Migrating Spark to CDP Private Cloud

Date published: 2022-07-29
Date modified: 2023-01-25

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

| Contents | iii

Migrating Spark workloads t0 CDP.........ccccviiiiiii e 4
Spark 1.6 t0 SPark 2.4 REFECIONING.c.civieriereetereete ettt st b e b e e b bbb b e b e ere e 4
HaNAIING PrErEOUISITES........ooiitirieterietereet ettt ettt b bbbt bbbt s bt b e bbbt b nennenes 4

Spark 1.6 t0 SPark 2.4 CRENQGES.......c.cceriririeiriet ettt et st a ettt b et bt bbb 5
Configuring SLOF8gE 1OCELIONS.c.ciuiiriirieteriete sttt sttt st et s b e e bt e b e se b e sbe e b 11
Querying Hive managed tables from SPark..........cccoeieiiiniene e 11
Compiling and running SPark WOPKIOS...........cccuuiiriiriiireerete bbb 12
POSE-MIGIAtioN TASKS.....c.eiviiieiecte et bbbttt n et 16

Spark 2.3 t0 SPark 2.4 REFACIONING.cueieeueriiiieietes et sn e snenes 17
HaNAIING PrErEOUISITES........cceiuiieieecie ettt sttt et s b e bbbt sb et b et st et b et b neebe e 17

Spark 2.3 t0 SPark 2.4 CRENQES.......ccceiieeirieiriere bbb b 18
Configuring SLOFBgE |OCELIONS.c.ciuiiriireeterieie ettt ettt st s b e e bt e bt seese b e sbe e erenea 22
Querying Hive managed tables from SPark..........cccoeoieieiiiniee e 22
Compiling and running SPark WOPKIOS...........cccoiiriiriireeriee et 22
POSE-MIGIAtioN TASKS.....c.civieeeiect bbbttt n e e 23

Spark 2.4 t0 Spark 3.2 REFACIONNG.cueiveiieeiieirieet ettt b e s snenes 23
Migrating Spark CDP to Cloudera Data ENgineering........cccccveveevcieevieesiveennnnne 23
Cloudera Data ENginEering CONCEPLS.......uieiirierierieieeeeeseeestesteseestestesaessessessessessessssssssssessessessessessessessessessensen 24
Convert Spark Submit commands to CDE CLI Spark Submit commands...........cccceeueveeieeenienienesiesieseseseseens 25
Using the Cloudera Data ENGINEEING CL.....c.coiiiiiiicese et eee et sa e e e enens 27
Convert Spark SUbmMIitS t0 CDE APl REQUESES........cceiieieiieieieeeeeesese et e e sa e e aesaeae e e e eseesessesnessenses 29
QST 0 RS Tz o o = G o = S 31
Getting Started With CDE AITTIOW....c..cecececec et r e s 34
(ST o I 1 [S 35

Using spark-submit drop-in migration tool for migrating Spark wor kloads

Migrating Spark workloads to CDP

Migrating Spark workloads from CDH or HDP to CDP involves learning the Spark semantic changes in your source
cluster and the CDP target cluster. Y ou get details about how to handle these changes.

Because Spark 1.6 is not supported on CDP, you need to refactor Spark workloads from Spark 1.6 on CDH or HDP to
Spark 2.4 on CDP.

This document helps in accelerating the migration process, provides guidance to refactor Spark workloads and lists
migration. Use this document when the platform is migrated from CDH or HDP to CDP.

Y ou must perform anumber of tasks before refactoring workloads.

Assuming all workloads are in working condition, you perform this task to meet refactoring prerequistes.

1. Identify all the workloads in the cluster (CDH/HDP) which are running on Spark 1.6 - 2.3.
2. Classify the workloads.

Classification of workloads will help in clean-up of the unwanted workloads, plan resources and efforts for
workload migration and post upgrade testing.

Example workload classifications:

e Spark Core (scaa)

e Java-based Spark jobs

e SQL, Datasets, and DataFrame
e Structured Streaming

e MLIib (Machine Learning)

* PySpark (Python on Spark)

+ Batch Jobs
¢ Scheduled Jobs
* Ad-Hoc Jobs

e Critical/Priority Jobs
* Huge data Processing Jobs
e Timetaking jobs
« Resource Consuming Jobs etc.
» Failed Jobs
Identify configuration changes
3. Check the current Spark jobs configuration.

» Spark 1.6 - 2.3 workload configurations which have dependencies on job properties like scheduler, old python
packages, classpath jars and might not be compatible post migration.

* In CDP, Capacity Scheduler is the default and recommended scheduler. Follow Fair Scheduler to Capacity
Scheduler transition guide to have all the required queues configured in the CDP cluster post upgrade. If any
configuration changes are required, modify the code as per the new capacity scheduler configurations.

» For workload configurations, see the Spark History server Ul http://spark_history_server:18088/history/
<application_number>/environment/.

https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/upgrade-cdh/topics/yarn-scheduler-migration-overview.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/upgrade-cdh/topics/yarn-scheduler-migration-overview.html

Migrating Spark workloads to CDP

4. Identify and capture workloads having data storage locations (local and HDFS) to refactor the workloads post
migration.

5. Refer to unsupported Apache Spark features, and plan refactoring accordingly.

A description of the change, the type of change, and the required refactoring provide the information you need for
migrating from Spark 1.6 to Spark 2.4.

Thereisanew Spark APl entry point: SparkSession.

Type of change

Syntactic/Spark core

Spark 1.6

Hive Context and SQL Context, such as import SparkContext, HiveContext are supported.
Spark 2.4

SparkSession is now the entry point.

Action Required

Replace the old SQL Context and HiveContext with SparkSession. For example:

i mport org.apache. spark. sql . Spar kSessi on
val spark = SparkSessi on

. bui I der ()
. appName(" Spark SQ. basi c exanpl e")
.config("spark. sone. config.option", "some-value")

.getOrCreate()

The Dataframe AP registerTempTable has been deprecated in Spark 2.4.
Type of change:

Syntactic/Spark core change

Spark 1.6

registerTempTableis used to create atemporary table on a Spark dataframe. For example, df.registerTempTable('tm
pTable").

Spark 2.4

registerTempTableis deprecated.

Action Required

Replace registerTempTable using createOrReplaceTempView. df.createOrReplaceTempView('tmpTable).

The dataset and DataFrame API unionAll has been deprecated and replaced by union.
Type of change: Syntactic/Spark core change

Spark 1.6

unionAll is supported.

Spark 2.4

https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/spark-overview/topics/spark-unsupported-features.html

Migrating Spark workloads to CDP

unionAll is deprecated and replaced by union.
Action Required
Replace unionAll with union. For exampleival df3 = df.unionAll(df2) with val df3 = df.union(df2)

Writing a dataframe with an empty or nested empty schema using any file format, such as parquet, orc, json, text, or
csv is not allowed.

Type of change: Syntactic/Spark core
Spark 1.6 - 2.3

Writing a dataframe with an empty or nested empty schema using any file format is allowed and will not throw an
exception.

Spark 2.4

An exception is thrown when you attempt to write dataframes with empty schema. For example, if there are
statements such as df .write.format(" parquet").mode(" overwrite").save(somePath), the following error occurs: org.
apache.spark.sgl.AnalysisException: Parquet data source does not support null data type.

Action Required
Make sure that DataFrame is not empty. Check whether DataFrame is empty or not as follows:

if (!df.isEnpty) df.wite.format("parquet”).node("overwite").save("sonePath

In Spark 2.4, queries from raw JSON/CSV files are disallowed when the referenced columns only include the internal
corrupt record column.

Type of change: Syntactic/Spark core

Spark 1.6

A query can reference a_corrupt_record column in raw JSON/CSV files.
Spark 2.4

An exception isthrown if the query is referencing _corrupt_record column in these files. For example, the following
query is not allowed: spark.read.schema(schema).json(file).filter($"_corrupt_record".isNotNull).count()

Action Required

Cache or save the parsed results, and then resend the query.

val df = spark.read.schema(schema).json(file).cache()
df .filter($"_corrupt_record".isNotNull).count()

Dataset and DataFrame API explode has been deprecated.
Type of change: Syntactic/Spark SQL change

Spark 1.6

Dataset and DataFrame API explode are supported.

Spark 2.4

Migrating Spark workloads to CDP

Dataset and DataFrame API explode have been deprecated. If explode is used, for example dataframe.explode(), the
following warning is thrown:

war ni ng: mnet hod expl ode in class Dataset is deprecated: use flatMp() or sel
ect() with functions. expl ode() instead

Action Required
Use functions.explode() or flatMap (import org.apache.spark.sqgl.functions.explode).

Column names of csv headers must match the schema.

Type of change: Configuration/Spark core changes

Spark 1.6 - 2.3

Column names of headersin CSV files are not checked against the against the schema of CSV data.
Spark 2.4

If columnsin the CSV header and the schema have different ordering, the following exception is thrown:java.lang.!l
legal ArgumentException: CSV file header does not contain the expected fields.

Action Required

Make the schema and header order match or set enforceSchemato false to prevent getting an exception. For example,
read afile or directory of filesin CSV format into Spark DataFrame as follows: df3 = spark.read.option("delimiter”,
":").option("header", True).option("enforeSchema", False).csv(path)

The default "header" option is true and enforceSchemais False.

If enforceSchemaiis set to true, the specified or inferred schemawill be forcibly applied to datasource files, and
headersin CSV files areignored. If enforceSchemais set to false, the schemais validated against all headersin CSV
files when the header option is set to true. Field names in the schema and column namesin CSV headers are checked
by their positions taking into account spark.sqgl.caseSensitive. Although the default value is true,you should disable
the enforceSchema option to prevent incorrect results.

Table properties are taken into consideration while creating the table.

Type of change: Configuration/Spark Core Changes

Spark 1.6 - 2.3

Parquet and ORC Hive tables are converted to Parquet or ORC by default, but table properties are ignored. For
example, the compression table property isignored:

CREATE TABLE t(id int) STORED AS PARQUET TBLPROPERTI ES (parquet. conpression
' NONE')

This command generates Snappy Parquet files.

Spark 2.4

Table properties are supported. For example, if no compression isrequired, set the TBLPROPERTIES as follows:
(parquet.compression 'NONE)).

This command generates uncompressed Parquet files.
Action Required
Check and set the desired TBLPROPERTIES.

Creating a managed table with nonempty location is not allowed.

7

Migrating Spark workloads to CDP

Type of change: Property/Spark core changes

Spark 1.6 - 2.3

Y ou can create a managed table having a nonempty location.
Spark 2.4

Creating a managed table with nonempty location is not allowed. In Spark 2.4, an error occurs when thereis awrite
operation, such as df .write.mode(SaveM ode.Overwrite).saveAsT able("testdb.testtable"). The error side-effects are the
cluster isterminated while the write isin progress, atemporary network issue occurs, or the job is interrupted.

Action Required
Set spark.sql.legacy.alowCreatingM anagedT ableUsingNonemptyL ocation to true at runtime as follows:

spar k. conf . set ("spark. sql . | egacy. al | owCr eat i ngManagedTabl eUsi ngNonenpt yLocat
ion","true")

Type of change: Property/Spark SQL changes

Spark 1.6

By default, you can write to Hive bucketed tables.
Spark 2.4

By default, you cannot write to Hive bucketed tables.

For example, the following code snippet writes the data into a bucketed Hive table:

newPartitionsDF. write. nmode(SaveMbde. Append) . format ("hive").insertlnto(hive_t
est _db. t est _bucketi ng)

The code above will throw the following error:

or g. apache. spark. sqgl . Anal ysi sException: Qutput Hive table “hive test db . te
st _bucketing is bucketed but Spark currently does NOT popul ate bucketed out
put which is conpatible with Hive.

Action Required

To write to a Hive bucketed table, you must use hive.enforce.bucketing=false and hive.enforce.sorting=false to forego
bucketing guarantees.

Arithmetic operations between decimals return arounded value, instead of NULL, if an exact representation is not
possible.

Type of change: Property/Spark SQL changes

Spark 1.6

Arithmetic operations between decimals return aNULL value if an exact representation is not possible.
Spark 2.4

The following changes have been made:

» Updated rules determine the result precision and scale according to the SQL ANSI 2011.

« Rounding of the results occur when the result cannot be exactly represented with the specified precision and scale
instead of returning NULL.

Migrating Spark workloads to CDP

* A new config spark.sql.decimal Operations.allowPrecisionL oss which default to true (the new behavior) to alow
users to switch back to the old behavior. For example, if your code includes import statements that resemble those
below, plus arithmetic operations, such as multiplication and addition, operations are performed using dataframes.

from pyspark. sql . types inport Decimal Type
from deci mal inport Deci nal

Action Required

If precision and scale are important, and your code can accept a NULL value (if exact representation is not possible
due to overflow), then set the following property to false. spark.sqgl.decimal Operations.allowPrecisionLoss = false

Set operations are executed by priority instead having equal precedence.

Type of change: Property/Spark SQL changes

Spark 1.6 - 2.3

If the order is not specified by parentheses, equal precedenceis given to all set operations.
Spark 2.4

If the order is not specified by parentheses, set operations are performed from left to right with the exception that all
INTERSECT operations are performed before any UNION, EXCEPT or MINUS operations.

For example, if your code includes set operations, such as INTERSECT , UNION, EXCEPT or MINUS, consider
refactoring.

Action Required
Change the logic according to following rule:

If the order of set operationsis not specified by parentheses, set operations are performed from left to right with the
exception that all INTERSECT operations are performed before any UNION, EXCEPT or MINUS operations.

If you want the previous behavior of equal precedence then, set spark.sgl.legacy.setopsPrecedence.enabled=true.

HAVING without GROUP BY istreated as a global aggregate.
Type of change: Property/Spark SQL changes
Spark 1.6 - 2,3

HAVING without GROUP BY istreated as WHERE. For example, SELECT 1 FROM range(10) HAVING trueis
executed as SELECT 1 FROM range(10) WHERE true, and and returns 10 rows.

Spark 2.4

HAVING without GROUP BY istreated as a global aggregate. For example, SELECT 1 FROM range(10) HAVING
true returns one row, instead of 10, asin the previous version.

Action Required

Check the logic where having and group by is used. To restore previous behavior, set spark.sqgl.legacy.parser.havi
ngWithoutGroupByAsWhere=true.

How Spark treats malformationsin CSV files has changed.
Type of change: Property/Spark SQL changes
Spark 1.6 - 2.3

CSV rows are considered malformed if at least one column value in the row is malformed. The CSV parser drops
malformed rows in the DROPMALFORMED mode or outputs an error in the FAILFAST mode.

Migrating Spark workloads to CDP

Spark 2.4

A CSV row is considered malformed only when it contains malformed column values requested from CSV
datasource, other values are ignored.

Action Required
To restore the Spark 1.6 behavior, set spark.sgl.csv.parser.columnPruning.enabled to false.

Spark 2.4 CSV example
A CSV exampleillustrates the CSV-handling change in Spark 2.4.

In the following CSV file, the first two records describe the file. These records are not considered during processing
and need to be removed from the file. The actual datato be considered for processing has three columns (jersey,
name, position).

These are extra |linel
These are extra |line2
10, Messi , CF

7, Ronal do, LW

9, Benzema, CF

The following schema definition for the DataFrame reader uses the option DROPMALFORMED. Y ou see only the
required data; all the description and error records are removed.

schema=Structtype([Structfield(“jersy”, StringType()), Structfield(“nane”, Stri
ngType()), Structfi

el d(“position”, StringType())])

df 1=spar k. r ead\

.option(“node”, " DROPMALFORMED") \

.option(“delimter”,”, ")\

. schema(schenm) \

.csv(“inputfile”)

df 1. select (“*").show()

Output is:
jersy name position
10 M CF
7 Ronaldo Lw
9 Benzema CF

Select two columns from the dataframe and invoke show():

df 1. sel ect (“jersy”, "nane”). show(truncat e=Fal se)

jersy name

These are extralinel null
These are extraline2 null

10 M

7 Ronaldo
9 Benzema

Malformed records are not dropped and pushed to the first column and the remaining columns will be replaced with
null.Thisis due to the CSV parser column pruning which is set to true by default in Spark 2.4.

Migrating Spark workloads to CDP

Set the following conf, and run the same code, selecting two fields.

spar k. conf . set (“spar k. sgl . csv. par ser. col utmPr uni ng. enabl ed”, Fal se)

df 2=spar k. r ead\
.option(“node”,” DROPMALFORVED") \
.option(“delimter”,”,”)\
. schema(scheng) \
.csv(“inputfile”)
df 2. sel ect (“jersy”, "nane”). show(truncat e=Fal se)

10 Messi
7 Ronaldo
9 Benzema

Conclusion: If working on selective columns, to handle bad recordsin CSV files, set spark.sql.csv.parser.columnP
runing.enabled to false; otherwise, the error record is pushed to the first column, and all the remaining columns are
treated as nulls.

To execute the workloads in CDP, you must modify the references to storage locations. In CDP, references must be
changed from HDFS to a cloud object store such as S3.

The following sample query shows a Spark 2.4 HDFS data location.

scal a> spark. sql ("CREATE TABLE | F NOT EXI STS defaul t. sal es_spark_2(Regi on st
ring, Country string,ltem Type string, Sal es_Channel string, Order Priority st
ring, Order_Date date, Order _ID int,Ship_Date date, Units_sold string,Unit_Pric
e string,Unit_cost string, Total _revenue string, Total Cost string, Total Profi
t string) row format delinmted fields terminated by ',"'")

scal a> spark.sql ("l oad data | ocal inpath '/tnp/sales.csv' into table defau
It.sal es _spark_2")

scal a> spark.sql ("sel ect count(*) fromdefault.sal es spark 2").show()

The following sample query shows a Spark 2.4 S3 data location.

scal a> spark. sql ("CREATE TABLE | F NOT EXI STS defaul t. sal es_spark_2(Regi on st
ring, Country string,ltemType string, Sal es_Channel string, Order_Priority st
ring, Order_Date date, Order _ID int,Ship Date date, Units_sold string,Unit _Pric
e string,Unit_cost string, Total _revenue string, Total Cost string, Total Profi
t string) row format delinmted fields ternmnated by ','")

scal a> spark.sql ("l oad data inpath 's3://<bucket>/sal es.csv' into table de
faul t.sal es_spark_2")

scal a> spark.sql ("select count(*) fromdefault.sal es_spark_2").show()

Hive-on-Spark is not supported on CDP. Y ou need to use the Hive Warehouse Connector (HWC) to query Apache
Hive managed tables from Apache Spark.

To read Hive external tables from Spark, you do not need HWC. Spark uses native Spark to read external tables. For
more information, see the Hive Warehouse Connector documentation.

11

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html

Migrating Spark workloads to CDP

The following example shows how to query a Hive table from Spark using HWC:

spark-shell --jars /opt/clouderalparcel s/ CDH j ar s/ hi ve-war ehouse- connect or - a
ssenbl y-1.0.0.7.1.4.0-203.jar --conf spark.sql.hive. hiveserver2.jdbc.url=jdb
c: hive2://cdhhdp02. uddeept a- bandyopadhyay- s- account . cl oud: 10000/ default --co
nf spark.sql. hive. hiveserver2.jdbc.url.principal =hi ve/ cdhhdp02. uddeept a- band
yopadhyay- s- account . cl oud@Jddeept a- bandyopadhyay- s- Account . CLOUD

scal a> val hive = com hortonworks. hwe. H veWar ehouseSessi on. sessi on(spark).b
ui 1 d()

scal a> hi ve. execut eUpdat e(" UPDATE hi ve_aci d_deno set val ue=25 where key=4")
scal a> val result=hive.execute("select * fromdefault.hive acid denpn")

scal a> resul t. show()

After modifying the workloads, compile and run (or dry run) the refactored workloads on Spark 2.4.

Y ou can write Spark applications using Java, Scala, Python, SparkR, and others. Y ou build jars from these scripts
using one of the following compilers.

» Java(with Maven/Java IDE),
» Scala(with sbt),

e Python (pip).
e SparkR (RStudio)

Y ou see by example how to compile a Java-based Spark job using Maven.

In thistask, you see how to compile the following example Spark program written in Java:

/* Si npl eApp. java */
i mport org. apache. spark. sql . Spar kSessi on;
i mport org.apache. spark. sql . Dat aset ;

public class SinpleApp {
public static void main(String[] args) {
String logFile = "YOUR_SPARK HOVE/ READVE. md"; // Shoul d be sone file on
your system
Spar kSessi on spark = Spar kSessi on. bui | der (). appName("Si npl e Applicatio
n").getOrCreate();
Dat aset <String> | ogData = spark.read().textFile(logFile).cache();

I ong numAs = |l ogData.filter(s -> s.contains("a")).count();
Il ong nunBs = logData.filter(s -> s.contains("b")).count();
Systemout.println("Lines with a: " + numds + ", lines with b: " + num
Bs) ;
spark. stop();
}

Y ou also need to create a Maven Project Object Model (POM) file, as shown in the following example:

<pr oj ect >
<gr oupl d>edu. ber kel ey</ gr oupl d>
<artifactld>sinple-project</artifactld>
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<name>Si npl e Proj ect </ nanme>
<packagi ng>j ar </ packagi ng>

12

Migrating Spark workloads to CDP

<versi on>1. 0</ ver si on>
<properties>
<pr oj ect . bui | d. sour ceEncodi ng>UTF- 8</ pr oj ect . bui | d. sour ceEncodi ng>
<maven. conpi | er. sour ce>1. 8</ maven. conpi | er. sour ce>
<maven. conpi | er. target >1. 8</ maven. conpi | er. t arget >
</ properties>
<dependenci es>
<dependency> <!-- Spark dependency -->
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-sql _2.12</artifactld>
<versi on>2. 4. 0</ ver si on>
<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>
</ proj ect >

* Install Apache Spark 2.4.x, JDK 8.x, and maven

* Write aJava Spark program .javafile.

» Writeapom.xml file. Thisis where your Scala code resides.

« |f thecluster is Kerberized, ensure the required security token is authorized to compile and execute the workload.

1. Lay out these files according to the canonical Maven directory structure.
For example:

$ find .

./ pom xm

.Isrc

./src/main

./src/ main/java

./I'src/ main/javal Si npl eApp. j ava

2. Package the application using maven package command.
For example:

Package a JAR containing your application
$ nvn package

[INFO Building jar: {..}/{..}/target/sinple-project-1.0.jar

After compilation, several new files are created under new directories named project and target. Among these new
files, isthejar file under the target directory to run the code. For example, the file is named simple-project-1.0.jar.

3. Execute and test the workload jar using the spark submit command.
For example:

Use spark-subnmit to run your application
spark-subnmit \

--class "Sinpl eApp" \

--master yarn \
target/sinple-project-1.0.jar

Y ou see by example how to use sbt software to compile a Scala-based Spark job.

13

Migrating Spark workloads to CDP

In thistask, you see how to use the following .sbt file that specifies the build configuration:

cat buil d. sbt

nane := "Sinple Project"
version := "1.0"
scal aVersion := "2.12. 15"

| i braryDependenci es += "org. apache. spark” %6 "spark-sqgl" % "2.4.0"

Y ou also need to create a compile the following example Spark program written in Scala:

[* Sinpl eApp. scala */
i mport org. apache. spark. sqgl . Spar kSessi on

obj ect Si npl eApp {
def main(args: Array[String]) {

val | ogFile = "YOUR _SPARK HOVE/ README. md" // Should be some file on your
system
val spark = SparkSessi on. buil der. appName("Si npl e Application").getO Crea

te()
val |l ogData = spark.read.textFile(logFile).cache()

val numAs = |l ogData.filter(line => line.contains("a")).count()
val nunBs = |l ogData.filter(line => line.contains("b")).count()
println(s"Lines with a: $numAs, Lines with b: $nunBs")
spark. st op()
}

* Install Apache Spark 2.4.x.

e Install JDK 8.x.

e Install Scala2.12.

e Install Sbt 0.13.17.

* Wrtiean .sbt file for configuration specifications, similar to a C includefile.

* Write a Scala-based Spark program (a .scalafile).

« |f thecluster is Kerberized, ensure the required security token is authorized to compile and execute the workload.

1. Compile the code using sbt package command from the directory where the build.sbt file exists.
For example:

Your directory |l ayout should look like this
$ find .

./ buil d. sbt

.Isrc

./src/main

./src/ main/scal a

./ src/ mai n/ scal a/ Si npl eApp. scal a

Package a jar containing your application
$ sbt package

[| hfo] Packaging {..}/{..}/target/scal a-2. 12/ si npl e-project_2.12-1.0.j ar

Several new files are created under new directories named project and target, including the jar file named simple-
project 2.12-1.0.jar after the project name, Scala version, and code version.

14

Migrating Spark workloads to CDP

2. Execute and test the workload jar using spark submit.
For example:

Use spark-subnit to run your application
spark-subnmit \

--class "Sinpl eApp" \

--master yarn \

target/scal a-2.12/sinpl e-project_2.12-1.0.j ar

Y ou can run a Python script to execute a spark-submit or pyspark command.

In thistask, you execute the following Python script that creates atable and runs afew queries:

/ * spark-deno. py */

from pyspark inport SparkCont ext

sc = SparkContext("local", "first app")

from pyspark.sql inport Hi veContext

hi ve_context = Hi veCont ext (sc)

hi ve_context.sql ("drop table default.sales _spark 2 copy")

hi ve_cont ext . sql ("CREATE TABLE | F NOT EXI STS default.sal es_spark_2 copy as
select * fromdefault.sales_spark_2")

hi ve_cont ext. sql ("show t abl es") . show()

hi ve_context.sql ("select * fromdefault.sales spark 2 copy limt 10").show)
hi ve_cont ext.sql ("sel ect count(*) fromdefault.sales_spark_2 copy").show()

Install Python 2.7 or Python 3.5 or higher.

1. Loginto a Spark gateway node.

2. Ensure the required security token is authorized to compile and execute the workload (if your cluster is
Kerberized).

3. Execute the script using the spark-submit command.

spar k-subm t spark-deno. py --numexecutors 3 --driver-nenory 512m --exec
utor-nmenory 512m --executor-cores 1

4. Go to the Spark History server web Ul at http://<spark_history server>:18088, and check the status and
performance of the workload.

Run your application with the pyspark or the Python interpreter.

Install PySpark using pip.

1. Log into a Spark gateway node.

2. Ensure the required security token is authorized to compile and execute the workload (if your cluster is
Kerberized).

3. Ensurethe user has access to the workload script (python or shell script).

15

Migrating Spark workloads to CDP

. Execute the script using pyspark.

pyspar k spark-denp. py --numexecutors 3 --driver-nenmory 512m - -execut or -
menory 512m --executor-cores 1

. Execute the script using the Python interpreter.

pyt hon spar k- deno. py

. Go to the Spark History server web Ul at http://<spark_history server>:18088, and check the status and
performance of the workload.

. Loginto a Spark gateway node.

. Ensure the required security token is authorized to compile and execute the workload (if your cluster is
Kerberized).

. Launch the “ spark-shell”.
For example:

~spark-shell --jars target/nylibrary-1.0- SNAPSHOT-j ar-w t h- dependenci es.
jar

. Create a Spark context and run workload scripts.

cal a> i nport org. apache. spark. sql . hi ve. H veCont ext

scal a> val sqgl Context = new Hi veCont ext (sc)

scal a> sql Cont ext. sql ("CREATE TABLE | F NOT EXI STS default.sales _spark _1(R
egion string, Country string,|ltem Type string, Sal es_Channel string, O der
_Priority string, Order_Date date, Order_ID int, Ship_Date date, Units_sold
string,Unit_Price string,Unit_cost string, Total revenue string, Total Cos
t string, Total _Profit string) row format delinmted fields term nated by
scal a> sql Context.sql ("l oad data local inpath '/tnp/sales.csv' into table
default.sal es_spark_1")

scal a> sql Cont ext . sql ("show t abl es")

scal a> sql Context.sql ("select * fromdefault.sales spark_ 1 limt 10").s

how()

scal a> sql Context.sqgl ("select count(*) fromdefault.sales_spark_1").show

)

5. Go to the Spark History server web Ul at http://<spark_history _server>:18088, and check the status and

performance of the workload.

After the workloads are executed on Spark 2.4, validate the output, and compare the performance of the jobs with
CDH/HDP cluster executions.

After the workloads are executed on Spark 2.4, validate the output, and compare the performance of the jobs with
CDH/HDP cluster executions. After you perform the post migration configurations, do benchmark testing on Spark
2.4,

Troubleshoot the failed/slow performing workloads by analyzing the application event logs/driver logs and fine tune
the workloads for better performance.

For more information, see the following documents:

16

Migrating Spark workloads to CDP

» https://spark.apache.org/docs/2.4.4/sql-migration-guide-upgrade.html
https://spark.apache.org/rel eases/spark-rel ease-2-4-0.html
https://spark.apache.org/rel eases/spark-rel ease-2-2-0.html
https://spark.apache.org/rel eases/spark-rel ease-2-3-0.html
https://spark.apache.org/rel eases/spark-rel ease-2-1-0.html
https://spark.apache.org/rel eases/spark-rel ease-2-0-0.html
For additional information about known issues please also refer:

Known Issuesin Cloudera Manager 7.4.4 | CDP Private Cloud

Because Spark 2.3 is not supported on CDP, you need to refactor Spark workloads from Spark 2.3 on CDH or HDP to
Spark 2.4 on CDP.

This document helps in accelerating the migration process, provides guidance to refactor Spark workloads and lists
migration. Use this document when the platform is migrated from CDH or HDP to CDP.

Y ou must perform anumber of tasks before refactoring workloads.

Assuming all workloads are in working condition, you perform this task to meet refactoring prerequistes.

1. Identify all the workloads in the cluster (CDH/HDP) which are running on Spark 1.6 - 2.3.

2. Classify the workloads.
Classification of workloads will help in clean-up of the unwanted workloads, plan resources and efforts for
workload migration and post upgrade testing.
Example workload classifications:

e Spark Core (scaa)

» Java-based Spark jobs

e SQL, Datasets, and DataFrame
e Structured Streaming

e MLIib (Machine Learning)

* PySpark (Python on Spark)

» Batch Jobs

» Scheduled Jobs

e Ad-Hoc Jobs

e Critical/Priority Jobs

* Huge data Processing Jobs

e Timetaking jobs

« Resource Consuming Jobs etc.
e Failed Jobs

Identify configuration changes

17

https://spark.apache.org/docs/2.4.4/sql-migration-guide-upgrade.html
https://spark.apache.org/releases/spark-release-2-4-0.html
https://spark.apache.org/releases/spark-release-2-2-0.html
https://spark.apache.org/releases/spark-release-2-3-0.html
https://spark.apache.org/releases/spark-release-2-1-0.html
https://spark.apache.org/releases/spark-release-2-0-0.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/manager-release-notes/topics/cm-known-issues-744.html

Migrating Spark workloads to CDP

3. Check the current Spark jobs configuration.

» Spark 1.6 - 2.3 workload configurations which have dependencies on job properties like scheduler, old python
packages, classpath jars and might not be compatible post migration.

e In CDP, Capacity Scheduler is the default and recommended scheduler. Follow Fair Scheduler to Capacity
Scheduler transition guide to have all the required queues configured in the CDP cluster post upgrade. If any
configuration changes are required, modify the code as per the new capacity scheduler configurations.

« For workload configurations, see the Spark History server Ul http://spark_history server:18088/history/
<application_number>/environment/.

4. Identify and capture workloads having data storage locations (local and HDFS) to refactor the workloads post
migration.

5. Refer to unsupported Apache Spark features, and plan refactoring accordingly.

A description of the change, the type of change, and the required refactoring provide the information you need for
migrating from Spark 2.3 to Spark 2.4.

Writing a dataframe with an empty or nested empty schema using any file format, such as parquet, orc, json, text, or
csv isnot allowed.

Type of change: Syntactic/Spark core
Spark 1.6 - 2.3

Writing a dataframe with an empty or nested empty schema using any file format is allowed and will not throw an
exception.

Spark 2.4

An exception is thrown when you attempt to write dataframes with empty schema. For example, if there are
statements such as df .write.format(" parquet").mode(" overwrite").save(somePath), the following error occurs: org.
apache.spark.sgl.AnalysisException: Parquet data source does not support null data type.

Action Required
Make sure that DataFrame is not empty. Check whether DataFrame is empty or not as follows:

if (!df.isEnpty) df.wite.format("parquet").node("overwite").save("sonePath

Column names of csv headers must match the schema.

Type of change: Configuration/Spark core changes

Spark 1.6 - 2.3

Column names of headersin CSV files are not checked against the against the schema of CSV data.
Spark 2.4

If columnsin the CSV header and the schema have different ordering, the following exception is thrown:java.lang.!l
legal ArgumentException: CSV file header does not contain the expected fields.

Action Required

Make the schema and header order match or set enforceSchemato fal se to prevent getting an exception. For example,
read afile or directory of filesin CSV format into Spark DataFrame as follows: df3 = spark.read.option("delimiter",
":").option("header", True).option("enforeSchema, False).csv(path)

The default "header" option is true and enforceSchemaiis False.

18

https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/upgrade-cdh/topics/yarn-scheduler-migration-overview.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/upgrade-cdh/topics/yarn-scheduler-migration-overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/spark-overview/topics/spark-unsupported-features.html

Migrating Spark workloads to CDP

If enforceSchemaiis set to true, the specified or inferred schemawill be forcibly applied to datasource files, and
headersin CSV files areignored. If enforceSchemais set to false, the schemais validated against all headersin CSV
files when the header option is set to true. Field names in the schema and column namesin CSV headers are checked
by their positions taking into account spark.sqgl.caseSensitive. Although the default value is true,you should disable
the enforceSchema option to prevent incorrect results.

Table properties are taken into consideration while creating the table.

Type of change: Configuration/Spark Core Changes

Spark 1.6 - 2.3

Parquet and ORC Hive tables are converted to Parquet or ORC by default, but table properties are ignored. For

example, the compression table property isignored:
CREATE TABLE t(id int) STORED AS PARQUET TBLPROPERTI ES (parquet. conpression
' NONE')

This command generates Snappy Parquet files.

Spark 2.4

Table properties are supported. For example, if no compression isrequired, set the TBLPROPERTIES as follows:
(parquet.compression 'NONE)).

This command generates uncompressed Parquet files.
Action Required
Check and set the desired TBLPROPERTIES.

Creating a managed table with nonempty location is not allowed.
Type of change: Property/Spark core changes

Spark 1.6 - 2.3

Y ou can create a managed table having a nonempty location.
Spark 2.4

Creating a managed table with nonempty location is not allowed. In Spark 2.4, an error occurs when thereis awrite
operation, such as df .write.mode(SaveM ode.Overwrite).saveAsT able("testdb.testtable"). The error side-effects are the
cluster isterminated while the writeisin progress, atemporary network issue occurs, or the job is interrupted.

Action Required
Set spark.sql.legacy.allowCreatingM anagedT ableUsingNonemptyL ocation to true at runtime as follows:
spar k. conf . set ("spark. sqgl . | egacy. al | owCr eat i ngManagedTabl eUsi ngNonenpt yLocat

ion","true")

Set operations are executed by priority instead having equal precedence.
Type of change: Property/Spark SQL changes

Spark 1.6 - 2.3
If the order is not specified by parentheses, equal precedenceis given to all set operations.
Spark 2.4

If the order is not specified by parentheses, set operations are performed from left to right with the exception that all
INTERSECT operations are performed before any UNION, EXCEPT or MINUS operations.

19

Migrating Spark workloads to CDP

For example, if your code includes set operations, such as INTERSECT , UNION, EXCEPT or MINUS, consider
refactoring.

Action Required
Change the logic according to following rule:

If the order of set operationsis not specified by parentheses, set operations are performed from left to right with the
exception that all INTERSECT operations are performed before any UNION, EXCEPT or MINUS operations.

If you want the previous behavior of equal precedence then, set spark.sgl.legacy.setopsPrecedence.enabled=true.

HAVING without GROUP BY istreated as a global aggregate.
Type of change: Property/Spark SQL changes
Spark 1.6 - 2,3

HAVING without GROUP BY istreated as WHERE. For example, SELECT 1 FROM range(10) HAVING trueis
executed as SELECT 1 FROM range(10) WHERE true, and and returns 10 rows.

Spark 2.4

HAVING without GROUP BY istreated as a global aggregate. For example, SELECT 1 FROM range(10) HAVING
true returns one row, instead of 10, asin the previous version.

Action Required

Check the logic where having and group by is used. To restore previous behavior, set spark.sqgl.legacy.parser.havi
ngWithoutGroupByAsWhere=true.

How Spark treats malformationsin CSV files has changed.
Type of change: Property/Spark SQL changes
Spark 1.6 - 2.3

CSV rows are considered malformed if at least one column value in the row is malformed. The CSV parser drops
malformed rows in the DROPMALFORMED mode or outputs an error in the FAILFAST mode.

Spark 2.4

A CSV row is considered malformed only when it contains malformed column values requested from CSV
datasource, other values are ignored.

Action Required
To restore the Spark 1.6 behavior, set spark.sqgl.csv.parser.columnPruning.enabled to false.

A CSV exampleillustrates the CSV-handling change in Spark 2.4.

In the following CSV file, the first two records describe the file. These records are not considered during processing
and need to be removed from the file. The actual datato be considered for processing has three columns (jersey,
name, position).

These are extra |inel
These are extra |ine2
10, Messi , CF

7, Ronal do, LW

9, Benzema, CF

20

Migrating Spark workloads to CDP

The following schema definition for the DataFrame reader uses the option DROPMALFORMED. Y ou see only the
required data; all the description and error records are removed.

schema=Structtype([Structfield(“jersy”, StringType()), Structfield(“nane”, Stri
ngType()), Structfi

el d(“position”, StringType())])

df 1=spar k. r ead\

.option(“node”,” DROPMALFORMED")\

.option(“delimter”,”,”)\

. schema(schena) \

.csv(“inputfile”)

df 1. sel ect (“*"). show()

Output is:
jersy name position
10 M CF
7 Ronaldo LW
9 Benzema CF

Select two columns from the dataframe and invoke show():

df 1. sel ect (“jersy”, "nane”). show(truncat e=Fal se)

jersy name

These are extralinel null
These are extraline2 null

10 M

7 Ronaldo
9 Benzema

Malformed records are not dropped and pushed to the first column and the remaining columns will be replaced with
null.Thisis dueto the CSV parser column pruning which is set to true by default in Spark 2.4.

Set the following conf, and run the same code, selecting two fields.

spar k. conf . set (“spar k. sql . csv. par ser. col utmPr uni ng. enabl ed”, Fal se)

df 2=spar k. r ead\
.option(“node”, " DROPMALFORMED") \
.option(“delimter”,”, ")\
. schema(schema)\
.csv(“inputfile”)
df 2. sel ect (“j ersy”, "nane”) . show(truncat e=Fal se)

jersy name

10 Messi
7 Ronaldo
9 Benzema

Conclusion: If working on selective columns, to handle bad recordsin CSV files, set spark.sql.csv.parser.columnP
runing.enabled to false; otherwise, the error record is pushed to the first column, and all the remaining columns are
treated as nulls.

21

Migrating Spark workloads to CDP

To execute the workloads in CDP, you must modify the references to storage locations. In CDP, references must be
changed from HDFS to a cloud object store such as S3.

The following sample query shows a Spark 2.4 HDFS data location.

scal a> spark. sql ("CREATE TABLE | F NOT EXI STS defaul t. sal es_spark_2(Regi on st
ring, Country string,ltemType string, Sal es_Channel string, Order_Priority st
ring, Order_Date date, Order _ID int,Ship Date date, Units_sold string,Unit _Pric
e string,Unit _cost string, Total _revenue string, Total Cost string, Total Profi
t string) row format delinmted fields termnated by ','")

scal a> spark.sql ("l oad data | ocal inpath '/tnp/sales.csv' into table defau
I't.sal es_spark_2")

scal a> spark.sql ("select count(*) fromdefault.sal es _spark_2").show()

The following sample query shows a Spark 2.4 S3 data location.

scal a> spark. sql ("CREATE TABLE | F NOT EXI STS defaul t. sal es_spark_2(Regi on st
ring, Country string,ltem Type string, Sal es_Channel string, Order Priority st
ring, Order_Date date,Order ID int,Ship Date date,Units_sold string,Unit _Pric
e string,Unit_cost string, Total _revenue string, Total Cost string, Total Profi
t string) row format delimted fields termnated by ','")

scal a> spark.sql ("l oad data inpath 's3://<bucket>/sal es.csv' into table de
faul t.sal es_spark_2")

scal a> spark.sql ("select count(*) fromdefault.sal es spark _2").show()

Hive-on-Spark is not supported on CDP. Y ou need to use the Hive Warehouse Connector (HWC) to query Apache
Hive managed tables from Apache Spark.

To read Hive external tables from Spark, you do not need HWC. Spark uses native Spark to read external tables. For
more information, see the Hive Warehouse Connector documentation.

The following example shows how to query a Hive table from Spark using HWC:

spark-shell --jars /opt/clouderalparcel s/ CDH j ar s/ hi ve-war ehouse-connect or -a
ssenbl y-1.0.0.7.1.4.0-203.jar --conf spark.sql.hive. hiveserver2.jdbc.url=jdb
c: hive2://cdhhdp02. uddeept a- bandyopadhyay- s- account . cl oud: 10000/ default --co
nf spark. sql. hive. hiveserver2.jdbc.url.principal =hi ve/ cdhhdp02. uddeept a- band
yopadhyay- s- account . cl oud@Jddeept a- bandyopadhyay- s- Account . CLOUD

scal a> val hive = com hortonworks. hwe. H veWar ehouseSessi on. sessi on(spark).b
ui 1 d()

scal a> hi ve. execut eUpdat e(" UPDATE hi ve_aci d_deno set val ue=25 where key=4")
scal a> val result=hive.execute("select * fromdefault.hive acid denpn")

scal a> resul t.show()

After modifying the workloads, compile and run (or dry run) the refactored workloads on Spark 2.4.

Y ou can write Spark applications using Java, Scala, Python, SparkR, and others. Y ou build jars from these scripts
using one of the following compilers.

» Java(with Maven/Java IDE),
» Scala(with sbt),

e Python (pip).
e SparkR (RStudio)

22

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html

Migrating Spark CDP to Cloudera Data Engineering

After the workloads are executed on Spark 2.4, validate the output, and compare the performance of the jobs with
CDH/HDP cluster executions.

After the workloads are executed on Spark 2.4, validate the output, and compare the performance of the jobs with
CDH/HDP cluster executions. After you perform the post migration configurations, do benchmark testing on Spark
2.4,

Troubleshoot the failed/slow performing workloads by analyzing the application event logs/driver logs and fine tune
the workloads for better performance.

For more information, see the following documents:

* https://spark.apache.org/docs/2.4.4/sgl-migration-guide-upgrade.html
https://spark.apache.org/rel eases/spark-rel ease-2-4-0.html
https://spark.apache.org/rel eases/spark-rel ease-2-2-0.html
https://spark.apache.org/rel eases/spark-rel ease-2-3-0.html
https://spark.apache.org/rel eases/spark-rel ease-2-1-0.html
https://spark.apache.org/rel eases/spark-rel ease-2-0-0.html
For additional information about known issues please also refer:

Known Issuesin Cloudera Manager 7.4.4 | CDP Private Cloud

When migrating from Spark 2.4 to Spark 3.x, there are significant changes to executing Dataset/ Dataframe APIs,
DDL statements, and UDF functions.

See the Apache Spark migration documentation when migrating to Spark 3.x.

Apache Spark migration documentation

Cloudera Date Engineering Service (CDE) is designed as a fully managed service for Spark. Among many other
features, CDE streamlines and provides better Spark jobs monitoring capabilities with an enhanced Job Analysis
page, that builds upon the Spark Ul and Apache Airflow for orchestrating Spark pipelines.

The CDE service currently supports Spark batch jobs only. Spark streaming is experimental and is not recommended
for production. For information about guidelines and limitations, see Experimental support for Spark Streaming and
Spark Structured Streaming.

CDE does not change Spark. It allows you to easily deploy managed Spark 2.4.0 or higher and Spark 3.0+ clustersin
the cloud, so if you are aready using Spark in your code, you can migrate the code to CDE asis.

The deployment mode changes from YARN to Kubernetes, but CDE automatically sets the required Kubernetes
properties upon job creation, so you need not set them. However, you may have to convert some YARN related
properties. Details of these Y ARN properties are discussed in the Convert Spark Submits to CDE CLI Spark Submits
section.

Experimental support for Spark Streaming and Spark Structured Streaming
Convert Spark Submitsto CDE CLI Spark Submits

23

https://spark.apache.org/docs/2.4.4/sql-migration-guide-upgrade.html
https://spark.apache.org/releases/spark-release-2-4-0.html
https://spark.apache.org/releases/spark-release-2-2-0.html
https://spark.apache.org/releases/spark-release-2-3-0.html
https://spark.apache.org/releases/spark-release-2-1-0.html
https://spark.apache.org/releases/spark-release-2-0-0.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/manager-release-notes/topics/cm-known-issues-744.html
https://spark.apache.org/docs/latest/sql-migration-guide.html#upgrading-from-spark-sql-24-to-30
https://docs.cloudera.com/data-engineering/cloud/overview/topics/cde-service-overview.html#pnavId1
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/cdppvc-data-migration-spark/topics/cdp-migration-spark-cde-convert-cdp-cde-command.html

Migrating Spark CDP to Cloudera Data Engineering

Cloudera Date Engineering Service (CDE) is designed as a fully managed service for Spark. Among many other
features, CDE streamlines and provides better Spark jobs monitoring capabilities with an enhanced Job Analysis
page, that builds upon the Spark Ul and Apache Airflow for orchestrating Spark pipelines.

CDE introduces the concept of a CDE job which can be of two types: Spark and Airflow.

A Spark CDE job is a Spark submit. An Airflow CDE job isan Airflow Directed Acyclic Graph (DAG) that
orchestrates any Spark CDE jobs and optionally Hive CDW queries, and more.

While using Airflow is recommended for complex pipelinesit is not mandatory.

CDE Resources allow you to store all files related to Spark and Airflow jobs along with their dependencies (JARS,
ZIP, and text/config files) in the CDE Virtual Cluster.

Resources can also manage Python Environments. In other Spark environments, files may have been pre-populated,
or Python packages installed through pip, Anaconda, or asimilar installer. Resources replace these conceptsin CDE
and simplify the manageability of working with multiple environments.

Most importantly, Resources provide better Spark and Airflow job observability. Every past run can be mapped to a
specific set of dependencies.

For examples of using both file-based and Python environment CDE Resources from a CDE Spark application, see
CDE CLI Demo.

CDE Resources and Jobs are really al you need to deploy Spark pipelinesin CDE. If you are new to CDE Cloudera
recommends that you get familiar with the following concepts:

e Cloud Environment: A logical subset of your cloud provider account including a specific virtual network. For
more information, see Environments.

e CDE service: The long-running Kubernetes cluster and services that manage the virtual clusters. The CDE service
must be enabled in an environment before you can create any virtua clusters.

e CDE virtua cluster: Anindividual auto-scaling cluster with defined CPU and memory ranges. Virtua clustersin
CDE can be created and deleted on demand. Jobs are associated with clusters.

e CDEjobrun: Anindividual run of a CDE job. All runs are easily accessible from the CDE Ul or observable
through the CDE CLI and API.

CDE jobs of type Spark correspond to a Spark Submit CLI and are easy to build. Just like Spark Submit commands,
they use Spark Jar, Python, Java files and any other Spark Submit argument such as Class, number of executors, and
SO on.

There are three ways to build a Spark CDE job:

« Using the CDE web interface. For more information, see Running Jobs in Cloudera Data Engineering.

¢ Using the CDE CLI tool. For more information, see Using the Cloudera Data Engineering command line
interface.

» Using CDE Rest API endpoints. For more information, see CDE API Jobs.

In addition, you can automate migrations from Oozie on CDP Public Cloud Data Hub, CDP Private Cloud Base,
CDH and HDP to Spark and Airflow CDE jobs with the oozie2cde API. For information about using the API, see
Migrating Oozie to CDE with the cozie2cde API .

24

Migrating Spark CDP to Cloudera Data Engineering

The CDE CLI and API are equivalent in terms of functionality. The CLI requires downloading and installing a binary
on your machine. On the other hand, the API requires submitting requests with a temporary token.

Generally, the CLI is more suitable for interactivity while the API is better for integrating CDE pipelines with
external systems.

Using Python virtual environments with Cloudera Data Engineering
CDE CLI Demo

Environments

Running Jobs in Cloudera Data Engineering

Using the Cloudera Data Engineering command line interface

CDE API Jobs

Migrating Oozie to CDE with the oozie2cde AP

The CDE CLI cde spark subnit command isintended to closely match with Apache Spark's spar k-
subnmi t command.

cde spark submt [flags]
Examples:
Local job file 'ny-spark-app-0.1.0.jar' and Spark arguments '100' and ' 1000

> cde spark subnit ny-spark-app-0.1.0.jar 100 1000 --class com conmpany. app
.spark. Mai n

Renote job file:

> cde spark submt s3a://ny-bucket/ny-spark-app-0.1.0.jar 100 1000 --cl ass
com conpany. app. spark. Mai n

Fl ags:

--class string

--conf stringArray
ey=val ue) (can be repeated)

job main class
Spark configuration (format k

--driver-cores int nunmber of driver cores
--driver-nenory string driver nenory
--executor-cores int nunber of cores per executor
--executor-menory string nmenory per executor
--file stringArray additional file (can be repea
ted)
-h, --help hel p for submt
--hi de-I ogs whet her to hide the job run
ogs from the out put
--initial-executors string initial nunber of executors
--jar stringArray addi tional jar (can be repeate
d)

--j ob-nane string
--log-level string

| NFO, WARN, ERROR, FATAL, OFF)
- - max- executors string
--mn-executors string

nane of the generated job
Spark | og | evel (TRACE, DEBUG

maxi mum nunber of executors
m ni mum nunber of executors

25

https://docs.cloudera.com/data-engineering/cloud/use-resources/topics/cde-python-virtual-env.html
https://github.com/curtishoward/CDE_CLI_demo/blob/master/README.md
https://docs.cloudera.com/management-console/cloud/overview/topics/mc-core-concepts.html
https://docs.cloudera.com/data-engineering/cloud/manage-jobs/topics/cde-run-job.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli.html
https://docs.cloudera.com/data-engineering/cloud/jobs-rest-api-reference/index.html
https://github.com/pdefusco/Oozie2CDE_Migration

Migrating Spark CDP to Cloudera Data Engineering

- - packages string
i st of Maven coordi nates
--py-file stringArray

r epeat ed)
--pypi-mrror string
ui rements
- - pyt hon- env-resource-nanme string
ame
--pyt hon-requirenments string
ts.txt

--pyt hon-version string
"pyt hon2")
--repositories string
rs for --packages dependencies

--runti me-i mage-resource-nane string

name
--spark-name string

addi ti onal dependencies as |
additional Python file (can be
PyPi mrror for --python-req
Pyt hon environnment resource n

| ocal path to Python requirenen
Pyt hon version ("python3" or
addi tional repositories/resolve
customruntime i mage resource

Spar k nane

There are afew differencesin terms of command syntax and functionality between CDE/ Spar k- on- k8s and
Spar k- on- YARN that you should be aware of. While not an exhaustive guide to converting your Spark-on-YARN
(CDH/HDP/Datahub) application to CDE/Spark-on-k8s, the sections below cover some of the common configuration

changesthat is required.

The following options that you may have used with spar k- subni t should be removed when using CDE (for

example, cde spark submit):

e drop- - mast er: thisis set internally by CDE.

e drop- - depl oy- node: thisisaways cluster mode and internally set by CDE.

e drop--spark. keyt ab, - - spar k. yarn. pri nci pal , and so on: Kerberos authentication details handled
internally by CDE, based on your CDP workload user's authentication.

e dropshuffle. service. enabl ed=t r ue: externa shuffle serviceis actively being developed by Cloudera
for Spark-on-k8s (available in an upcoming release).

spark-submit--files, --py-files, —jars comma-separated syntax can be used:

--files f1.txt,f2.txt

Note: By default, filesincluded with job configuration, for example: --file some file.txt, are available in the
E lapp/mount/some_file.txt file and not in the Spark process working directory. Therefore, the application must
refer to this full path to accessthe file instead of ./some file.txt.

If the application or entrypoint needs to be passed with additional arguments, these should be separated from
the cde spark submit arguments using -- in front of them. This instructs the parser to treat the rest of the string

literally, for example, :
my_entrypoint.py -- -al-b "twenty two"

e Rename- - app. nane to- -j ob- nane

* CDE defaultsto Python3. If you intend to use legacy Python2, add - - pyt hon-ver si on
pyt hon2. The Python version should aways be set through CDE, for example, using the - -
pyt hon- ver si on flag. Any previous references that is used to set the Python version, such as
spar k. yarn. appMast er Env. PYSPARK PYTHON=pyt hon3. 6, should be removed.
« |If you are migrating an application from an on-premise environment that uses HDFS for storage, you need to
update hdfs://... paths in your configuration to the equivalent cloud storage URI of that data. For example, s3a//....

26

Migrating Spark CDP to Cloudera Data Engineering

» There are anumber of YARN-specific Spark configurations that you must review and either remove or convert it to
Soark on Kubernetes specific configuration. The links referred here are are specific to Spark 3.1.1. In some cases,
such asspar k. yar n. execut or . nenor yOver head, Spark now provides more agnostic configuration like
spar k. execut or. menor yOver head that can be used.

* Inother cases, you can use an equivaent kubernetes configuration. For example, setting environment variables
for the Spark processspar k. yar n. appMast er Env. TZ=Aner i ca/ Los_Angel es becomes
spar k. kuber net es. dri ver Env. TZ=Aneri ca/ Los_Angel es.

« Certain Spark-on-k8s configurations listed in the reference links above like configuration related to k8s
namespaces, authentication, or volume mounts, may not apply or be compatible with CDE. Often CDE manages
those, or their equivalents internally. Reach out to Cloudera support or your Cloudera account team if you have
guestions on this part of your migration.

« Configuration related to external or third-party vendor products should be reviewed and possibly removed. For
example, Unravel Data configuration such asspar k. unr avel . * hasto be reviewed and removed.

Y ARN specific Spark configurations
Spark on Kubernetes specific configuration

If at any time you are having issues with the CDE CLI, you can view the CDE CLI options by adding the - - hel p
flag to any CLI commands:

cde spark --help
cde spark submt --help
cde airflow --help

cde resource --help

When new to the CDE CLI, acommon approach isto start with the following steps:

Experimenting with CDE Spark Submit CLI

Creating a CDE Resource

Uploading all files to the CDE Resource

Creating CDE jobs with files uploaded to the Resource
Running CDE jobs

agrwbdhe

Thisisthe fastest way to launch a Spark Submit CLI in CDE. Notice however that the CDE job is not instantiated as a
Spark CDE job and is therefore not reschedulable from the CDE UI.

cde spark submit pysparkjob. py

27

https://spark.apache.org/docs/3.1.1/running-on-yarn.html#spark-properties
https://spark.apache.org/docs/3.1.1/running-on-kubernetes.html#configuration

Migrating Spark CDP to Cloudera Data Engineering

CLOUD=RA
Data Engineering Job Runs

JobName ¥ Search Job Runs = Filter By: S¢
Status RuniD Job
41 cli-submit-pauldefusco-165127720734

Clouderarecommends that you create one CDE Resource for every Spark Pipeline or Airflow DAG .

cde resource create --nane cde_cli_resource

When uploading to a resource the two important inputs are the name of the target CDE Resource and the local path to
the files being upl oaded.

Clouderarecommends using the - - hel p command to explore more options such as uploading filesin bulk.

cde resource upload --name cde_cli_resource --local-path "pysparkjob. py" --r
esour ce- pat h "pyspar kj ob. py"

Once the files and dependencies have been uploaded you can easily instantiate a CDE job with thej ob cr eat e
command.

For example, you can create a CDE job with the CDE Resource file and run it on a schedule.

cde job create --name "cde_cli_job" --type "spark"
--application-file "pysparkjob. py"
--cron-expression "0 */1 * * *" \
--schedul e- enabl ed "true"
--schedul e-start "2022-04-29"
--schedul e-end "2022-05-02"
--mount - 1-resource "cde_cli _resource"

Creating aresource and uploading dependenciesis optional. Once that is done, you can trigger execution of the CDE
jobs manually.

cde job run --nane "cde_cli_job" --application-file "pysparkjob. py"

Y ou have now completed a basic workflow to start experimenting with the CDE CLI. Below are some more useful
examples:

More CDE CLI examples

28

Migrating Spark CDP to Cloudera Data Engineering

e Search for CDE jobs based on attributes

Y ou can use attributes for your search. In this case, you can search by name.

cde job list --filter 'name[like] %anme_pattern%

e Listal CDE job runs

cde run list
e Describe CDE job run

Replace the integer with your job run id. For example, 47 isthe ID referred in the below command.

cde run describe --id 47
» Create a CDE job with Custom Spark Log Level

A big advantage of using CDE is Spark observability. Logging level can be easily customized. Furthermore, every
log is always available to the CDE user.

Using the log-level parameter you can choose any of the following options: TRACE, DEBUG, INFO, WARN,
ERROR, FATAL, OFF

cde job create --name "cde_cli_job_customl|og_level" --type "spark"
--application-file "pysparkjob. py"
--1og-1evel "DEBUG'
--schedul e- enabl ed "fal se"
--mount - 1-resource "cde _cli_resource"

e Collect CDE Job Run Logs

Y ou can download the Spark logs you have access to in CDE. Notice you have more options e.g. executor logs
cde run logs --type "driver/stdout" --id 47

Y ou can modify the log type to any of the available tabs in the corresponding CDE job Run page. For example:

e driver/stderr or Driver/stdout
* executor id/stdout

Y ou can execute each of the commands mentioned in the previous section, from the terminal, or in athird-party
application such as GitLab or a Jupyter Notebook.

As mentioned in the introductory section, the API requires downloading a CDE Token, based on your user credentials
and the CDE Virtual Cluster you want to connect to.

Y ou need the following environment variables:

e CDP WorkloadUsername and WorkloadPassword. Y ou can contact your CDP Administrator for the credentials.
 ACCESS _TOKEN. For information on how to get an access token, see Getting an Access Token.
e JOBS API_URL. You can copy the URL from the CDE Virtual Cluster Service Details page as shown below.

29

Migrating Spark CDP to Cloudera Data Engineering

CLOUDZ=RA .)
Data Engineering Overview / aws01

& Running

awsO01
VERSION VCID CREATED BY CPU
1.16.0-b203 dex-app-¥j w P - s 0
CLITOOL ¢ APIDOC © JOBS APIURL ©&
Configuration Charts

Prior to proceeding with the examples, you must save the variables as environment variables in your local
environment. For example:

export CDE TOKEN=<access_t oken>
export JOBS APl _URL=<j obs_api url >

Create a CDE Resource with the API

curl -H "Authorization: Bearer $ACCESS TOKEN' - X POST \
"$JOBS_API _URL/resources" -H "Content-Type: application/json" \
-d "{ \"name\": \"cde_api _resource\"}"

curl -H "Authorization: Bearer ${CDE TOKEN}" -X CET \
${CDE_JOB_URL_AWS}/resources"”

curl -H "Authorization: Bearer $ACCESS TOKEN' -X POST "$JOBS APl _URL/j obs" \

-H "accept: application/json" \

-H "Cont ent - Type: application/json" \

-d "{ \"name\": \"cde_cicd_job\", \"type\": \"spark\", \"retentio
nPol i cy\":

\"keep_indefinitely\", \"nmounts\": [{ \"dirPrefix\": \"/\", \"resou
rceNane\ ":

\"cde cicd resource\" }], \"spark\": { \"file\": \"pyspark.py\"},\"
schedul e\ ": {

\"enabl ed\": false} }"

curl -H "Authorization: Bearer $ACCESS TOKEN' -H 'accept: application/json'

-H ' Content - Type:

application/json' -X POST "$CDE_VC ENDPO NT/j obs/cm 2cde_ci cd_j ob/ run" -d
"{"overrides":

30

Migrating Spark CDP to Cloudera Data Engineering

{"spark":{"driverCores": 2, "driverMenory": "4g", "executorCores": 4,
"executor Menory": "4g", "nunExecutors": 4}}}'

Getting an Access Token

The CDE job options that you pass to the requests can get cumbersome. Y ou can use the Swagger page to construct
and test your requests.

Y ou can access the Swagger page from the Virtual Cluster Service Details page by clicking APl DOC as shown
below.

CLOUDZRA o
Data Engineering Overview / aws01

€@ Running

aws01
VERSION VCID CREATED BY CPU MEMORY JOBS
1.10.0-t)3 dex-app». W~ R s 0 0B 0 2
CLITOOL : ‘ APIDOC B JOBS APIURL © GRAFANA CHARTS 1B J
Configuration Charts Logs Acc

An example procedure to construct and test request:

31

https://docs.cloudera.com/data-engineering/cloud/api-access/topics/cde-api-get-access-token.html

Migrating Spark CDP to Cloudera Data Engineering

Procedure
1. Click the GET/jobs method in the jobs
job-runs

m /job-runs List job runs
m /job=runs/{id} Describe a job run

/job-runs/{id}/kill Kilajobrun

G /iob-runs/(id)}/log-types Listajobrun's log types

PEEAD /50b-runs/(id)/1ogs Getlogs for ajod run

jobs

Coer IO

ion m /jobs Create ajob

2. Click Try it out.
3. Enter afew optionsin the provided fields. For example, ensure that the latestjob flag is set to true and enter
nameleq]cde_api_job string in the first field.

32

Migrating Spark CDP to Cloudera Data Engineering

4. Click Execute.

Name Description
latestjob o o
boolean Include latest job information, if any

(query)
true j

filter

array[string

 Filter the list by the syntax ‘fieldname[operatorjargument. 'fieldname’ is the name of a
example, ‘created[gte]2020-01-01". Multiple filters are ANDed.

(quary)

name[eqjcmi2cde_api_job :|
limit))
integer The maximum number of jobs to return, up to 100
(query)

20
offset
e The number of jobs to skip before starting list
(gquery)

0
orderby
string The job API field to order by
(query)

name
orderasc o .
boolean Whether an ordering is ascending
(query)

(e 2

includeTotal
- Whether to include the total number of jobs that match the filters

(query) I - ”]

Execute

33

Migrating Spark CDP to Cloudera Data Engineering

The Request URL field is populated now. Y ou can use this to construct your next request, as shown below. Also a
response preview is

Curl

job=trushfilter=nameXSBeqiSDcml 2cde_api_job&limit=

Request URL

https://damptrmh . cde-quesdpdis. go0l-den. ylou-atmi.cloudera.site/dex/apl /vl jobsrlatestjobstrusifilter=namstSBeqiSDomllcda_api_jobklimit=20

Server response

Code Details

00
«A Response body

"lastUsed™:
"mounts”: [
{
"resourceMome”: "oml2cde_resource”
“dirPrefix™: "/°

}

Js
"spark®: {

“file": "Data_Extraction_Sub_158k.py"
}

"retentionPolicy”: “keep_indefinitely”,
“schedule”: {

“enabled”: false,

"user”: "pauldefusco”
1.
"latestRunInfo®™: {
"id®:

provided.
5. Using the highlighted portion of the Request URL, construct a new request as shown below.

Show the | atest job whose nane is cde_cli_job

curl -H "Authorization: Bearer $ACCESS TOKEN' -X CGET "$JOBS_API _URL/j obs
?l at estj ob=true&filter=nane%Beq%bDcde_cli _job&l i n t=20&of f set =0&or der by
=nane&or der asc=t rue" \

-H "accept: application/json" \
-H "Cont ent - Type: application/json"

Apache Airflow is aplatform to author, schedule and execute Data Engineering pipelines. It iswidely used to create
dynamic and robust workflows for batch Data Engineering use cases because of its flexibility and ease of use.

Airflow iswidely used because of its flexibility and ease of use. CDE embeds Apache Airflow at the CDE Virtual
Cluster level. It isautomatically deployed for the CDE user during CDE Virtua Cluster creation and requires no
maintenance on the part of the CDE Admin.

CDE jobs of type Airflow correspond to Airflow DAGs. Just like Spark CDE jobs there are three ways to build an
Airflow CDE job:

» Using the CDE web interface. For more information, see Running Jobs in Cloudera Data Engineering.

* Using the CDE CLI tool. For more information, see Using the Cloudera Data Engineering command line
interface.

« Using CDE Rest API endpoints. For more information, see CDE API Jobs.

34

Migrating Spark CDP to Cloudera Data Engineering

In addition, you can automate migrations from Oozie on CDP Public Cloud Data Hub, CDP Private Cloud Base,
CDH and HDP to Spark and Airflow CDE Jobs with the oozi e2cde API. For information about using the API, see
Migrating Oozie to CDE with the oozie2cde API.

Airflow DAG

In Airflow, aDAG (Directed Acyclic Graph) is defined in a Python script that represents the DA Gs structure (tasks
and their dependencies) as code.

For example, for asimple DAG consisting of three tasks: A, B, and C. The DAG can specify that A hasto run
successfully before B can run, but C can run anytime. Also that task A times out after 5 minutes, and B can be
restarted up to 5timesin case it fails. The DAG might also specify that the workflow runs every night at 10pm, but
should not start until a certain date.

For more information about Airflow DAGs, see Apache Airflow DAGdocumentation. For an example DAG in CDE,
see CDE Airflow DAG documentation.

Airflow Ul

The Airflow Ul makes it easy to monitor and troubleshoot your data pipelines. For a complete overview of the
Airflow Ul, see Apache Airflow Ul documentation.

Running Jobs in Cloudera Data Engineering

Using the Cloudera Data Engineering command line interface
CDE API Jobs

Migrating Oozie to CDE with the oozie2cde API

Apache Airflow documentation

CDE Airflow DAG documentation

Apache Airflow Ul documentation

CDE packages the open source version of Airflow. Airflow is maintained and upgraded at each CDE version update.
For example, the version of CDE 1.16 includes Airflow 2.2.5.

CDE Airflow imposes no limitations on Operators, Plugins or other integrations with external platforms. Users are
free to deploy Airflow DAGsin CDE as dictated by the use case. Cloudera contributed two operators to the Airflow
Community:

e CDE Operator: used to orchestrate Spark CDE jobs. This has no requirements other than creating a Spark CDE
job separately and then referencing it within the Airflow DAG syntax.

e CDW Operator: used to orchestrate CDW Hive or Impala queries. This requires a Cloudera Virtual Warehouse
and setting up of an Airflow connection to it.

For an example DAG in CDE using the two operators, see CDE Airflow DAG documentation.

e Fromyour Virtual Cluster Service Details page, click Airflow Ul to access the Ul.

35

https://docs.cloudera.com/data-engineering/cloud/manage-jobs/topics/cde-run-job.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli.html
https://docs.cloudera.com/data-engineering/cloud/jobs-rest-api-reference/index.html
https://github.com/pdefusco/Oozie2CDE_Migration
https://airflow.apache.org/docs/apache-airflow/stable/concepts/dags.html
https://docs.cloudera.com/data-engineering/cloud/orchestrate-workflows/topics/cde-airflow-editor.html
https://airflow.apache.org/docs/apache-airflow/stable/ui.html

Migrating Spark CDP to Cloudera Data Engineering

Administration / Virtual Cluster /

@ Running

VERSION VCID CREATED BY CPU MEMORY JOBS
1. oottt RO T 0 0B 0 [

CLITOOL : APIDOC & JOBSAPIURL & GRAFANA CHARTS LC

The Airflow DAGs page is displayed.

H Airflow DAGs Browse Admin Docs

DAGs
m Active o Paused o Filter L
DAG Owner Runs Schedule Last Run
ontemun mistica =TI e E— None
1 | None

Using the CDE CLI

For Spark CDE jabs, the CDE CLI provides an intuitive solution to create and manage Airflow CDE jobs.

The CDE CLI commands to create a resource and upload filesto it are identical asin the Spark CDE job section.
e Submit Airflow CDE job with local DAG file

cde airflow submit ny-airflowjob. py

36

Using spark-submit drop-in migration tool for migrating Spark
workloads to CDE

* Create Airflow CDE job
Notice that the --application-file flag has been replaced with the --dag-file flag.

cde job create --nanme nyairflowjob --type airflow --dag-file path/to/air
fl ow_dag. py

Aswith the CDE CLI, this section builds on the prior examples on the CDE API with Spark CDE jobs.

The payload now includes the argument airflow for the type parameter. For more details on building Airflow CDE
requests, see the Svagger API page.

curl -H "Authorization: Bearer $ACCESS TOKEN' -X ' POST' \

' $JOBS_API _URL/jobs' \

-H "accept: application/json" \

-H ' Content-Type: application/json' \

-d "{"type": "airflow', "airflow': {"dagFile": "ny_dag.py"}, "identity":

{"di sabl eRol eProxy": true},"nmounts": [{"dirPrefix": "/","resourceNanme": "o0o0z
ie mgration"}],"nanme": "oozie2airflow nigration","retentionPolicy": "keep_i
ndefinitely"}'

CDE Airflow DAG documentation

Cloudera Data Engineering (CDE) provides a command line tool cde-env to help migrate your CDP Spark workloads
running on CDP Private Cloud Base (spark-on-Y ARN) to CDE without having to completely rewrite your existing
spark-submit command-lines.

For information about using the cde-env tool, see Using spark-submit drop-in migration tool.

37

https://docs.cloudera.com/data-engineering/cloud/orchestrate-workflows/topics/cde-airflow-editor.html
https://docs.cloudera.com/data-engineering/1.5.4/cde-spark-submit-migration/topics/cde-using-cde-env-tool-migration.html

	Contents
	Migrating Spark workloads to CDP
	Spark 1.6 to Spark 2.4 Refactoring
	Handling prerequisites
	Spark 1.6 to Spark 2.4 changes
	New Spark entry point SparkSession
	Dataframe API registerTempTable deprecated
	union replaces unionAll
	Empty schema not supported
	Referencing a corrupt JSON/CSV record
	Dataset and DataFrame API explode deprecated
	CSV header and schema match
	Table properties support
	Managed table location
	Write to Hive bucketed tables
	Rounding in arithmetic operations
	Precedence of set operations
	HAVING without GROUP BY
	CSV bad record handling
	Spark 2.4 CSV example

	Configuring storage locations
	Querying Hive managed tables from Spark
	Compiling and running Spark workloads
	Compiling and running a Java-based job
	Compiling and running a Scala-based job
	Running a Python-based job
	Using pyspark

	Running a job interactively

	Post-migration tasks

	Spark 2.3 to Spark 2.4 Refactoring
	Handling prerequisites
	Spark 2.3 to Spark 2.4 changes
	Empty schema not supported
	CSV header and schema match
	Table properties support
	Managed table location
	Precedence of set operations
	HAVING without GROUP BY
	CSV bad record handling
	Spark 2.4 CSV example

	Configuring storage locations
	Querying Hive managed tables from Spark
	Compiling and running Spark workloads
	Post-migration tasks

	Spark 2.4 to Spark 3.2 Refactoring

	Migrating Spark CDP to Cloudera Data Engineering
	Cloudera Data Engineering Concepts
	Convert Spark Submit commands to CDE CLI Spark Submit commands
	Using the Cloudera Data Engineering CLI
	Convert Spark Submits to CDE API Requests
	Using Swagger Page
	Getting Started with CDE Airflow
	Using Airflow

	Using spark-submit drop-in migration tool for migrating Spark workloads to CDE

