
Cloudera Data Science Workbench

Configuring Cloudera Data Science Workbench
Engines
Date published: 2020-02-28
Date modified: 2021-11-30

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Data Science Workbench | Contents | iii

Contents

Configuring Cloudera Data Science Workbench Engines....................................4
Concepts and Terminology...4
Managing Engines.. 5

Managing Resource Profiles...6
Managing Engine Images... 7
Configuring the Engine Environment.. 7

Cloudera Data Science Workbench Configuring Cloudera Data Science Workbench Engines

Configuring Cloudera Data Science Workbench Engines

This topic describes how to configure and manage engines in Cloudera Data Science Workbench. Cloudera Data
Science Workbench currently supports R, Python, and Scala engines.

You can use these engines to run data science projects either in isolation, as you would on your laptop, or connect to
your CDH cluster using Cloudera Distribution of Apache Spark 2 and other libraries.

Concepts and Terminology
This topic provides model conceptual information.
Model

Model is a high level abstract term that is used to describe several possible incarnations of objects
created during the model deployment process. For the purpose of this discussion you should note
that 'model' does not always refer to a specific artifact. More precise terms (as defined later in this
section) should be used whenever possible.

Stages of the Model Deployment Process

The rest of this section contains supplemental information that describes the model deployment process in detail.
Create

• File - The R or Python file containing the function to be invoked when the model is started.
• Function - The function to be invoked inside the file. This function should take a single JSON-

encoded object (for example, a python dictionary) as input and return a JSON-encodable object
as output to ensure compatibility with any application accessing the model using the API. JSON
decoding and encoding for model input/output is built into Cloudera Data Science Workbench.

The function will likely include the following components:

• Model Implementation

The code for implementing the model (e.g. decision trees, k-means). This might originate
with the data scientist or might be provided by the engineering team. This code implements
the model's predict function, along with any setup and teardown that may be required.

• Model Parameters

A set of parameters obtained as a result of model training/fitting (using experiments). For
example, a specific decision tree or the specific centroids of a k-means clustering, to be used
to make a prediction.

Build

This stage takes as input the file that calls the function and returns an artifact that implements a
single concrete model, referred to as a model build.

4

Cloudera Data Science Workbench Configuring Cloudera Data Science Workbench Engines

• Built Model

A built model is a static, immutable artifact that includes the model implementation, its
parameters, any runtime dependencies, and its metadata. If any of these components need to
be changed, for example, code changes to the implementation or its parameters need to be
retrained, a new build must be created for the model. Model builds are versioned using build
numbers.

To create the model build, Cloudera Data Science Workbench creates a Docker image based
on the engine designated as the project's default engine. This image provides an isolated
environment where the model implementation code will run.

To configure the image environment, you can specify a list of dependencies to be installed in a
build script called cdsw-build.sh.

For details about the build process and examples on how to install dependencies, see Engines for
Experiments and Models.

• Build Number:

Build numbers are used to track different versions of builds within the scope of a single model.
They start at 1 and are incremented with each new build created for the model.

Deploy

This stage takes as input the memory/CPU resources required to power the model, the number of
replicas needed, and deploys the model build created in the previous stage to a REST API.

• Deployed Model

A deployed model is a model build in execution. A built model is deployed in a model serving
environment, likely with multiple replicas.

• Environmental Variable

You can set environmental variables each time you deploy a model. Note that models also
inherit any environment variables set at the project and global level. However, in case of any
conflicts, variables set per-model will take precedence.

Note:

• If you are using any model-specific environmental variables, these must
be specified every time you re-deploy a model. Models do not inherit
environmental variables from previous deployments.

• Note that custom mounts or environment variables configured in cdsw.conf
(such as NO_PROXY, HTTP(S)_PROXY, etc.) are still not passed to the
container builds for experiments and models (even though they are applied to
sessions, jobs, and deployed models/experiments).

• Model Replicas

The engines that serve incoming requests to the model. Note that each replica can only process
one request at a time. Multiple replicas are essential for load-balancing, fault tolerance,
and serving concurrent requests. Cloudera Data science Workbench allows you to deploy a
maximum of 9 replicas per model.

• Deployment ID

Deployment IDs are numeric IDs used to track models deployed across Cloudera Data Science
Workbench. They are not bound to a model or project.

Managing Engines
Site administrators and project administrators are responsible for making sure that all projects on the deployment have
access to the engines they need.

5

Cloudera Data Science Workbench Configuring Cloudera Data Science Workbench Engines

Required Role: Site Administrator

Site admins can create engine profiles, determine the default engine version to be used across the deployment, and
white-list any custom engines that teams require. As a site administrator, you can also customize engine environments
by setting global environmental variables and configuring any files/folders that need to be mounted into project
environments on run time.

Managing Resource Profiles
Resource profiles define how many vCPUs and how much memory Cloudera Data Science Workbench will reserve
for a particular workload (for example, session, job, model).

As a site administrator you can create several different vCPU, GPU, and memory configurations which will be
available when launching a session/job. When launching a new session, users will be able to select one of the
available resource profiles depending on their project's requirements.

To create resource profiles, go to the Admin Engines/Runtimes page, under Resource Profiles. Cloudera
recommends that all profiles include at least 2 GB of RAM to avoid out of memory errors for common user
operations.

You will see the option to add GPUs to the resource profiles only if your Cloudera Data Science Workbench hosts
are equipped with GPUs, and you have enabled them for use by setting the relevant properties either in Cloudera
Manager (for CSD) or in cdsw.conf (for RPM).

Burstable CPUs

CDSW configures no upper bound on the CPU resources that Workloads can use so that they can use all of the CPU
resources available on the node where they are running. By configuring no CPU limits, CDSW enables efficient use
of the CPU resources available on your cluster nodes:

• If the CPUs are idle then the workloads can burst and take advantage of the free CPU cycles. For example, if
you've launched a session with 1vCPU but the code inside it requires more than 1vCPU, the workload container
can consume all the available CPU cycles on the node where it's launched.

• When the cluster is highly utilized and CPU resources are sparse, Workloads will be limited to use the number of
CPU resources configured in their resource profile.

• If multiple containers are attempting to use excess CPU, CPU time is distributed in proportion to the amount of
CPU initially requested by each container.

6

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu
https://docs.cloudera.com/cdsw/1.10.0/package-install/topics/cdsw-install-package.html

Cloudera Data Science Workbench Configuring Cloudera Data Science Workbench Engines

Managing Engine Images
By default, Cloudera Data Science Workbench ships a base engine image that includes kernels for Python, R, and
Scala, along with some additional libraries that can be used to run common data analytics operations. Occasionally,
new engine versions are released and shipped with Cloudera Data Science Workbench releases.

Engine images are available in the Site Administrator panel at Admin Engines , under the Engine Images section.

There are two types of default engines: ML Runtime and Legacy Engines. Legacy engines contain the machinery
necessary to run sessions using all four interpreter options that CML currently supports (Python 2, Python 3, R
and Scala) and other support utilities (C and Fortran compilers, LaTeX, etc.). ML Runtimes are thinner and more
lightweight than legacy engines. Rather than supporting multiple programming languages in a single engine, each
Runtime variant supports a single interpreter version and a subset of utilities and libraries to run the user’s code in
Sessions, Jobs, Experiments, Models, or Applications.

As a site administrator, you must select a Legacy Engine version that will be used by default for projects that are set
to use Legacy Engines. Furthermore, project administrators can explicitly select which Legacy Engine image should
be used as the default image for a project.

1. Click Admin > Runtime/Engine.
2. Choose the Legacy Engine you would like to use as the default for projects that are set to use Legacy Engines.

One Legacy Engine image must be selected as a default.

Note: Legacy Engines are deprecated in this release and Cloudera recommends using ML Runtimes.

3. Modify the remaining information on the page:

• Resource Profiles listed in the table are selectable resource options for both legacy Engines and ML Runtimes
(for example, when starting a Session or Job)

• The remaining information on the page applies to site-level settings specific for legacy Engines.

If a user publishes a new custom Docker image, site administrators are responsible for white-listing such images
for use across the deployment. For more information on creating and managing custom Docker images, see https://
docs.cloudera.com/cdsw/1.10.0/extensible-engines/topics/cdsw-extensible-engines.html.

Configuring the Engine Environment
This section describes some of the ways you can configure engine environments to meet the requirements of your
projects.
Environmental Variables

For information on how environmental variables can be used to configure engine environments
in Cloudera Data Science Workbench, see https://docs.cloudera.com/cdsw/1.10.0/environment-
variables/topics/cdsw-environment-variables.html.

CDH Parcel Directory

Starting with Cloudera Data Science Workbench 1.5, the CDH parcel directory property is no
longer available in the Site Administration panel. By default, Cloudera Data Science Workbench
looks for the CDH parcel at /opt/cloudera/parcels.

If you want to use a custom location for your parcels, use one of the following methods to configure
this custom location:

CSD deployments: If you are using the default parcel directory, /opt/cloudera/parcels, no action is
required. If you want to use a custom location for the parcel directory, configure this in Cloudera
Manager as documented here.

OR

RPM deployments: If you are using the default parcel directory, /opt/cloudera/parcels, no action is
required. If you want to specify a custom location for the parcel directory, configure the DISTRO_D
IR property in the cdsw.conf file on both master and worker hosts. Run cdsw restart after you make
this change.

7

https://docs.cloudera.com/cdsw/1.10.0/engines-packaging/topics/cdsw-engines-packaging.html
https://docs.cloudera.com/cdsw/1.10.0/extensible-engines/topics/cdsw-extensible-engines.html
https://docs.cloudera.com/cdsw/1.10.0/extensible-engines/topics/cdsw-extensible-engines.html
https://docs.cloudera.com/cdsw/1.10.0/environment-variables/topics/cdsw-environment-variables.html
https://docs.cloudera.com/cdsw/1.10.0/environment-variables/topics/cdsw-environment-variables.html
https://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_parcels.html#concept_vwq_421_yk__section_irq_wc1_4r

Cloudera Data Science Workbench Configuring Cloudera Data Science Workbench Engines

Configuring Host Mounts

By default, Cloudera Data Science Workbench will automatically mount the CDH parcel directory
and client configuration for required services such as HDFS, Spark, and YARN into each
project's engine. However, if users want to reference any additional files/folders on the host, site
administrators will need to configure them here so that they are loaded into engine containers
at runtime. Note that the directories specified here will be available to all projects across the
deployment.

To configure additional mounts, go to Admin Engines and add the paths to be mounted from the
host to the Mounts section.

The following table summarizes how mounts are loaded into engine containers in current and
previous Cloudera Data Science Workbench releases.

CDSW Version Mount Point Permissions in Engines

1.4.2 (and higher) By default, mount points are loaded into engine containers with read-
only permissions. CDSW 1.4.2 (and higher) also include a Write Access
checkbox (see image) that you can use to enable read-write access for
individual mounted directories. Note that these permissions will apply to all
projects across the deployment.

1.4.0 Mount points are loaded into engine containers with read-only permissions.

1.3.x (and lower) Mount points are loaded into engine containers with read-write permissions.

Points to Remember:

• When adding host mounts, try to be as generic as possible without mounting common system
files. For example, if you want to add several files under /etc/spark2-conf, you can simplify and
mount the /etc/spark2-conf directory; but adding the parent /etc might prevent the engine from
running.

As a general rule, do not mount full system directories that are already in use; such as /var, /
tmp, or /etc. This also serves to avoid accidentally exposing confidential information in running
sessions. Do not set JAVA_HOME to a path under these directories because CDSW sessions
will mount the JAVA_HOME location from the host in the session engine container which can
interfere with the operation of the engine container.

• Do not add duplicate mount points. This will lead to sessions crashing in the workbench.

Configuring Shared Memory Limit for Docker Images

You can increase the shared memory size for the sessions, experiments, and jobs running within an
Engine container within your project. For Docker, the default size of the available shared memory is
64MB.

To increase the shared memory limit:

1. From CDSW web UI, go to Projects Project Settings Engine Advanced Settings .
2. Specify the shared memory size in the Shared Memory Limit field.
3. Click Save Advanced Settings to save the configuration and exit.

8

Cloudera Data Science Workbench Configuring Cloudera Data Science Workbench Engines

This mounts a volume with the tmpfs file system to /dev/shm and Kubernetes will enforce the given
limit. The maximum size of this volume is the half of your physical RAM in the node without the
swap.

Setting Time Zones for Sessions and Jobs

The default time zone for Cloudera Data Science Workbench sessions is UTC. This is the default
regardless of the time zone setting on the Master host.

To change to your preferred time zone, for example, Pacific Standard Time (PST), navigate to
Admin Engines . Under the Environmental Variables section, add a new variable with the name set
to TZ and value set to America/Los_Angeles, and click Add.

9

	Contents
	Configuring Cloudera Data Science Workbench Engines
	Concepts and Terminology
	Managing Engines
	Managing Resource Profiles
	Managing Engine Images
	Configuring the Engine Environment

