCFG=zoo.cfg; source /usr/hdp/current/zookeeper-server/
conf/zookeeper-env.sh ; /usr/hdp/current/zookeeper-server/bin/zkServer.sh
 start"

4. Start the JournalNodes, NameNodes, and DataNodes using the instructions provided in the Controlling HDP
Services Manually chapter of the HDP Administration Guide.

5. Start the ZooKeeper Failover Controller (ZKFC) by executing the following command:

su -l hdfs -c "/usr/hdp/current/hadoop-hdfs-namenode/../hadoop/sbin/
hadoop-daemon.sh start zkfc"

The sequence of starting ZKFC determines which NameNode will become Active. For example, if ZKFC is
started on NN1 first, it will cause NN1 to become Active.

Note:

To convert a non-HA cluster to an HA cluster, Hortonworks recommends that you run the
bootstrapStandby command (this command is used to initialize NN2) before you start ZKFC on any of the
NameNode machines.

6. Verify automatic failover.

a. Locate the Active NameNode.

Use the NameNode web UI to check the status for each NameNode host machine.
b. Cause a failure on the Active NameNode host machine.

For example, you can use the following command to simulate a JVM crash:

kill -9 $PID_of_Active_NameNode

Or, you could power cycle the machine or unplug its network interface to simulate outage.
c. The Standby NameNode should now automatically become Active within several seconds.

46

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Note:

The amount of time required to detect a failure and trigger a failover depends on the configuration of
ha.zookeeper.session-timeout.ms property (default value is 5 seconds).

d. If the test fails, your HA settings might be incorrectly configured.

Check the logs for the zkfc daemons and the NameNode daemons to diagnose the issue.

Related Concepts
Deploying the NameNode HA Cluster

Configure Oozie Failover
Set up the database and configure Oozie on two or more servers and start the Oozie servers.

Procedure

1. Set up your database for High Availability. (For details, see the documentation for your Oozie database.)

Oozie database configuration properties may need special configuration. (For details, see the JDBC driver
documentation for your database.)

2. Configure Oozie identically on two or more servers.

3. Set the OOZIE_HTTP_HOSTNAME variable in oozie-env.sh to the Load Balancer or Virtual IP address.

4. Start all Oozie servers.

5. Use either a Virtual IP Address or Load Balancer to direct traffic to Oozie servers.

6. Access Oozie via the Virtual IP or Load Balancer address.

Related Tasks
Deploying Oozie with an HA Cluster

Related Information
Apache ZooKeeper

Administrative Commands
The subcommands of hdfs haadmin are extensively used for administering an HA cluster.

Running the hdfs haadmin command without any additional arguments will display the following usage information:

Usage: HAAdmin [-ns <nameserviceId>]
 [-transitionToActive <serviceId>]
 [-transitionToStandby <serviceId>]
 [-failover [--forcefence] [--forceactive] <serviceId> <serviceId>]
 [-getServiceState <serviceId>]
 [-checkHealth <serviceId>]
 [-help <command>

This section provides high-level uses of each of these subcommands.

• transitionToActive and transitionToStandby: Transition the state of the given NameNode to Active or Standby.

These subcommands cause a given NameNode to transition to the Active or Standby state, respectively. These
commands do not attempt to perform any fencing, and thus should be used rarely. Instead, Hortonworks
recommends using the following subcommand:

hdfs haadmin -failover

• failover: Initiate a failover between two NameNodes.

This subcommand causes a failover from the first provided NameNode to the second.

• If the first NameNode is in the Standby state, this command transitions the second to the Active state without
error.

47

http://zookeeper.apache.org/

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

• If the first NameNode is in the Active state, an attempt will be made to gracefully transition it to the Standby
state. If this fails, the fencing methods (as configured by dfs.ha.fencing.methods) will be attempted in order
until one succeeds. Only after this process will the second NameNode be transitioned to the Active state. If the
fencing methods fail, the second NameNode is not transitioned to Active state and an error is returned.

• getServiceState: Determine whether the given NameNode is Active or Standby.

This subcommand connects to the provided NameNode, determines its current state, and prints either "standby" or
"active" to STDOUT appropriately. This subcommand might be used by cron jobs or monitoring scripts.

• checkHealth: Check the health of the given NameNode.

This subcommand connects to the NameNode to check its health. The NameNode is capable of performing some
diagnostics that include checking if internal services are running as expected. This command will return 0 if the
NameNode is healthy else it will return a non-zero code.

Note:

This subcommand is in implementation phase and currently always returns success unless the given
NameNode is down.

Configuring ResourceManager High Availability
You can configure ResourceManager High Availability to avoid windows of cluster downtime.

This guide provides instructions on setting up the ResourceManager (RM) High Availability (HA) feature in a HDFS
cluster. The Active and Standby ResourceManagers embed the ZooKeeper-based ActiveStandbyElector to determine
which ResourceManager should be active.

Note:

This guide assumes that an existing HDP cluster has been manually installed and deployed. It provides
instructions on how to manually enable ResourceManager HA on top of the existing cluster.

The ResourceManager is a single point of failure (SPOF) in an HDFS cluster. Each cluster has a single
ResourceManager, and if that machine or process become unavailable, the entire cluster will be unavailable until the
ResourceManager is either restarted or started on a separate machine. This situation impacts the total availability of
the HDFS cluster in two major ways:

• In the case of an unplanned event such as a machine crash, the cluster will be unavailable until an operator restarts
the ResourceManager.

• Planned maintenance events such as software or hardware upgrades on the ResourceManager machine result in
windows of cluster downtime.

The ResourceManager HA feature addresses these problems. This feature enables you to run redundant
ResourceManagers in the same cluster in an Active/Passive configuration with a hot standby. This mechanism thus
facilitates either a fast failover to the standby ResourceManager during machine crash, or a graceful administrator-
initiated failover during planned maintenance.

Preparing the Hardware Resources
Make sure that you prepare the hardware resources before configuring the Resource Manager for High Availability.

• ResourceManager machines: The machines where you run Active and Standby ResourceManagers should have
exactly the same hardware. For recommended hardware for ResourceManagers, see Hardware for Master Nodes
in the Cluster Planning Guide.

• ZooKeeper machines: For automated failover functionality, there must be an existing ZooKeeper cluster available.
The ZooKeeper service nodes can be co-located with other Hadoop daemons.

Deploying ResourceManager HA Cluster
You must first configure manual or automatic ResourceManager failover and then deploy the ResourceManager HA
cluster.

48

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

HA configuration is backward-compatible and works with your existing single ResourceManager configuration.

Configuring Manual or Automatic ResourceManager Failover
Set common ResourceManager HA properties and other properties in yarn-site.xml file.

Complete the following prerequisites:

• Make sure that you have a working ZooKeeper service. If you have an Ambari-deployed HDP cluster with
ZooKeeper, you can use that ZooKeeper service.

Note:

In a typical deployment, ZooKeeper daemons are configured to run on three or five nodes. It is, however,
acceptable to co-locate the ZooKeeper nodes on the same hardware as the HDFS NameNode and Standby
Node. Many operators choose to deploy the third ZooKeeper process on the same node as the YARN
ResourceManager. To achieve performance and improve isolation, Hortonworks recommends configuring
the ZooKeeper nodes such that the ZooKeeper data and HDFS metadata is stored on separate disk drives.

• Shut down the cluster.

Set Common ResourceManager HA Properties

The following properties are required for both manual and automatic ResourceManager HA. Add these properties to
the etc/hadoop/conf/yarn-site.xml file:

Property Name Recommended Value Description

yarn.resourcemanager. ha.enabled true Enable RM HA

yarn.resourcemanager. ha.rm-ids Cluster-specific, e.g., rm1,rm2 A comma-separated list of ResourceManager
IDs in the cluster.

yarn.resourcemanager. hostname.<rm-id> Cluster-specific The host name of the ResourceManager. Must
be set for all RMs.

yarn.resourcemanager. recovery.enabled true Enable job recovery on RM restart or failover.

yarn.resourcemanager. store.class org.apache.hadoop.yarn.
server.resourcemanager.
recovery.ZKRMStateStore

The RMStateStore implementation to use
to store the ResourceManager's internal
state. The ZooKeeper- based store supports
fencing implicitly, i.e., allows a single
ResourceManager to make multiple changes at
a time, and hence is recommended.

yarn.resourcemanager .zk-address Cluster-specific The ZooKeeper quorum to use to store the
ResourceManager's internal state. For multiple
ZK servers, use commas to separate multiple
ZK servers.

yarn.client.failover-proxy-provider org.apache.hadoop.yarn. client.
ConfiguredRMFailover ProxyProvider

When HA is enabled, the class to be used
by Clients, AMs and NMs to failover to the
Active RM. It should extend

org.apache.hadoop.yarn.
client.RMFailoverProxyProvider

This is an optional configuration. The default
value is “org.apache.hadoop.yarn.client.
ConfiguredRMFailoverProxyProvider”

Note:

You can also set values for each of the following properties in yarn-site.xml:

yarn.resourcemanager.address.<rm#id>
yarn.resourcemanager.scheduler.address.<rm#id>
yarn.resourcemanager.admin.address.<rm#id>
yarn.resourcemanager.resource#tracker.address.<rm#id>

49

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

yarn.resourcemanager.webapp.address.<rm#id>

If these addresses are not explicitly set, each of these properties will use

 yarn.resourcemanager.hostname.<rm-
id>:default_port

such as DEFAULT_RM_PORT, DEFAULT_RM_SCHEDULER_PORT, etc.

The following is a sample yarn-site.xml file with these common ResourceManager HA properties configured:

<!-- RM HA Configurations-->

<property>
 <name>yarn.resourcemanager.ha.enabled</name>
 <value>true</value>
</property>

<property>
 <name>yarn.resourcemanager.ha.rm-ids</name>
 <value>rm1,rm2</value>
</property>

<property>
 <name>yarn.resourcemanager.hostname.rm1</name>
 <value>${rm1 address}</value>
</property>

<property>
 <name>yarn.resourcemanager.hostname.rm2</name>
 <value>${rm2 address}</value>
</property>

<property>
 <name>yarn.resourcemanager.webapp.address.rm1</name>
 <value>rm1_web_address:port_num</value>
 <description>We can set rm1_web_address separately.
 If not, it will use
 ${yarn.resourcemanager.hostname.rm1}:DEFAULT_RM_WEBAPP_PORT
 </description>
</property>

<property>
 <name>yarn.resourcemanager.webapp.address.rm2</name>
 <value>rm2_web_address:port_num</value>
</property>

<property>
 <name>yarn.resourcemanager.recovery.enabled</name>
 <value>true</value>
</property>

<property>
 <name>yarn.resourcemanager.store.class</name>
 <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.
 ZKRMStateStore</value>
</property>

<property>
 <name>yarn.resourcemanager.zk-address</name>
 <value>${zk1.address,zk2.address}</value>
</property>

50

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

<property>
 <name>yarn.client.failover-proxy-provider</name>
 <value>org.apache.hadoop.yarn.client.
 ConfiguredRMFailoverProxyProvider</value>
</property>

Configure Manual ResourceManager Failover

Automatic ResourceManager failover is enabled by default, so it must be disabled for manual failover.

To configure manual failover for ResourceManager HA, add the yarn.resourcemanager.ha.automatic-failover.enabled
configuration property to the etc/hadoop/conf/yarn-site.xml file, and set its value to "false":

<property>
 <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
 <value>false</value>
</property>

Configure Automatic ResourceManager Failover

The preceding section described how to configure manual failover. In that mode, the system will not automatically
trigger a failover from the active to the standby ResourceManager, even if the active node has failed. This section
describes how to configure automatic failover.

1. Add the following configuration options to the yarn-site.xml file:

Property Name Recommended Value Description

yarn.resourcemanager.ha. automatic-
failover.zk-base-path

/yarn-leader-election The base znode path to use for storing
leader information, when using ZooKeeper-
based leader election. This is an optional
configuration. The default value is

/yarn-leader-election

yarn.resourcemanager. cluster-id yarn-cluster The name of the cluster. In a HA setting,
this is used to ensure the RM participates in
leader election for this cluster, and ensures
that it does not affect other clusters.

Example:

<property>
 <name>yarn.resourcemanager.ha.automatic-failover.zk-base-path</name>
 <value>/yarn-leader-election</value>
 <description>Optional setting. The default value is
 /yarn-leader-election</description>
</property>

<property>
 <name>yarn.resourcemanager.cluster-id</name>
 <value>yarn-cluster</value>
</property>

2. Automatic ResourceManager failover is enabled by default.

If you previously configured manual ResourceManager failover by setting the value of
yarn.resourcemanager.ha.automatic-failover.enabled to "false", you must delete this property to return automatic
failover to its default enabled state.

Deploying the ResourceManager HA Cluster
Update the yarn-site.xml file and configuration files and start Zookeeper, HDFS, and YARN in that order.

51

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Procedure

1. Copy the etc/hadoop/conf/yarn-site.xml file from the primary ResourceManager host to the standby
ResourceManager host.

2. Make sure that the clientPort value set in etc/zookeeper/conf/zoo.cfg matches the port set in the following yarn-
site.xml property:

<property>
 <name>yarn.resourcemanager.zk-state-store.address</name>
 <value>localhost:2181</value>
</property>

3. Start ZooKeeper. Execute this command on the ZooKeeper host machines:

su - zookeeper -c "export ZOOCFGDIR=/usr/hdp/current/zookeeper-server/
conf ; export ZOOCFG=zoo.cfg; source /usr/hdp/current/zookeeper-server/
conf/zookeeper-env.sh ; /usr/hdp/current/zookeeper-server/bin/zkServer.sh
 start"

4. Start HDFS.

5. Start YARN.

6. Set the active ResourceManager:

MANUAL FAILOVER ONLY: If you configured manual ResourceManager failover, you must transition one
of the ResourceManagers to Active mode. Execute the following CLI command to transition ResourceManager
"rm1" to Active:

yarn rmadmin -transitionToActive rm1

You can use the following CLI command to transition ResourceManager "rm1" to Standby mode:

yarn rmadmin -transitionToStandby rm1

AUTOMATIC FAILOVER: If you configured automatic ResourceManager failover, no action is required -- the
Active ResourceManager will be chosen automatically.

7. Start all remaining unstarted cluster services.

Minimum Settings for Automatic ResourceManager HA Configuration
Consider the minimum yarn-site.xml configuration settings for ResourceManager HA with automatic failover.

The minimum yarn-site.xml configuration settings for ResourceManager HA with automatic failover are as follows:

<property>
 <name>yarn.resourcemanager.ha.enabled</name>
 <value>true</value>
</property>

<property>
 <name>yarn.resourcemanager.ha.rm-ids</name>
 <value>rm1,rm2</value>
</property>

<property>
 <name>yarn.resourcemanager.hostname.rm1</name>
 <value>192.168.1.9</value>
</property>

<property>
 <name>yarn.resourcemanager.hostname.rm2</name>
 <value>192.168.1.10</value>
</property>

52

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

<property>
 <name>yarn.resourcemanager.recovery.enabled</name>
 <value>true</value>
</property>

<property>
 <name>yarn.resourcemanager.store.class</name>
 <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</
value>
</property>

<property>
 <name>yarn.resourcemanager.zk-address</name>
 <value>192.168.1.9:2181,192.168.1.10:2181</value>
 <description>For multiple zk services, separate them with comma</
description>
</property>

<property>
 <name>yarn.resourcemanager.cluster-id</name>
 <value>yarn-cluster</value>
</property>

Testing ResourceManager HA on a Single Node
Enable ResourceManagers to launch and explicitly set values specific to each ResourceManager separately yarn-
site.xml file.

Test ResourceManager High Availability on a single node

To test ResourceManager HA on a single node (launch more than one ResourceManager on a single node), you need
to add the following settings in yarn-site.xml.

To enable ResourceManager "rm1" to launch:

<property>
 <name>yarn.resourcemanager.ha.id</name>
 <value>rm1</value>
 <description>If we want to launch more than one RM in single node, we need
 this configuration</description>
</property>

To enable ResourceManager rm2 to launch:

<property>
 <name>yarn.resourcemanager.ha.id</name>
 <value>rm2</value>
 <description>If we want to launch more than one RM in single node, we need
 this configuration</description>
</property>

You should also explicitly set values specific to each ResourceManager for the following properties separately in
yarn-site.xml:

• yarn.resourcemanager.address.<rm-id>
• yarn.resourcemanager.scheduler.address.<rm-id>
• yarn.resourcemanager.admin.address.<rm-id>
• yarn.resourcemanager.resource#tracker.address.<rm-id>
• yarn.resourcemanager.webapp.address.<rm-id>

53

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

For example:

<!-- RM1 Configs -->

<property>
 <name>yarn.resourcemanager.address.rm1</name>
 <value>localhost:23140</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address.rm1</name>
 <value>localhost:23130</value>
</property>

<property>
 <name>yarn.resourcemanager.webapp.address.rm1</name>
 <value>localhost:23188</value>
</property>

<property>
 <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
 <value>localhost:23125</value>
</property>

<property>
 <name>yarn.resourcemanager.admin.address.rm1</name>
 <value>localhost:23141</value>
</property>

<!-- RM2 configs -->
<property>
 <name>yarn.resourcemanager.address.rm2</name>
 <value>localhost:33140</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address.rm2</name>
 <value>localhost:33130</value>
</property>

<property>
 <name>yarn.resourcemanager.webapp.address.rm2</name>
 <value>localhost:33188</value>
</property>

<property>
 <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
 <value>localhost:33125</value>
</property>

<property>
 <name>yarn.resourcemanager.admin.address.rm2</name>
 <value>localhost:33141</value>
</property>

Deploying Hue with a ResourceManager HA Cluster
Add the HA configuration sub-section at the end of the yarn_clusters section of the hue_ini configuration file.

Add the HA sub-section

If it does not exist, you can add a [[[ha]]] configuration sub-section to end of the [[yarn_clusters]] section of the
hue.ini configuration file.

54

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

To do this, specify the following:

• resourcemanager_api_url

Host on which you are running the failover Resource Manager.
• logical_name

Logical name of the Resource Manager.
• submit_to

Specify if Hue should use the cluster. Specify true to use the cluster, or false to not use the cluster.

If you ensure that the cluster section names are unique, you can add more than one Resource Manager failover
configuration, for example, [[[ha2]]]. By doing so, if the standby Resource Manager also fails over, the next available
RM instance is tried.

Example:

[[yarn_clusters]]

 [[[default]]]
 # Whether to submit jobs to this cluster
 submit_to=true

 ## security_enabled=false

 # Resource Manager logical name (required for HA)
 logical_name=rm1

 # URL of the ResourceManager webapp address
 (yarn.resourcemanager.webapp.address)
 resourcemanager_api_url=http://cl2-node02.local:8088

 # URL of Yarn RPC adress (yarn.resourcemanager.address)
 resourcemanager_rpc_url=http://cl2-node02.local:8050

 # URL of the ProxyServer API
 proxy_api_url=http://cl2-node02.local:8088

 # URL of the HistoryServer API
 history_server_api_url=http://cl2-node02.local:19888

 # URL of the NodeManager API
 node_manager_api_url=http://localhost:8042

 # HA support by specifying multiple clusters
 # e.g.

 [[[ha]]]
 # Enter the host on which you are running the failover Resource
 Manager
 resourcemanager_api_url=http://cl2-node01.local:8088
 history_server_api_url=http://cl2-node02.local:19888
 proxy_api_url=http://cl2-node01.local:8088
 resourcemanager_rpc_url=http://cl2-node01.local:8050
 logical_name=rm2
 submit_to=True
Note only one ha section is necessary, since Hue still uses the default
 section.

55

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Configuring Apache Ranger High Availability
You must consider the specified prerequisites and then configure High Availability (HA) for Apache Ranger.

Configuring Ranger Admin HA
You can configure Ranger Admin HA with or without SSL on an Ambari-managed cluster.

The configuration settings used in this section are sample values. You should adjust these settings to reflect your
environment (folder locations, passwords, file names, and so on).

Prerequisites for Configuring Apache Ranger for High Availability
Consider truststore and security prerequisites before configuring Apache Ranger for HA.

• Copy the keystore/truststore files into a different location (e.g. /etc/security/serverKeys) than the /etc/
<component>/conf folder.

• Make sure that the JKS file names are unique.
• Make sure that the correct permissions are applied.
• Make sure that passwords are secured.

Configuring Ranger Admin HA Without SSL
Set up the load-balancer and enable Ranger Admin on an Ambari-managed cluster.

Procedure

1. Use SSH to connect to the cluster node where you will set up the load-balancer. In this procedure, we use the IP
address 172.22.71.37.

2. Use the following command to switch to the /usr/local directory:

cd /usr/local

3. Download the httpd file and its dependencies (apr and apr-util):

wget https://archive.apache.org/dist/httpd/httpd-2.4.16.tar.gz
wget https://archive.apache.org/dist/apr/apr-1.5.2.tar.gz
wget https://archive.apache.org/dist/apr/apr-util-1.5.4.tar.gz

4. Extract the contents of these files:

tar -xvf httpd-2.4.16.tar.gz
tar -xvf apr-1.5.2.tar.gz
tar -xvf apr-util-1.5.4.tar.gz

5. Run the following commands to move apr and apr-util to the srclib directory under httpd:

mv apr-1.5.2/ apr
mv apr httpd-2.4.16/srclib/
mv apr-util-1.5.4/ apr-util
mv apr-util httpd-2.4.16/srclib/

6. Install PCRE (Perl-Compatible Regular Expressions Library):

yum install pcre pcre-devel

Note:

Here we are using yum install, but you can also download the latest bits from http://www.pcre.org/

56

http://www.pcre.org/

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

7. Install gcc (ANSI-C Compiler and Build System):

yum install gcc

8. Run the following commands to configure the source tree:

cd /usr/local/httpd-2.4.16
./configure

9. Run the following command to make the build:

make

10. Run the install:

make install

11. Run the following commands to confirm the preceding configuration steps:

cd /usr/local/apache2/bin
./apachectl start
curl localhost

This should return:

<html><body><h1>It works!</h1></body></html>

12. Run the following commands to create a backup conf file.

cd /usr/local/apache2/conf
cp httpd.conf ~/httpd.conf.backup

13. Edit the httpd.conf file:

vi /usr/local/apache2/conf/httpd.conf

Make the following updates:

• If you are not running the load-balancer on the default port 80, change the default listening port in line Listen
80 to match the port setting.

• Un-comment the following module entries (remove the # symbol at the beginning of each line):

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
LoadModule slotmem_shm_module modules/mod_slotmem_shm.so
LoadModule lbmethod_byrequests_module modules/mod_lbmethod_byrequests.so
LoadModule lbmethod_bytraffic_module modules/mod_lbmethod_bytraffic.so
LoadModule lbmethod_bybusyness_module modules/mod_lbmethod_bybusyness.so

• Update the ServerAdmin email address, or comment out that line.

#ServerAdmin you@example.com

• At the end of the httpd.conf file, add the following line to read the custom configuration file:

Include conf/ranger-cluster.conf

57

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

14. Create a custom conf file:

vi ranger-cluster.conf

Make the following updates:

• Add the following lines, then change the <VirtualHost *:88> port to match the default port you set in the
httpd.conf file in the previous step.

#
This is the Apache server configuration file providing SSL support.
It contains the configuration directives to instruct the server how to
serve pages over an https connection. For detailing information about
 these
directives see <URL:http://httpd.apache.org/docs/2.2/mod/mod_ssl.html>
#
Do NOT simply read the instructions in here without understanding
what they do. They're here only as hints or reminders. If you are
 unsure
consult the online docs. You have been warned.

#Listen 80
<VirtualHost *:88>
 ProxyRequests off
 ProxyPreserveHost on

 Header add Set-Cookie "ROUTEID=.%{BALANCER_WORKER_ROUTE}e;
 path=/" env=BALANCER_ROUTE_CHANGED

 <Proxy balancer://rangercluster>
 BalancerMember http://172.22.71.38:6080 loadfactor=1
 route=1
 BalancerMember http://172.22.71.39:6080 loadfactor=1
 route=2

 Order Deny,Allow
 Deny from none
 Allow from all

 ProxySet lbmethod=byrequests scolonpathdelim=On
 stickysession=ROUTEID maxattempts=1 failonstatus=500,501,502,503
 nofailover=Off
 </Proxy>

 # balancer-manager
 # This tool is built into the mod_proxy_balancer
 # module and will allow you to do some simple
 # modifications to the balanced group via a gui
 # web interface.
 <Location /balancer-manager>
 SetHandler balancer-manager
 Order deny,allow
 Allow from all
 </Location>

 ProxyPass /balancer-manager !
 ProxyPass / balancer://rangercluster/
 ProxyPassReverse / balancer://rangercluster/

</VirtualHost>

58

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Note:

The URLs listed in the BalancerMember entries are the IP addresses of the Ranger Admin hosts. In this
example, the Ranger Admin host addresses are:

http://172.22.71.38:6080
http://172.22.71.39:6080

15. Run the following commands to restart the httpd server:

cd /usr/local/apache2/bin
./apachectl restart

If you use a browser to check the load-balancer host (with port) as specified in the BalanceMember entries in the
ranger-cluster.conf file, you should see the Ranger Admin page.

16. Enable Ranger Admin HA using Ambari. On the Ambari dashboard of the first Ranger host, select Services >
Ranger, then select Service Actions > Enable Ranger Admin HA to launch the Enable Ranger Admin HA Wizard.

17. On the Get Started page, enter the load-balancer URL and port number (in this example, 172.22.71.37:88), then
click Next.

59

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

18. On the Select Hosts page, confirm the host assignments, then click Next.

19. Check the settings on the Review page, then click Next.

60

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

20. Click Complete on the Install, Start, and Test page to complete the installation.

21. When the installation is complete, the Ranger Admin instances are listed on the Ranger Summary page. Select
Actions > Restart All Required to restart all services that require a restart.

61

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Note:

For Oracle, clear the Setup DB and DB user check box under "Advanced ranger-env" to avoid DB setup.

22. To test the load-balancer and Ranger HA configuration, select Ranger > Service Actions > Stop on one of the
Ranger hosts.

23. Use a browser to check the load-balancer host URL (with port). You should see the Ranger Admin page.

62

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Configuring Ranger Admin HA With SSL
Set up a load-balancer with SSL and enable Ranger Admin HA on an Ambari-managed cluster.

Procedure

1. Use SSH to connect to the cluster node where you will set up the load-balancer. In this procedure, we use the IP
address 172.22.71.37.

2. Use the following command to switch to the /usr/local directory:

cd /usr/local

3. Download the httpd file and its dependencies (apr and apr-util):

wget https://archive.apache.org/dist/httpd/httpd-2.4.16.tar.gz
wget https://archive.apache.org/dist/apr/apr-1.5.2.tar.gz
wget https://archive.apache.org/dist/apr/apr-util-1.5.4.tar.gz

4. Extract the contents of these files:

tar -xvf httpd-2.4.16.tar.gz
tar -xvf apr-1.5.2.tar.gz
tar -xvf apr-util-1.5.4.tar.gz

5. Run the following commands to move apr and apr-util to the srclib directory under httpd:

mv apr-1.5.2/ apr
mv apr httpd-2.4.16/srclib/
mv apr-util-1.5.4/ apr-util
mv apr-util httpd-2.4.16/srclib/

6. Install the required packages:

yum groupinstall "Development Tools"
yum install openssl-devel
yum install pcre-devel

63

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

7. Run the following commands to configure the source tree:

cd /usr/local/httpd-2.4.16
./configure --enable-so --enable-ssl --with-mpm=prefork --with-included-
apr

8. Run the following command to make the build:

make

9. Run the install:

make install

10. Run the following commands to confirm the preceding configuration steps:

cd /usr/local/apache2/bin
./apachectl start
curl localhost

This should return:

<html><body><h1>It works!</h1></body></html>

11. Run the following commands to create a backup conf file.

cd /usr/local/apache2/conf
cp httpd.conf ~/httpd.conf.backup

12. Edit the httpd.conf file:

vi /usr/local/apache2/conf/httpd.conf

Make the following updates:

• If you are not running the load-balancer on the default port 80, change the default listening port in line Listen
80 to match the port setting.

• Un-comment the following module entries (remove the # symbol at the beginning of each line):

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
LoadModule slotmem_shm_module modules/mod_slotmem_shm.so
LoadModule lbmethod_byrequests_module modules/mod_lbmethod_byrequests.so
LoadModule lbmethod_bytraffic_module modules/mod_lbmethod_bytraffic.so
LoadModule lbmethod_bybusyness_module modules/mod_lbmethod_bybusyness.so
LoadModule ssl_module modules/mod_ssl.so

Note:

If LoadModule ssl_module modules/mod_ssl.so is not available in the httpd.conf file, check to make
sure that you performed all of the previous installation steps. The load balancer will not work properly
without the SSL module.

• Update the ServerAdmin email address, or comment out that line.

#ServerAdmin you@example.com

64

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

13. Run the following command to restart the httpd server:

/usr/local/apache2/bin/apachectl restart

You should now be able to use Curl or a browser to access the load-balancer server IP address (with the port
configured in the httpd.conf file) using the HTTPS protocol.

14. Enable Ranger Admin HA using Ambari. On the Ambari dashboard of the first Ranger host, select Services >
Ranger, then select Service Actions > Enable Ranger Admin HA to launch the Enable Ranger Admin HA Wizard.

15. On the Get Started page, enter the load-balancer URL and port number (in this example, 172.22.71.37:88), then
click Next.

16. On the Select Hosts page, confirm the host assignments, then click Next.

65

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

17. Check the settings on the Review page, then click Next.

18. Click Complete on the Install, Start, and Test page to complete the installation.

66

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

19. When the installation is complete, the Ranger Admin instances are listed on the Ranger Summary page. Select
Actions > Restart All Required to restart all services that require a restart.

Note:

For Oracle, clear the Setup DB and DB user check box under "Advanced ranger-env" to avoid DB setup.

20. To test the load-balancer and Ranger HA configuration, select Ranger > Service Actions > Stop on one of the
Ranger hosts.

67

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

21. Use a browser to check the load-balancer host URL (with port). You should see the Ranger Admin page.

22. Use the following steps to generate the self-signed certificate:

a) Switch to the directory that will contain the self-signed certificate:

cd /tmp

b) Generate the private key:

openssl genrsa -out server.key 2048

68

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

c) Generate the CSR:

openssl req -new -key server.key -out server.csr

d) Generate the self-signed key:

openssl x509 -req -days 365 -in server.csr -signkey server.key -out
 server.crt

e) Generate the keystore in PEM format:

openssl pkcs12 -export -passout pass:ranger -in server.crt -inkey
 server.key -out lbkeystore.p12 -name httpd.lb.server.alias

f) Use the keytool to convert the PEM format keystore to JKS format:

keytool -importkeystore -deststorepass ranger -destkeypass ranger
 -destkeystore httpd_lb_keystore.jks -srckeystore lbkeystore.p12 -
srcstoretype PKCS12 -srcstorepass ranger -alias httpd.lb.server.alias

g) Create a truststore of the load-balancer self-signed keystore:

keytool -export -keystore httpd_lb_keystore.jks -alias
 httpd.lb.server.alias -file httpd-lb-trust.cer

23. Copy the generated key and certificate into the /usr/local/apache2/conf/ directory.

cp server.crt /usr/local/apache2/conf/
cp server.key /usr/local/apache2/conf/

24. Add the following entry at the end of the /usr/local/apache2/conf/httpd.conf file to read the custom configuration
file:

Include /usr/local/apache2/conf/ranger-lb-ssl.conf

25. Create a custom conf file for the load-balancer SSL configuration:

vi /usr/local/apache2/conf/ranger-lb-ssl.conf

Make the following updates:

Add the following lines, then change the <VirtualHost *:8443> port to match the default port you set previously in
the httpd.conf file.

<VirtualHost *:8443>

 SSLEngine On
 SSLProxyEngine On
 SSLCertificateFile /usr/local/apache2/conf/server.crt
 SSLCertificateKeyFile /usr/local/apache2/conf/server.key

 #SSLCACertificateFile /usr/local/apache2/conf/ranger_lb_crt.pem
 #SSLProxyCACertificateFile /usr/local/apache2/conf/
ranger_lb_crt.pem
 SSLVerifyClient optional
 SSLOptions +ExportCertData
 SSLProxyVerify none
 SSLProxyCheckPeerCN off
 SSLProxyCheckPeerName off
 SSLProxyCheckPeerExpire off
 ProxyRequests off
 ProxyPreserveHost off

69

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

 Header add Set-Cookie "ROUTEID=.%{BALANCER_WORKER_ROUTE}e; path=/"
 env=BALANCER_ROUTE_CHANGED

 <Proxy balancer://rangercluster>
 BalancerMember http://172.22.71.39:6080 loadfactor=1
 route=1
 BalancerMember http://172.22.71.38:6080 loadfactor=1
 route=2

 Order Deny,Allow
 Deny from none
 Allow from all

 ProxySet lbmethod=byrequests scolonpathdelim=On
 stickysession=ROUTEID maxattempts=1 failonstatus=500,501,502,503
 nofailover=Off
 </Proxy>

 # balancer-manager
 # This tool is built into the mod_proxy_balancer
 # module and will allow you to do some simple
 # modifications to the balanced group via a gui
 # web interface.
 <Location /balancer-manager>
 SetHandler balancer-manager
 Order deny,allow
 Allow from all
 </Location>

 ProxyPass /balancer-manager !
 ProxyPass / balancer://rangercluster/
 ProxyPassReverse / balancer://rangercluster/

</VirtualHost>

Note:

The URLs listed in the BalancerMember entries are the IP addresses of the Ranger Admin hosts. In this
example, the Ranger Admin host adresses are:

http://172.22.71.38:6080
http://172.22.71.39:6080

26. Run the following command to restart the httpd server:

/usr/local/apache2/bin/apachectl restart

If you use a browser to check the load-balancer host (with port), you should see the Ranger Admin page.

27. Run the following command to enable Usersync to communicate with Ranger via the load-balancer. This
command copies the previously generated truststore file from the /tmp directory imports the certificate into the
Usersync truststore.

keytool -import -file /tmp/httpd-lb-trust.cer -alias httpd.lb.server.alias
 -keystore /etc/ranger/usersync/conf/mytruststore.jks -storepass changeit

28. Restart Ranger Usersync.

70

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

29. Run the following command to enable the HDFS plug-in to communicate with Ranger via the load-balancer. This
command copies the previously generated truststore file from the /tmp directory imports the certificate into the
HDFS truststore.

keytool -import -file /tmp/httpd-lb-trust.cer -alias httpd.lb.server.alias
 -keystore /etc/hadoop/conf/ranger-plugin-truststore.jks -storepass
 changeit

30. Restart HDFS.

31. In the Ranger Admin UI, select Audit > Plugins. You should see an entry for your repo name with HTTP
Response Code 200.

32. Use SSH to connect to the KDC server host. Use the kadmin.local command to access the Kerberos CLI, then
check the list of principals for each domain where Ranger Admin and the load-balancer are installed.

kadmin.local
kadmin.local: list_principals

For example, if Ranger Admin is installed on <host1> and <host2>, and the load-balancer is installed on <host3>,
the list returned should include the following entries:

HTTP/ <host3>@EXAMPLE.COM
HTTP/ <host2>@EXAMPLE.COM
HTTP/ <host1>@EXAMPLE.COM

If the HTTP principal for any of these hosts is not listed, use the following command to add the principal:

kadmin.local: addprinc -randkey HTTP/<host3>@EXAMPLE.COM

Note:

This step will need to be performed each time the Spnego keytab is regenerated.

33. Use the following kadmin.local commands to add the HTTP Principal of each of the Ranger Admin and load-
balancer nodes to the Spnego keytab file:

kadmin.local: ktadd -norandkey -kt /etc/security/keytabs/
spnego.service.keytab HTTP/ <host3>@EXAMPLE.COM
kadmin.local: ktadd -norandkey -kt /etc/security/keytabs/
spnego.service.keytab HTTP/ <host2>@EXAMPLE.COM
kadmin.local: ktadd -norandkey -kt /etc/security/keytabs/
spnego.service.keytab HTTP/ <host1>@EXAMPLE.COM

Use the exit command to exit ktadmin.local.

34. Run the following command to check the Spnego keytab file:

klist -kt /etc/security/keytabs/spnego.service.keytab

The output should include the principals of all of the nodes on which Ranger Admin and the load-balancer are
installed. For example:

Keytab name: FILE:/etc/security/keytabs/spnego.service.keytab
KVNO Timestamp Principal
---- -----------------
 --
 1 07/22/16 06:27:31 HTTP/ <host3>@EXAMPLE.COM
 1 07/22/16 06:27:31 HTTP/ <host3>@EXAMPLE.COM
 1 07/22/16 06:27:31 HTTP/ <host3>@EXAMPLE.COM
 1 07/22/16 06:27:31 HTTP/ <host3>@EXAMPLE.COM
 1 07/22/16 06:27:31 HTTP/ <host3>@EXAMPLE.COM
 1 07/22/16 08:37:23 HTTP/ <host2>@EXAMPLE.COM

71

Configuring Fault Tolerance Data Protection

 1 07/22/16 08:37:23 HTTP/ <host2>@EXAMPLE.COM
 1 07/22/16 08:37:23 HTTP/ <host2>@EXAMPLE.COM
 1 07/22/16 08:37:23 HTTP/ <host2>@EXAMPLE.COM
 1 07/22/16 08:37:23 HTTP/ <host2>@EXAMPLE.COM
 1 07/22/16 08:37:23 HTTP/ <host2>@EXAMPLE.COM
 1 07/22/16 08:37:35 HTTP/ <host1>@EXAMPLE.COM
 1 07/22/16 08:37:36 HTTP/ <host1>@EXAMPLE.COM
 1 07/22/16 08:37:36 HTTP/ <host1>@EXAMPLE.COM
 1 07/22/16 08:37:36 HTTP/ <host1>@EXAMPLE.COM
 1 07/22/16 08:37:36 HTTP/ <host1>@EXAMPLE.COM
 1 07/22/16 08:37:36 HTTP/ <host1>@EXAMPLE.COM

35. Use scp to copy the Spnego keytab file to every node in the cluster on which Ranger Admin and the load-balancer
are installed. Verify that the /etc/security/keytabs/spnego.service.keytab file is present on all Ranger Admin and
load-balancer hosts.

36. Configure the Ranger HA Keytab file.

When setting up Ranger in HA where Kerberos is enabled, the Ambari-managed SPNEGO keytab file is altered.
Since Ambari expects the file to contain certain data, the file is now overwritten with the Ambari-cached data
during some Kerberos operations. This breaks Ranger in HA.

In HDP 3.0+, you must duplicate the SPNEGO keytab file for Ranger HA, make various changes, and add the
custom property "ranger.ha.spnego.kerberos.keytab". This enables Ambari to use the relevant SPNEGO properties
differently depending on whether the Ambari server or the Ambari agent is acting.

a) Login to the load balancer node.
b) Enter: cp /etc/security/keytabs/spnego.service.keytab /etc/security/keytabs/ranger.ha.keytab.
c) Run kadmin.local.
d) Add the SPNEGO principal entry of the node where the first ranger_admin is installed: ktadd -norandkey -kt /

etc/security/keytabs/ranger.ha.keytab HTTP/as-amb-21-1.openstacklocal@EXAMPLE.COM.
e) Add the SPNEGO principal entry of the node where the second ranger_admin is installed: ktadd -norandkey -

kt /etc/security/keytabs/ranger.ha.keytab HTTP/as-amb-21-1.openstacklocal@EXAMPLE.COM.
f) Verify /etc/security/keytabs/ranger.ha.keytab contains an entry of all the required SPNEGO principals: klist -

kt /etc/security/keytabs/ranger.ha.keytab.
g) Copy the Ranger keytab file to other nodes where ranger_admin is installed: scp /etc/security/keytabs/

ranger.ha.keytab.
h) Update permission: chmod 440 /etc/security/keytabs/ranger.ha.keytab.
i) Update ownership: chown root:hadoop /etc/security/keytabs/ranger.ha.keytab.
j) Add config from Ambari > Ranger > Configs > Advanced > Custom ranger-admin-site:

ranger.ha.spnego.kerberos.keytab=/etc/security/keytabs/ranger.ha.keytab.
k) Restart the Ranger service.

Data Protection

You can ensure data protection by preventing accidental deletion of files and backing up HDFS metadata.

Preventing Accidental Deletion of Files
You can prevent accidental deletion of files by enabling the Trash feature for HDFS.

For additional information regarding HDFS trash configuration, see HDFS Architecture.

You might still cause irrecoverable data loss if the -skipTrash and -R options are accidentally used on directories with
a large number of files. You can obtain an additional layer of protection by using the -safely option to the fs shell -
rm command. The fs shell -rm command checks the hadoop.shell.safely.delete.limit.num.files property from core-
site.xml file, even if you specify -skipTrash. By specifying the -safely option, the -rm command requires that you

72

Configuring Fault Tolerance Data Protection

confirm if the number of files to be deleted is greater than the limit specified by the assigned value. The default limit
for value is 100, referring to 100 files.

This confirmation warning is disabled if value is set at 0 or the -safely is not specified to the -rm command.

To enable the hadoop.shell.safely.delete.limit.num.files property, add the following lines to core-site.xml:

<property>
<name>hadoop.shell.safely.delete.limit.num.files</name>
<value>100</value>
<description>Used by -safely option of hadoop fs shell -rm command to avoid
accidental deletion of large directories.</description>
</property>

In the following example, the hadoop.shell.safely.delete.limit.num.files property with an associated value of 10 has
been added to core-site.xml with -skipTrash . In this example, fs shell -r prompts deletion of a directory with only 10
files. It does not prompt if trash is enabled and -skipTrash is not.

[ambari-qa@c6405 current]$ hdfs dfs -ls -R /tmp/test1
-rw-r--r-- 3 ambari-qa hdfs 2413 2016-10-20 20:57 /tmp/test1/
capacity-scheduler.xml
-rw-r--r-- 3 ambari-qa hdfs 4435 2016-10-20 20:57 /tmp/test1/core-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 1308 2016-10-20 20:57 /tmp/test1/hadoop-
policy.xml
-rw-r--r-- 3 ambari-qa hdfs 8071 2016-10-20 20:57 /tmp/test1/hdfs-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 3518 2016-10-20 20:57 /tmp/test1/kms-
acls.xml
-rw-r--r-- 3 ambari-qa hdfs 5511 2016-10-20 20:57 /tmp/test1/kms-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 7339 2016-10-20 20:57 /tmp/test1/mapred-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 884 2016-10-20 20:57 /tmp/test1/ssl-
client.xml
-rw-r--r-- 3 ambari-qa hdfs 1000 2016-10-20 20:57 /tmp/test1/ssl-
server.xml
-rw-r--r-- 3 ambari-qa hdfs 20349 2016-10-20 20:57 /tmp/test1/yarn-
site.xml
[ambari-qa@c6405 current]$ hdfs dfs -rm -R /tmp/test1
16/10/20 20:58:37 INFO fs.TrashPolicyDefault: Moved: 'hdfs://
c6403.ambari.apache.org:8020/tmp/test1' to trash at: hdfs://
c6403.ambari.apache.org:8020/user/ambari-qa/.Trash/Current/tmp/test1

The following example deletes files without prompting or moving to the trash:

[ambari-qa@c6405 current]$ hdfs dfs -ls -R /tmp/test2
-rw-r--r-- 3 ambari-qa hdfs 2413 2016-10-20 20:59 /tmp/test2/
capacity-scheduler.xml
-rw-r--r-- 3 ambari-qa hdfs 4435 2016-10-20 20:59 /tmp/test2/core-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 1308 2016-10-20 20:59 /tmp/test2/hadoop-
policy.xml
-rw-r--r-- 3 ambari-qa hdfs 8071 2016-10-20 20:59 /tmp/test2/hdfs-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 3518 2016-10-20 20:59 /tmp/test2/kms-
acls.xml
-rw-r--r-- 3 ambari-qa hdfs 5511 2016-10-20 20:59 /tmp/test2/kms-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 7339 2016-10-20 20:59 /tmp/test2/mapred-
site.xml

73

Configuring Fault Tolerance Data Protection

-rw-r--r-- 3 ambari-qa hdfs 884 2016-10-20 20:59 /tmp/test2/ssl-
client.xml
-rw-r--r-- 3 ambari-qa hdfs 1000 2016-10-20 20:59 /tmp/test2/ssl-
server.xml
-rw-r--r-- 3 ambari-qa hdfs 20349 2016-10-20 20:59 /tmp/test2/yarn-
site.xml
[ambari-qa@c6405 current]$ hdfs dfs -rm -R -skipTrash /tmp/test2
Deleted /tmp/test2

The following example prompts for you to confirm file deletion if the number of files to be deleted is greater than the
value specified to hadoop.shell.safely.delete.limit.num.files:

[ambari-qa@c6405 current]$ hdfs dfs -ls -R /tmp/test3
-rw-r--r-- 3 ambari-qa hdfs 2413 2016-10-20 21:00 /tmp/test3/
capacity-scheduler.xml
-rw-r--r-- 3 ambari-qa hdfs 4435 2016-10-20 21:00 /tmp/test3/core-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 1308 2016-10-20 21:00 /tmp/test3/hadoop-
policy.xml
-rw-r--r-- 3 ambari-qa hdfs 8071 2016-10-20 21:00 /tmp/test3/hdfs-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 3518 2016-10-20 21:00 /tmp/test3/kms-
acls.xml
-rw-r--r-- 3 ambari-qa hdfs 5511 2016-10-20 21:00 /tmp/test3/kms-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 7339 2016-10-20 21:00 /tmp/test3/mapred-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 884 2016-10-20 21:00 /tmp/test3/ssl-
client.xml
-rw-r--r-- 3 ambari-qa hdfs 1000 2016-10-20 21:00 /tmp/test3/ssl-
server.xml
-rw-r--r-- 3 ambari-qa hdfs 20349 2016-10-20 21:00 /tmp/test3/yarn-
site.xml
[ambari-qa@c6405 current]$ hdfs dfs -rm -R -skipTrash -safely /tmp/test3
Proceed deleting 10 files? (Y or N) N
Delete aborted at user request.

Attention:

Using the -skipTrash option without the -safely option is not recommended, as files will be deleted
immediately and without warning.

Related Information
HDFS Architecture

Backing Up HDFS Metadata
HDFS metadata represents the structure and attributes of HDFS directories and files in a tree. You can back up the
metadata without affecting NameNode availability.

Introduction to HDFS Metadata Files and Directories
HDFS metadata represents the structure of HDFS directories and files in a tree. It also includes the various attributes
of directories and files, such as ownership, permissions, quotas, and replication factor.

Files and Directories
Persistence of HDFS metadata is implemented using fsimage file and edits files.

Attention:

Do not attempt to modify metadata directories or files. Unexpected modifications can cause HDFS downtime,
or even permanent data loss. This information is provided for educational purposes only.

74

https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Configuring Fault Tolerance Data Protection

Persistence of HDFS metadata broadly consist of two categories of files:

fsimage Contains the complete state of the file system at a point
in time. Every file system modification is assigned a
unique, monotonically increasing transaction ID. An
fsimage file represents the file system state after all
modifications up to a specific transaction ID.

edits file Contains a log that lists each file system change (file
creation, deletion or modification) that was made after
the most recent fsimage.

Checkpointing is the process of merging the content of the most recent fsimage, with all edits applied after that
fsimage is merged, to create a new fsimage. Checkpointing is triggered automatically by configuration policies or
manually by HDFS administration commands.

NameNodes
Understand the HDFS metadata directory details taken from a NameNode.

The following example shows an HDFS metadata directory taken from a NameNode. This shows the output of
running the tree command on the metadata directory, which is configured by setting dfs.namenode.name.dir in hdfs-
site.xml.

data/dfs/name
current#
VERSION#
edits_0000000000000000001-0000000000000000007
edits_0000000000000000008-0000000000000000015
edits_0000000000000000016-0000000000000000022
edits_0000000000000000023-0000000000000000029
edits_0000000000000000030-0000000000000000030
edits_0000000000000000031-0000000000000000031
edits_inprogress_0000000000000000032
fsimage_0000000000000000030
fsimage_0000000000000000030.md5
fsimage_0000000000000000031
fsimage_0000000000000000031.md5
seen_txid
in_use.lock

In this example, the same directory has been used for both fsimage and edits. Alternative configuration options are
available that allow separating fsimage and edits into different directories. Each file within this directory serves a
specific purpose in the overall scheme of metadata persistence:

VERSION Text file that contains the following elements:

layoutVersion Version of the HDFS
metadata format. When
you add new features
that require a change to
the metadata format, you
change this number. An
HDFS upgrade is required
when the current HDFS
software uses a layout
version that is newer than
the current one.

75

Configuring Fault Tolerance Data Protection

namespaceID/clusterID/
blockpoolID

Unique identifiers of an
HDFS cluster. These
identifiers are used to
prevent DataNodes from
registering accidentally
with an incorrect
NameNode that is part
of a different cluster.
These identifiers also are
particularly important in
a federated deployment.
Within a federated
deployment, there are
multiple NameNodes
working independently.
Each NameNode serves
a unique portion of the
namespace (namespaceID)
and manages a unique set
of blocks (blockpoolID).
The clusterID ties the
whole cluster together
as a single logical unit.
This structure is the same
across all nodes in the
cluster.

storageType Always NAME_NODE
for the NameNode, and
never JOURNAL_NODE.

cTime Creation time of file
system state. This field
is updated during HDFS
upgrades.

edits_start transaction ID-end transaction ID Finalized and unmodifiable edit log segments. Each of
these files contains all of the edit log transactions in the
range defined by the file name. In an High Availability
deployment, the standby can only read up through the
finalized log segments. The standby NameNode is not
up-to-date with the current edit log in progress. When an
HA failover happens, the failover finalizes the current
log segment so that it is completely caught up before
switching to active.

fsimage_end transaction ID Contains the complete metadata image up through .
Each fsimage file also has a corresponding .md5 file
containing a MD5 checksum, which HDFS uses to guard
against disk corruption.

seen_txid Contains the last transaction ID of the last checkpoint
(merge of edits into an fsimage) or edit log roll
(finalization of current edits_inprogress and creation of
a new one). This is not the last transaction ID accepted

76

Configuring Fault Tolerance Data Protection

by the NameNode. The file is not updated on every
transaction, only on a checkpoint or an edit log roll. The
purpose of this file is to try to identify if edits are missing
during startup. It is possible to configure the NameNode
to use separate directories for fsimage and edits files.
If the edits directory accidentally gets deleted, then all
transactions since the last checkpoint would go away,
and the NameNode starts up using just fsimage at an
old state. To guard against this, NameNode startup also
checks seen_txid to verify that it can load transactions at
least up through that number. It aborts startup if it cannot
verify the load transactions.

in_use.lock Lock file held by the NameNode process, used to prevent
multiple NameNode processes from starting up and
concurrently modifying the directory.

JournalNodes
Understand the components of the JournalNode metadata directory.

In an HA deployment, edits are logged to a separate set of daemons called JournalNodes. A JournalNode’s metadata
directory is configured by setting dfs.journalnode.edits.dir. The JournalNode contains a VERSION file, multiple
edits__ files and an edits_inprogress_, just like the NameNode. The JournalNode does not have fsimage files or
seen_txid. In addition, it contains several other files relevant to the HA implementation. These files help prevent a
split-brain scenario, in which multiple NameNodes could think they are active and all try to write edits.

committed-txid Tracks last transaction ID committed by a NameNode.

last-promised-epoch Contains the “epoch,” which is a monotonically
increasing number. When a new NameNode, starts as
active, it increments the epoch and presents it in calls to
the JournalNode. This scheme is the NameNode’s way
of claiming that it is active and requests from another
NameNode, presenting a lower epoch, must be ignored.

last-writer-epoch Contains the epoch number associated with the writer
who last actually wrote a transaction.

paxos Specifies the directory that temporary files used in the
implementation of the Paxos distributed consensus
protocol. This directory often appears as empty.

DataNodes
Although DataNodes do not contain metadata about the directories and files stored in an HDFS cluster, they do
contain a small amount of metadata about the DataNode itself and its relationship to a cluster.

This shows the output of running the tree command on the DataNode’s directory, configured by setting
dfs.datanode.data.dir in hdfs-site.xml.

data/dfs/data/
current
BP-1079595417-192.168.2.45-1412613236271
current
VERSION
finalized
subdir0# # # # ### subdir1
blk_1073741825
blk_1073741825_1001.meta

77

Configuring Fault Tolerance Data Protection

lazyPersist
rbw
dncp_block_verification.log.curr
dncp_block_verification.log.prev
tmp
VERSION
in_use.lock

The purpose of these files are as follows:

BP-random integer-NameNode-IP address-creation
time

Top level directory for datanodes. The naming
convention for this directory is significant and constitutes
a form of cluster metadata. The name is a block pool
ID. “BP” stands for “block pool,” the abstraction that
collects a set of blocks belonging to a single namespace.
In the case of a federated deployment, there are multiple
“BP” sub-directories, one for each block pool. The
remaining components form a unique ID: a random
integer, followed by the IP address of the NameNode that
created the block pool, followed by creation time.

VERSION Text file containing multiple properties, such as
layoutVersion, clusterId and cTime, which is much like
the NameNode and JournalNode. There is a VERSION
file tracked for the entire DataNode as well as a separate
VERSION file in each block pool sub-directory.

In addition to the properties already discussed earlier, the
DataNode’s VERSION files also contain:

storageType storageType field is set to
DATA_NODE.

blockpoolID Repeats the block pool ID
information encoded into
the sub-directory name.

finalized/rbw Both finalized and rbw contain a directory structure for
block storage. This holds numerous block files, which
contain HDFS file data and the corresponding .meta files,
which contain checksum information. rbw stands for
“replica being written”. This area contains blocks that are
still being written to by an HDFS client. The finalized
sub-directory contains blocks that are not being written
to by a client and have been completed.

lazyPersist HDFS is incorporating a new feature to support writing
transient data to memory, followed by lazy persistence
to disk in the background. If this feature is in use, then
a lazyPersist sub-directory is present and used for lazy
persistence of in-memory blocks to disk. We’ll cover
this exciting new feature in greater detail in a future blog
post.

scanner.cursor File to which the "cursor state" is saved.

78

Configuring Fault Tolerance Data Protection

The DataNode runs a block scanner which periodically
does checksum verification of each block file on disk.
This scanner maintains a "cursor," representing the
last block to be scanned in each block pool slice on the
volume, and called the "cursor state."

in_use.lock Lock file held by the DataNode process, used to prevent
multiple DataNode processes from starting up and
concurrently modifying the directory.

HDFS Commands
You can use HDFS commands to manipulate metadata files and directories.

hdfs namenode Automatically saves a new checkpoint at NameNode
startup. As stated earlier, checkpointing is the process
of merging any outstanding edit logs with the latest
fsimage, saving the full state to a new fsimage file, and
rolling edits. Rolling edits means finalizing the current
edits_inprogress and starting a new one.

hdfs dfsadmin -safemode enter

hdfs dfsadmin -saveNamespace
Saves a new checkpoint (similar to restarting
NameNode) while the NameNode process remains
running. The NameNode must be in safe mode, and all
attempted write activity fails while this command runs.

hdfs dfsadmin -rollEdits Manually rolls edits. Safe mode is not required.

This can be useful if a standby NameNode is lagging
behind the active NameNode and you want it to get
caught up more quickly. The standby NameNode can
only read finalized edit log segments, not the current in
progress edits file.

hdfs dfsadmin -fetchImage Downloads the latest fsimage from the NameNode. This
can be helpful for a remote backup type of scenario.

Configuration Properties
Use the NameNode and data node properties to configure the NameNode and data nodes.

dfs.namenode.name.dir Specifies where on the local filesystem the DFS name
node stores the name table (fsimage). If this is a comma-
delimited list of directories then the name table is
replicated in all of the directories, for redundancy.

dfs.namenode.edits.dir Specifies where on the local filesystem the DFS
name node stores the transaction (edits) file. If
this is a comma-delimited list of directories, the
transaction file is replicated in all of the directories, for
redundancy. The default value is set to the same value as
dfs.namenode.name.dir.

dfs.namenode.checkpoint.period Specifies the number of seconds between two periodic
checkpoints.

79

Configuring Fault Tolerance Data Protection

dfs.namenode.checkpoint.txns The standby creates a checkpoint of the namespace every
dfs.namenode.checkpoint.txns transactions, regardless of
whether dfs.namenode.checkpoint.period has expired.

dfs.namenode.checkpoint.check.period Specifies how frequently to query for the number of un-
checkpointed transactions.

dfs.namenode.num.checkpoints.retained Specifies the number of image checkpoint files to be
retained in storage directories. All edit logs necessary to
recover an up-to-date namespace from the oldest retained
checkpoint are also retained.

dfs.namenode.num.extra.edits.retained Specifies the number of extra transactions which are
retained beyond what is minimally necessary for a NN
restart. This can be useful for audit purposes or for an
HA setup where a remote Standby Node might have been
offline and need to have a longer backlog of retained
edits to start again.

dfs.namenode.edit.log.autoroll.multiplier.threshold Specifies when an active namenode rolls its
own edit log. The actual threshold (in number of
edits) is determined by multiplying this value by
dfs.namenode.checkpoint.txns. This prevents extremely
large edit files from accumulating on the active
namenode, which can cause timeouts during namenode
start-up and pose an administrative hassle. This behavior
is intended as a fail-safe for when the standby fails to roll
the edit log by the normal checkpoint threshold.

dfs.namenode.edit.log.autoroll.check.interval.ms Specifies the time in milliseconds that an active
namenode checks if it needs to roll its edit log.

dfs.datanode.data.dir Determines where on the local filesystem an DFS
data node should store its blocks. If this is a comma-
delimited list of directories, then data is stored in
all named directories, typically on different devices.
Directories that do not exist are ignored. Heterogeneous
storage allows specifying that each directory resides on
a different type of storage: DISK, SSD, ARCHIVE or
RAM_DISK.

Back Up HDFS Metadata
You can back up HDFS metadata without taking down either HDFS or the NameNodes.

Prepare to Back Up the HDFS Metadata
Regardless of the solution, a full, up-to-date continuous backup of the namespace is not possible. Some of the most
recent data is always lost. HDFS is not an Online Transaction Processing (OLTP) system. Most data can be easily
recreated if you re-run Extract, Transform, Load (ETL) or processing jobs.

• Normal NameNode failures are handled by the Standby NameNode. Doing so creates a safety-net for the very
unlikely case where both master NameNodes fail.

• In the case of both NameNode failures, you can start the NameNode service with the most recent image of the
namespace.

• Name Nodes maintain the namespace as follows:

80

Configuring Fault Tolerance Data Protection

• Standby NameNodes keep a namespace image in memory based on edits available in a storage ensemble in
Journal Nodes.

• Standby NameNodes make a namespace checkpoint and saves an fsimage_* to disk.
• Standby NameNodes transfer the fsimage to the primary NameNodes using HTTP.

Both NameNodes write fsimages to disk in the following sequence:

• NameNodes write the namespace to a file fsimage.ckpt_* on disk.
• NameNodes creates an fsimage_*.md5 file.
• NameNodes moves the file fsimage.ckpt_* to fsimage_.*.

The process by which both NameNodes write fsimages to disk ensures that:

• The most recent namespace image on disk in an fsimage_* file is on the standby NameNode.
• Any fsimage_* file on disk is finalized and does not receive updates.

Perform a Backup of the HDFS Metadata
You can back up HDFS metadata without affecting the availability of NameNode.

Procedure

1. Make sure the Standby NameNode checkpoints the namespace to fsimage_ once per hour.

2. Deploy monitoring on both NameNodes to confirm that checkpoints are triggering regularly.

This helps reduce the amount of missing transactions in the event that you need to restore from a backup
containing only fsimage files without subsequent edit logs. It is good practice to monitor this because edit logs
that are large in size and without checkpoints can cause long delays after a NameNode restart while it replays
those transactions.

3. Back up the most recent “fsimage_*” and “fsimage_*.md5” from the standby NameNode periodically.

Try to keep the latest version of the file on another machine in the cluster.

4. Back up the VERSION file from the standby NameNode.

Using HDFS snapshots for data protection
HDFS snapshots enable you to capture point-in-time copies of the file system and protect your important data against
user or application errors. You can take snapshots of the entire file system or specified subtrees on the file system.

Using snapshots to protect data is efficient because of the following reasons:

• Snapshot creation is instantaneous regardless of the size and depth of the directory subtree.
• Snapshots capture the block list and file size for a specified subtree. Snapshots do not create extra copies of blocks

on the file system.

Related Information
Protecting your enterprise data with HDFS snapshots

Considerations for working with HDFS snapshots
You can create snapshots only for directories that allow the creation of snapshots. If a directory already contains
snapshots, you cannot delete or rename the directory unless you remove all the snapshots.

You must consider the following when working with HDFS snapshots:

• You must enable snapshot creation on a particular directory before creating snapshots on that directory. However,
you cannot create snapshots on a directory if its corresponding child or parent directory is already enabled for
snapshot creation.

• There is no limit on the number of directories on which you can enable snapshot creation. However, you can
create a maximum of 65,536 snapshots for a directory.

81

https://hortonworks.com/blog/protecting-your-enterprise-data-with-hdfs-snapshots/

Configuring Fault Tolerance Data Protection

• You cannot delete or rename a directory that contains snapshots. You must first remove all the snapshots before
attempting the delete or rename operation.

• For a directory that has snapshot creation enabled, its path component .snapshot can be used to access the
snapshots.

For example, consider the directory /foo that is enabled for snapshot creation. For the directory /foo with a
snapshot snap1, the path /foo/.snapshot/snap1 refers to the snapshot of /foo.

• You can enable or disable snapshot creation on a particular directory only if you have the superuser privilege.
• On a directory that has snapshot creation enabled; you can create, delete, or rename snapshots. These operations

require either the superuser privilege or the owner access to the directory. In addition, you can list directories that
have snapshot creation enabled or view differences between contents of snapshots.

Enable snapshot creation on a directory
You must enable snapshot creation on a directory before creating snapshots on that directory. If the snapshot creation
is enabled, the directory becomes snapshottable.

About this task

• You can perform this task only if you have the superuser privilege.
• You cannot enable snapshot creation on any directory if its parent or child directory is already enabled for

snapshot creation.

Procedure

Run the hdfs dfsadmin command with the -allowSnapshot option and specify the directory on which you want to
enable snapshot creation.
The following example shows how you can enable snapshot creation for the directory /data/dir1:

hdfs dfsadmin -allowSnapshot /data/dir1

If snapshot creation is successfully enabled on the specified directory, a confirmation message appears.

Allowing snapshot on /data/dir1 succeeded

Related Information
HDFS Snapshots - Administrator Operations

HDFS Snapshots - User Operations

Create snapshots on a directory
You can create snapshots on a specified directory and protect your important data.

Before you begin
You must have enabled snapshot creation.

About this task

Only a user with either of the following privileges can perform this task:

• The owner privilege to the directory on which to create the snapshots
• The superuser privilege

Procedure

Run the hdfs dfs command with the -createSnapshot option and specify the path to the directory on which you want to
create snapshots.

82

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#Administrator_Operations
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#User_Operations

Configuring Fault Tolerance Data Protection

The following example shows how you can create a snapshot snap1 on the directory /data/dir1:

hdfs dfs -createSnapshot /data/dir1 snap1

If snapshot creation is successfully enabled on the specified directory, a confirmation message appears.

Created snapshot /data/dir1/.snapshot/snap2

Note: You can also run the command without mentioning the snapshot name. In such a situation, the new
snapshot has the time stamp of creation as its name. See the following example:

Created snapshot /data/dir1/.snapshot/s20180412-065533.159

Related Information
HDFS Snapshots - User Operations

Recover data from a snapshot
If data is erroneously removed from a directory for which snapshots are available, you can recover the lost data using
snapshots. The snapshot ensures that the file blocks corresponding to the deleted files or directories are not removed
from the file system. Only the metadata is modified to reflect the deletion.

About this task
You must have read access to the files or directories that you want to restore.

Procedure

Run the hdfs dfs command with the cp option to copy the deleted data from the snapshot to the destination directory.
The following example shows how you can recover a file imp_details.xls from a snapshot of the directory (/data/dir1)
that contained the file:

hdfs dfs -cp /data/dir1/.snapshot/s20180412-065533.159/imp_details.xls /
data/dir1/

Options to determine differences between contents of snapshots
Run the hdfs snapshotDiff command for a report that lists the difference between the contents of two snapshots. Run
the distcp diff command to determine the difference between contents of specified source and target snapshots, and
use the command with the -update option to move the difference to a specified target directory.

Generating a report listing the difference between contents of two snapshots

Using the hdfs snapshotDiff between two snapshots on a specified directory path provides the list of changes to the
directory. Consider the following example:

hdfs snapshotDiff /data/dir1 snap1 snap2
M .
- ./file1.csv
R ./file2.txt -> ./fileold.txt
+ ./filenew.txt

This example shows the following changes to the directory /data/dir1 after the creation of snap1 and before the
creation of snap2:

Statement Explanation

M . The directory /data/dir1 is modified.

- ./file1.csv The file file1.csv is deleted.

83

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#User_Operations

Configuring Fault Tolerance Data Protection

Statement Explanation

R ./file2.txt -> ./fileold.txt The file file2.txt is renamed to fileold.txt.

+ ./filenew.txt The file filenew.txt is added to the directory /data/dir1.

Moving the differences between the contents of two snapshots to a specified directory

Using the distcp diff command with the -update option on snapshots enables you to determine the difference between
the contents of two snapshots and move the difference to a specified target directory. Consider the following example:

hadoop distcp -diff snap_old snap_new -update /data/source_dir /data/target_dir

The command in this example determines the changes between the snapshots snap_old and snap_new present in the
source_dir directory, and updates the target_dirdirectory with the changes.

The following conditions must be satisfied for the content changes to be moved to /data/target_dir:

• Both /data/source_dir and /data/target_dir are distributed file system paths.
• The snapshots snap_old and snap_new are created for /data/source_dir such that snap_old is older than snap_new.
• The /data/target_dir path also contains snap_old. In addition, no changes are made to /data/target_dir after the

creation of snap_old.

Related Information
HDFS Snapshots - User Operations

Managing Hadoop DR with 'distcp' and 'snapshots'

Snapshot operations
As an administrator, you can enable or disable snapshot creation on a directory. These operations require the
superuser privilege. As a user; you can create, delete, or rename snapshots on a directory that has snapshot creation
enabled. These operations require either the superuser privilege or the owner privilege on the directory.

Administrator Operations
The following table lists the snapshot-related administrator operations that you can on specified directories:

Operation Command

Enable snapshot creation on a directory hdfs dfsadmin -allowSnapshot <path>

Disable snapshot creation on a directory hdfs dfsadmin -disallowSnapshot <path>

For more information about these commands, see https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HdfsSnapshots.html#Administrator_Operations.

User Operations
The following table lists the user operations that you can perform on snapshots:

Operation Command

Create snapshots hdfs dfs -createSnapshot <path> [<snapshotName>]

Delete snapshots hdfs dfs -deleteSnapshot <path> <snapshotName>

Rename snapshots hdfs dfs -renameSnapshot <path> <oldName>
<newName>

List directories on which snapshot creation is enabled
(snapshottable directories)

hdfs lsSnapshottableDir

84

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#User_Operations
https://community.hortonworks.com/articles/71775/managing-hadoop-dr-with-distcp-and-snapshots.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#Administrator_Operations
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#Administrator_Operations

Configuring Fault Tolerance Data Protection

Operation Command

List differences between contents of snapshots hdfs snapshotDiff <path> <fromSnapshot>
<toSnapshot>

For more information about these commands, see https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HdfsSnapshots.html#User_Operations.

85

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#User_Operations
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#User_Operations

	Contents
	Configuring Fault Tolerance
	High Availability on Non-Ambari Clusters
	Configuring High Availability for the Hive Metastore
	Use Cases and Failover Scenarios
	Software Configuration
	Install Hortonworks Data Platform
	Update the Hive Metastore
	Validate configuration

	Deploying Multiple HiveServer2 Instances for High Availability
	Adding an Additional HiveServer2 to Your Cluster Manually
	Adding an Additional HiveServer2 to a Cluster with Ambari

	Configuring HiveServer2 High Availability Using ZooKeeper
	How ZooKeeper Manages HiveServer2 Requests
	Dynamic Service Discovery Through ZooKeeper
	Rolling Upgrade for HiveServer2 Through ZooKeeper
	Set Configuration Parameters for HiveServer2 Rolling Upgrade
	Perform Rolling Upgrade for HiveServer2
	Perform Rollback of HiveServer2

	Configuring High Availability for HBase
	Introduction to HBase High Availability
	Propagating Writes to Region Replicas
	Timeline Consistency
	Configuring HA Reads for HBase
	Creating Highly Available HBase Tables with the HBase Java API
	Creating Highly Available HBase Tables with the HBase Shell
	Querying Secondary Regions
	Monitoring Secondary Region Replicas
	HBase Cluster Replication for Geographic Data Distribution
	HBase Cluster Replication Overview
	HBase Cluster Topologies

	Managing and Configuring HBase Cluster Replication
	Manually Enable HBase Replication
	Pause and Stop HBase Replication
	HBase Cluster Management Commands

	Verifying Replicated HBase Data
	HBase Cluster Replication Details
	Spreading Queue Failover Load
	Preserving Tags During Replication
	HBase Replication Internals
	Choosing RegionServers to Replicate to
	Keeping Track of Logs
	Reading, Filtering, and Sending Edits
	Cleaning Logs
	RegionServer Failover

	HBase Replication Metrics
	Replication Configuration Options
	Monitoring Replication Status
	Setting Up HBase Replication Among Kerberos Secured Clusters

	Configuring NameNode High Availability
	NameNode Architecture
	Preparing the Hardware Resources for NameNode High Availability
	Deploying the NameNode HA Cluster
	Configuring the NameNode HA Cluster
	Deploying a NameNode HA Cluster
	Deploying Hue with an HA Cluster
	Deploying Oozie with an HA Cluster

	Operating a NameNode HA cluster
	Configuring and Deploying NameNode Automatic Failover
	Prerequisites for Configuring NameNode Automatic Failover
	Configure and Deploy Automatic Failover
	Configure Oozie Failover

	Administrative Commands

	Configuring ResourceManager High Availability
	Preparing the Hardware Resources
	Deploying ResourceManager HA Cluster
	Configuring Manual or Automatic ResourceManager Failover
	Deploying the ResourceManager HA Cluster
	Minimum Settings for Automatic ResourceManager HA Configuration
	Testing ResourceManager HA on a Single Node
	Deploying Hue with a ResourceManager HA Cluster

	Configuring Apache Ranger High Availability
	Configuring Ranger Admin HA
	Prerequisites for Configuring Apache Ranger for High Availability
	Configuring Ranger Admin HA Without SSL
	Configuring Ranger Admin HA With SSL

	Data Protection
	Preventing Accidental Deletion of Files
	Backing Up HDFS Metadata
	Introduction to HDFS Metadata Files and Directories
	Files and Directories
	NameNodes
	JournalNodes
	DataNodes

	HDFS Commands
	Configuration Properties

	Back Up HDFS Metadata
	Prepare to Back Up the HDFS Metadata
	Perform a Backup of the HDFS Metadata

	Using HDFS snapshots for data protection
	Considerations for working with HDFS snapshots
	Enable snapshot creation on a directory
	Create snapshots on a directory
	Recover data from a snapshot
	Options to determine differences between contents of snapshots
	Snapshot operations

