
Cloudera Streams Messaging Operator 1.2.0

Kafka Deployment and Configuration
Date published: 2024-06-11
Date modified: 2024-12-02

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

This content is modified and adapted from Strimzi Documentation by Strimzi Authors, which is licensed under CC BY 4.0.

https://strimzi.io/documentation/
https://creativecommons.org/licenses/by/4.0/

Cloudera Streams Messaging Operator | Contents | iii

Contents

Deploying Kafka... 5
Deploying a Kafka cluster..5
Validating a Kafka cluster..7

Deploying Cruise Control.. 8

Deploying and configuring the Strimzi Entity Operator......................................9
Deploying and configuring the Strimzi Topic Operator..10
Deploying and configuring the Strimzi User Operator..12

Configuring Kafka brokers... 13
Updating broker configuration... 13
Configurable broker properties and exceptions... 14

Storage configuration... 15
Ephemeral storage...16
Persistent storage.. 17
JBOD storage..18
Storage recommendations...19

Pod scheduling...20
Default tolerations...20
Pod scheduling recommendations.. 21

Rack awareness... 24
Configuring rack information on Kubernetes nodes..24
Configuring rack awareness for ZooKeeper.. 25
Configuring rack awareness for Kafka brokers... 26
Configuring follower fetching.. 28
Default affinity rules for rack awareness...29

Configuring Kafka broker node IDs.. 29

Configuring Kafka for Prometheus monitoring..30

Configuring logging for Kafka cluster components..31

Listener configuration.. 32
NodePort..37

Configuring nodeport listeners... 37
Route... 39

Configuring route listeners... 40
Load balancer..41

Configuring load balancer listeners..42
Ingress... 44

Configuring ingress listeners.. 44

Accessing the Cruise Control REST API...47
Configuring Cruise Control users.. 47
Configuring external access..48

Cloudera Streams Messaging Operator Deploying Kafka

Deploying Kafka

You can deploy a Kafka cluster by creating a Kafka and KafkaNodePool resource in the Kubernetes environment.
Following cluster deployment you can validate your cluster with the console producer and consumer tools shipped
with Kafka.

Deploying a Kafka cluster
Learn how to deploy a Kafka cluster with the Strimzi Cluster Operator using Kafka and KafkaNodePool resources.

About this task

To deploy a Kafka cluster, you create two resources in the Kubernetes cluster. A Kafka resource and one or more
KafkaNodePool resources. Based on these resources, the Strimzi Cluster Operator deploys the Kafka cluster.

The Kafka resource describes a Kafka cluster instance. This resource specifies the following about Kafka:

• Kafka configuration that is common for the whole Kafka cluster (Kafka version, cluster name, and so on)
• ZooKeeper configuration
• Cruise Control configuration
• Entity Operator configuration

A KafkaNodePool resource refers to a distinct group of Kafka nodes within a Kafka cluster. Using node pools
enables you to specify different configurations for each node within the same Kafka cluster. Configuration options not
specified in the node pool are inherited from the Kafka configuration.

You can deploy a Kafka cluster with one or more node pools. The number of node pools you create depends on how
many groups of Kafka brokers you want to have that have differing configurations. The node pool configuration
includes mandatory and optional settings. Configuration for replicas, roles, and storage is mandatory.

Before you begin

Warning: Strimzi allows creating Kafka brokers by creating only a single Kafka resource. However,
Cloudera Streams Messaging - Kubernetes Operator only supports creating Kafka brokers by creating
KafkaNodePool resources. Node pools allow for more flexible deployments with easier scaling options.
Moreover, certain features like rack awareness and scaling are limited without node pools. Broker creation
using the Kafka resource only is deprecated, and results in unnecessary effort of migrating the deployment
to use node pools.

• Ensure that the Strimzi Cluster Operator is installed and running.
• Ensure that a namespace is available where you can deploy your cluster. If not, create one.

kubectl create namesapce [***NAMESPACE***]

• Ensure that the Secret containing credentials for the Docker registry where Cloudera Streams Messaging -
Kubernetes Operator artifacts are hosted is available in the namespace where you plan on deploying your cluster.
If the secret is not available, create it.

kubectl create secret docker-registry [***SECRET NAME***] \
 --docker-server [***REGISTRY***] \
 --docker-username [***USERNAME***] \
 --docker-password [***PASSWORD***] \
 --namespace [***NAMESPACE***]

• [***SECRET NAME***] must be the same as the name of the Secret containing registry credentials that
you created during Strimzi installation.

5

Cloudera Streams Messaging Operator Deploying Kafka

• Replace [***REGISTRY***] with the server location of the Docker registry where Cloudera Streams
Messaging - Kubernetes Operator artifacts are hosted. If your Kubernetes cluster has internet access, use cont
ainer.repository.cloudera.com. Otherwise, enter the server location of your self-hosted registry.

• Replace [***USERNAME***] and [***PASSWORD***] with credentials that provide access to the registry.
If you are using container.repository.cloudera.com, use your Cloudera credentials. Otherwise, enter credentials
providing access to your self-hosted registry.

• The following steps contain an example Kafka and KafkaNodePool resource. You can find additional
examples on the Cloudera Archive.

Procedure

1. Create a YAML configuration containing both your Kafka and KafkaNodePool resource manifests.

The following examples deploy a simple Kafka cluster with three replicas in a single node pool.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
 name: first-pool
 labels:
 strimzi.io/cluster: my-cluster
spec:
 replicas: 3
 roles:
 - broker
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 annotations:
 strimzi.io/node-pools: enabled
spec:
 kafka:
 version: 3.8.0.1.2
 listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: tls
 port: 9093
 type: internal
 tls: true
 config:
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3
 transaction.state.log.min.isr: 2
 default.replication.factor: 3
 min.insync.replicas: 2
 zookeeper:
 replicas: 3
 storage:
 type: persistent-claim
 size: 100Gi

6

Cloudera Streams Messaging Operator Deploying Kafka

 deleteClaim: false
 cruiseControl: {}
 entityOperator:
 topicOperator: {}
 userOperator: {}

• The spec.kafka.version property in the Kafka resource must specify a Cloudera Kafka version supported
by Cloudera Streams Messaging - Kubernetes Operator. For example, 3.8.0.1.2. Do not add Apache Kafka
versions, they are not supported. You can find a list of supported Kafka versions in the Release Notes.

• You can find additional information about the properties configured in this example in the Strimzi and Apache
Kafka documentation.

2. Deploy the cluster.

kubectl apply --filename [***YAML CONFIG***] --namespace [***NAMESPACE***]

3. Verify that pods are created.

kubectl get pods --namespace [***NAMESPACE***]

If cluster deployment is successful, you should see an output similar to the following.

NAME READY STATUS RESTARTS
my-cluster-entity-operator-79846c5cbd-jqn9k 2/2 Running 0
my-cluster-cruise-control-8475c5gdw0-juqi7h 1/1 Running 0
my-cluster-first-pool-0 1/1 Running 0
my-cluster-first-pool-1 1/1 Running 0
my-cluster-first-pool-2 1/1 Running 0
my-cluster-zookeeper-0 1/1 Running 0
my-cluster-zookeeper-1 1/1 Running 0
my-cluster-zookeeper-2 1/1 Running 0
strimzi-cluster-operator-5b465446b8-jfpmr 1/1 Running 0

The READY column shows the number of ready and total containers inside the pod, while the STATUS column
shows if the pod is running or not.

Related Information
Broker Configs | Apache Kafka

Deploying Kafka | Strimzi

Kafka schema reference | Strimzi API Reference

KafkaNodePool schmea reference | Strimzi API Reference

Validating a Kafka cluster
Validate your deployment using Kafka command line tools.

About this task

After the Kafka broker pods are successfully started, you can use the Kafka console producer and consumer to
validate the environment. The following steps use the exact same docker images that were used to deploy the Kafka
cluster by the Strimzi Cluster Operator. The images contain all the Kafka built-in tools and you can start a custom
Kubernetes pod, starting the Kafka tools in the containers.

Before you begin
The following example commands assume that the cluster is configured with PLAINTEXT authentication and
credentials do not need to be provided. If your cluster is secured, you will need to pass the corresponding security
parameters in the command line as well.

7

https://kafka.apache.org/38/documentation.html#brokerconfigs
https://strimzi.io/docs/operators/0.43.0/deploying#kafka-cluster-str
https://strimzi.io/docs/operators/0.43.0/configuring#type-Kafka-reference
https://strimzi.io/docs/operators/0.43.0/configuring#type-KafkaNodePool-reference

Cloudera Streams Messaging Operator Deploying Cruise Control

Procedure

1. Create a topic.

IMAGE=$(kubectl get pod [***BROKER POD***] --namespace [***NAMESPACE***]
 --output jsonpath='{.spec.containers[0].image}')

kubectl run kafka-admin -it \
 --namespace [***NAMESPACE***] \
 --image=$IMAGE \
 --rm=true \
 --restart=Never \
 --command -- /opt/kafka/bin/kafka-topics.sh \
 --bootstrap-server [***CLUSTER NAME***]-kafka-bootstrap:9092 \
 --create \
 --topic my-topic

2. Produce message to the topic using the Kafka console producer.

kubectl run kafka-producer -it \
 --namespace [***NAMESPACE***] \
 --image=$IMAGE \
 --rm=true \
 --restart=Never \
 --command -- /opt/kafka/bin/kafka-console-producer.sh \
 --bootstrap-server [***CLUSTER NAME***]-kafka-bootstrap:9092 \
 --topic my-topic

Start typing to produce messages.

>hello
>csm
>operator
>^C

3. Consume the messages using the Kafka Console consumer.

kubectl run kafka-consumer -it \
 --namespace [***NAMESPACE***] \
 --image=$IMAGE \
 --rm=true \
 --restart=Never \
 --command -- /opt/kafka/bin/kafka-console-consumer.sh \
 --bootstrap-server [***CLUSTER NAME***]-kafka-bootstrap:9092 \
 --topic my-topic \
 --from-beginning

If successful, the messages you produced are printed on the output.

>hello
>csm
>operator

Deploying Cruise Control

Learn how to deploy Cruise Control alongside your Kafka Cluster using cruiseControl properties in the Kafka
resource. Deploying Cruise Control is optional but strongly recommended as it automates the partition rebalancing in
the cluster.

8

Cloudera Streams Messaging Operator Deploying and configuring the Strimzi Entity Operator

About this task

You can deploy Cruise Control alongside a Kafka cluster by adding cruiseControl properties to your Kafka resource.
Deploying Cruise Control creates a Cruise Control deployment that contains a Cruise Control pod.

If you specify an empty object (cruiseControl: {}), Cruise Control is deployed with the upstream recommended
default configuration. You can customize the configuration of Cruise Control by specifying the required options in the
cruiseControl property.

Before you begin

Cruise Control requires at least two Kafka brokers. If you try to add Cruise Control while there is only a single Kafka
broker in the cluster, the deployment fails. Increase your broker replica count if necessary.

Procedure

1. Add a cruiseControl property to your Kafka resource.

#...
kind: Kafka
spec:
 cruiseControl: {}

2. Create or update your resource.

kubectl apply --filename [***YAML CONFIG***] --namespace [***NAMESPACE***]

3. Verify the status of the deployment.

kubectl get deployments --namespace [***NAMESPACE***]

If deployment is successful, you should see a Cruise Control deployment in the output.

NAME READY UP-TO-DATE AVAILABLE AGE
my-cluster-cruise-control 1/1 1 1 5m1s

The READY column shows the number of replicas that are ready/expected. The deployment is successful when
the AVAILABLE output shows 1.

What to do next

After Cruise Control is deployed, you can use KafkaRebalance resources to rebalance your cluster. Typically you
initiate a rebalance process when scaling your cluster, but rebalances can be carried out at any time.

Related Information
Scaling brokers

CruiseControlSpec schema reference | Strimzi API Reference

KafkaRebalance schema reference | Strimzi API Reference

Rebalancing clusters using Cruise Control | Strimzi

Deploying and configuring the Strimzi Entity Operator

Learn how to deploy and configure the Strimzi Entity Operator in your cluster by configuring your Kafka resource.
Deploying the Entity Operator is required if you want to use custom resources to manage Kafka topics and users in
your cluster.

9

https://docs.cloudera.com/csm-operator/1.2/kafka-operations/topics/csm-op-scaling-brokers.html
https://strimzi.io/docs/operators/0.43.0/configuring#type-CruiseControlSpec-reference
https://strimzi.io/docs/operators/0.43.0/configuring#type-KafkaRebalance-reference
https://strimzi.io/docs/operators/0.43.0/deploying#cruise-control-concepts-str

Cloudera Streams Messaging Operator Deploying and configuring the Strimzi Entity Operator

The Entity Operator is responsible for managing Kafka users (clients) and Kafka topics in your Kafka cluster. The
Entity Operator comprises the following two operators.

• Strimzi Topic Operator – An operator application that creates and manages Kafka topics in your Kafka cluster
with KafkaTopic resources.

• Strimzi User Operator – An operator application that creates and manages Kafka users in your Kafka cluster with
KafkaUser resources.

To deploy and configure the Entity Operator you configure your Kafka resource to include the entityOperator
property. The entityOperator property can include topicOperator and userOperator properties.

These properties specify which of the two operators are deployed with the Entity Operator. You can choose to deploy
either the Topic or User Operator, or deploy both at once.

The following example deploys both the Topic and User Operator with default configurations.

#...
kind: Kafka
spec:
 entityOperator:
 topicOperator: {}
 userOperator: {}

Note: Your configuration must include either the topicOperator or userOperator property. If neither are
included, the Entity Operator is not deployed.

You can further configure all three operators by including additional supported properties in the configuration. The
entityOperator property can include the template property that specifies configuration related to pod and deployment
templates. The topicOperator and userOperator support various sub-properties that allow you to configure watched
namespaces, reconciliation intervals, and others.

The Entity, Topic, and User Operator are deployed by the Strimzi Cluster Operator. On successful deployment, the
Cluster Operator creates an Entity Operator deployment and pod. The Topic and User Operator run within the pod in
their own containers.

Deploying the Topic or User Operator as standalone components is not supported in Cloudera Streams Messaging -
Kubernetes Operator.

Related Information
EntityOperatorSpec schema reference | Strimzi API Reference

Deploying and configuring the Strimzi Topic Operator
You deploy and configure the Strimzi Topic Operator by configuring the entityOperator property in your Kafka
resource to include topicOperator properties. Deploying the Topic Operator is required if you want to manage Kafka
topics with KafkaTopic resources instead of the KafkaAdmin API.

About this task

The Topic Operator enables you to manage Kafka topics using KafkaTopic resources. In Cloudera Streams
Messaging - Kubernetes Operator, you deploy the Topic Operator through the Strimzi Entity Operator. The Entity and
Topic Operator are both deployed by the Strimzi Cluster Operator.

To deploy the Topic Operator, you configure the entityOperator property in your Kafka resource to include topi
cOperator properties. You configure the Topic Operator by specifying additional sub-properties in the topicOperator
property.

By default, the Topic Operator watches KafkaTopic resources in the namespace of the Kafka cluster deployed by
the Cluster Operator. You can also specify a namespace to watch using the watchedNamespace property.

10

https://strimzi.io/docs/operators/0.43.0/configuring#type-EntityOperatorSpec-reference

Cloudera Streams Messaging Operator Deploying and configuring the Strimzi Entity Operator

A single Topic Operator can watch a single namespace. One namespace should be watched by only one Topic
Operator. If you are deploying multiple Kafka clusters into the same namespace, enable the Topic Operator for
only one Kafka cluster or use the watchedNamespace property to configure the Topic Operators to watch other
namespaces

Before you begin

• Strimzi must be installed in your cluster. The Strimzi Cluster Operator must be running. See Installation.
• For a full list of supported properties, see the EntityTopicOperatorSpec schema reference in the Strimzi API

Reference.

Procedure

1. Edit the entityOperator property in your Kafka resource to include topicOperator properties.

The following example configures the Topic Operator to watch a specified namespace. Additionally, it configures
the reconciliation interval as well as various resource properties.

#...
kind: Kafka
spec:
 entityOperator:
 topicOperator:
 watchedNamespace: [***TOPIC NAMESPACE ***]
 reconciliationIntervalMs: 60000
 resources:
 requests:
 cpu: "1"
 memory: 500Mi
 limits:
 cpu: "1"
 memory: 500Mi

If you want to deploy the Topic Operator with default configuration, add an empty object ({}).

#...
kind: Kafka
spec:
 entityOperator:
 topicOperator: {}

2. Create or update your Kafka resource.

kubectl apply --filename [***YAML CONFIG***] --namespace [***NAMESPACE***]

3. Verify the status of the deployment.

kubectl get pods --namespace [***NAMESPACE***]

If deployment is successful, you should see an Entity Operator pod in the output.

NAME READY STATUS RESTARTS
#...
my-cluster-entity-operator-67947ff779-k5sbv 2/2 Running 0

The READY column shows the number of replicas that are ready/expected. Deployment is successful when the
STATUS displays as Running.

Note: The Topic Operator is running in a container within the Entity Operator pod.

11

https://docs.cloudera.com/csm-operator/1.2/installation/topics/csm-op-install-overview.html
https://strimzi.io/docs/operators/0.43.0/configuring#type-EntityTopicOperatorSpec-reference

Cloudera Streams Messaging Operator Deploying and configuring the Strimzi Entity Operator

What to do next
Create and manage Kafka topics with KafkaTopic resources. See Managing topics.

Deploying and configuring the Strimzi User Operator
You deploy and configure the Strimzi User Operator by configuring the entityOperator property in your Kafka
resource to include userOperator properties. Deploying the User Operator is required if you want to manage Kafka
users with KafkaUser resources instead of the KafkaAdmin API.

About this task

The User Operator enables you to manage Kafka users (clients) with KafkaUser resources. In Cloudera Streams
Messaging - Kubernetes Operator you deploy the User Operator through the Strimzi Entity Operator. The Entity and
User Operator are both deployed by the Strimzi Cluster Operator.

To deploy the User Operator, you configure the entityOperator property in your Kafka resource to include userOper
ator properties. You configure the User Operator by specifying additional sub-properties in the userOperator property.

By default, the User Operator watches KafkaUser resources in the namespace of the Kafka cluster deployed by the
Cluster Operator. You can also specify a namespace to watch using the watchedNamespace property. A single User
Operator can watch a single namespace. One namespace should be watched by only one User Operator.

Before you begin

• Strimzi must be installed in your cluster. The Strimzi Cluster Operator must be running. See Installation.
• For a full list of supported properties, see the EntityUserOperatorSpec schema reference in the Strimzi API

Reference.

Procedure

1. Edit the entityOperator property in your Kafka resource to include userOperator properties.

The following example configures the User Operator to watch a specified namespace. Additionally, it configures
the reconciliation interval as well as various resource properties.

#...
kind: Kafka
spec:
 entityOperator:
 userOperator:
 watchedNamespace: [***USER NAMESPACE***]
 reconciliationIntervalMs: 60000
 resources:
 requests:
 cpu: "1"
 memory: 500Mi
 limits:
 cpu: "1"
 memory: 500Mi

If you want to deploy the User Operator with default configuration, add an empty object ({}).

#...
kind: Kafka
spec:
 entityOperator:
 userOperator: {}

12

https://docs.cloudera.com/csm-operator/1.2/kafka-operations/topics/csm-op-managing-topics.html
https://docs.cloudera.com/csm-operator/1.2/installation/topics/csm-op-install-overview.html
https://strimzi.io/docs/operators/0.43.0/configuring#type-EntityUserOperatorSpec-reference

Cloudera Streams Messaging Operator Configuring Kafka brokers

2. Create or update your Kafka resource.

kubectl apply --filename [***YAML CONFIG***] --namespace [***NAMESPACE***]

3. Verify the status of the deployment.

kubectl get pods --namespace [***NAMESPACE***]

If deployment is successful, you should see an Entity Operator pod in the output.

NAME READY STATUS RESTARTS
#...
my-cluster-entity-operator-67947ff779-k5sbv 2/2 Running 0

The READY column shows the number of replicas that are ready/expected. Deployment is successful when the
STATUS displays as Running.

Note: The User Operator is running in a container within the Entity Operator pod.

What to do next
Create and manage Kafka users with KafkaUser resources. See User management.

Configuring Kafka brokers

Learn how you can update Kafka broker properties in your Kafka resource. Additionally, learn which broker
properties are configurable and which are managed by Strimzi.

Updating broker configuration
You update broker configuration by editing your Kafka and KafkaNodePool resources.

About this task

You can update your Kafka and KafkaNodePool resource with kubectl edit. Which resource you update depends
on what exact broker configurations you want to change.

Most broker configuration properties are specified in your Kafka resource. For example, properties like the default
replication factor (default.replication.factor), minimum in sync replicas (min.insync.replicas), as well as many others.
The KafkaNodePool resource contains configuration related to replicas, roles, and storage. Additionally, it can
contain configuration related to CPU and memory resources, JVM options, as well as templates.

Procedure

1. Edit your resource.

kubectl edit [***RESOURCE***] --namespace [***NAMESPACE***]

Running kubectl edit opens the resource manifest in an editor.

2. Make your changes.

3. Save the file.

Results
Once the changes are saved, a rolling update is triggered and the brokers restart one after the other with the applied
changes.

13

https://docs.cloudera.com/csm-operator/1.2/kafka-security/topics/csm-op-user-management.html

Cloudera Streams Messaging Operator Configuring Kafka brokers

Note: The Strimzi Cluster Operator supports dynamic updates for broker configuration properties. Properties
that support dynamic updates are updated without restarting the brokers

Related Information
Broker Configs | Apache Kafka

Configurable broker properties and exceptions
Learn which Kafka broker properties you can configure in the Kafka resource and which are managed by Strimzi.

Kafka broker properties are configured by adding them to spec.kafka.config in your Kafka resource. The values can
be on of the following JSON types:

• String
• Number
• Boolean

You can find full reference of the available broker properties in the Apache Kafka documentation. While all
properties can be specified, some properties are managed by Strimzi. Broker properties managed by Strimzi generally
cannot be configured, however, there are a few exceptions.

If spec.kafka.config contains a broker property that cannot be changed, it is disregarded, and a warning message is
logged to the Strimzi Cluster Operator log. All other supported properties are forwarded to Kafka.

Properties managed by Strimzi

Strimzi takes care of configuring and managing options related to the following.

• Security (encryption, authentication, and authorization)
• Listener configuration
• Broker ID configuration
• Configuration of log data directories
• Inter-broker communication
• ZooKeeper connectivity

This means that the properties with the following prefixes cannot be set.

• controller
• cruise.control.metrics.reporter.bootstrap.
• cruise.control.metrics.topic
• host.name
• inter.broker.listener.name
• listener.
• listeners.
• log.dir
• password.
• port
• process.roles
• sasl.
• security.
• servers,node.id
• ssl.
• super.user
• zookeeper.clientCnxnSocket
• zookeeper.connect
• zookeeper.set.acl

14

https://kafka.apache.org/38/documentation.html#brokerconfigs

Cloudera Streams Messaging Operator Storage configuration

• zookeeper.ssl

Exceptions

There are a few exceptions within the list of broker properties managed by Strimzi. These properties are forwarded to
Kafka rather than being disregarded. The properties are as follows:

• Any ssl configuration for supported TLS versions and cipher suites
• Configuration for the zookeeper.connection.timeout.ms property to set the maximum time allowed for establishing

a ZooKeeper connection.
• The following Cruise Control metrics properties:

• cruise.control.metrics.topic.num.partitions
• cruise.control.metrics.topic.replication.factor
• cruise.control.metrics.topic.retention.ms
• cruise.control.metrics.topic.auto.create.retries
• cruise.control.metrics.topic.auto.create.timeout.ms
• cruise.control.metrics.topic.min.insync.replicas

• The following controller properties:

• controller.quorum.election.backoff.max.ms
• controller.quorum.election.timeout.ms
• controller.quorum.fetch.timeout.ms

Related Information
KafkaClusterSpec schema reference | Strimzi API Reference

KafkaNodePool schmea reference | Strimzi API Reference

Supported TLS versions and cipher suites | Strimzi

Storage configuration

Learn about storage configuration, available storage types, and storage configuration recommendations for Kafka and
ZooKeeper in Cloudera Streams Messaging - Kubernetes Operator.

Warning: You cannot change the storage type following cluster deployment.

Kafka and Zookeeper storage is configured in separate resources. Kafka storage is configured in the
KafkaNodePool resource using the spec.storage property. ZooKeeper Storage is configured in the Kafka resource
using the spec.zookeeper.storage property.

For Kafka storage

#...
kind: KafkaNodePool
spec:
 storage:
 type: persistent-claim
 size: 100Gi
 deleteClaim: true

This configuration snippet defines a 100 GB persistent storage with the default storage class for Kafka in a
KafkaNodePool resource. The deleteClaim property specifies if the persistent volume claim has to be deleted
when the cluster is un-deployed.

15

https://strimzi.io/docs/operators/0.43.0/configuring#type-KafkaClusterSpec-reference
https://strimzi.io/docs/operators/0.43.0/configuring#type-KafkaNodePool-reference
https://strimzi.io/docs/operators/0.43.0/configuring.html#con-common-configuration-ssl-reference

Cloudera Streams Messaging Operator Storage configuration

For ZooKeeper storage

#...
kind: Kafka
spec:
 zookeeper:
 storage:
 type: persistent-claim
 size: 100Gi
 deleteClaim: false

This configuration snippet defines a 100 GB persistent storage with the default storage class for ZooKeeper in a
Kafka resource. The deleteClaim property specifies if the persistent volume claim has to be deleted when the
cluster is un-deployed.

Cloudera Streams Messaging - Kubernetes Operator supports multiple types of storage depending on the platform.
The supported storage types are as follows:

• Ephemeral
• Persistent
• JBOD (Just a Bunch of Disks) – Kafka brokers only

The storage type is configured with storage.type. The property accepts three values, ephemeral, persistent-claim, and
jbod. Each value corresponds to its respective storage type. JBOD (jbod) is only supported for Kafka. JBOD is not
supported for ZooKeeper clusters.

The following sections provide a more in-depth look at each storage type, and collect Cloudera recommendations on
storage.

Ephemeral storage
Learn about ephemeral storage.

When using ephemeral storage, data is only retained as long as the pod that uses it is running and it is lost when the
pod is deleted. Ephemeral storage can be used for both Kafka brokers and ZooKeeper servers. Since this storage type
does not preserve your data on the long run, this is not recommended and should only be used for development and
test clusters.

To use ephemeral storage, set storage.type to ephemeral.

For Kafka storage

#...
kind: KafkaNodePool
spec:
 storage:
 type: ephemeral

For ZooKeeper storage

#...
kind: Kafka
spec:
 zookeeper:
 storage:
 type: ephemeral

The available configuration options are listed in the Strimzi documentation.

16

Cloudera Streams Messaging Operator Storage configuration

Related Information
EphemeralStorage schema reference | Strimzi API reference

Persistent storage
Learn about persistent storage, which is the storage type recommended by Cloudera for Kafka and ZooKeeper
clusters.

When using persistent storage, data is retained even in case of a system disruption. Because of this, persistent storage
is the storage type recommended by Cloudera for production environments. When using this configuration, a single
persistent storage volume is defined. Persistent storage can be used for both Kafka brokers and ZooKeeper servers.

To use persistent storage, set storage.type to persistent-claim.

Note: Persistent volumes used by the Kafka and ZooKeeper servers may have an effect on the scheduling of
their pods if their node affinity is set.

For Kafka storage

#...
kind: KafkaNodePool
spec:
 storage:
 type: persistent-claim

For ZooKeeper storage

#...
kind: Kafka
spec:
 zookeeper:
 storage:
 type: persistent-claim

Custom storage classes

Storage classes define storage profiles and dynamically provision persistent volumes based on that profile. If there is
no default storage class, or you would not like to use the default, you can specify your storage class by setting storage.
class.

For Kafka storage

#...
kind: KafkaNodePool
spec:
 storage:
 type: persistent-claim
 class: custom-storage-class

For ZooKeeper storage

#...
kind: Kafka
spec:
 zookeeper:
 storage:
 type: persistent-claim

17

https://strimzi.io/docs/operators/0.43.0/configuring#type-EphemeralStorage-reference

Cloudera Streams Messaging Operator Storage configuration

 class: custom-storage-class

These examples configure a custom storage class for the pods in the cluster which it is configured for. Custom storage
classes can be configured on a more granular level as well with storage overrides.

Storage overrides

Persistent volumes can be configured on a per-broker and ZooKeeper server basis by specifying the Kubernetes
storage class for each volume with storage overrides. Specifying storage overrides can be used to influence the
storage parameters and pod scheduling constraints of each broker and ZooKeeper server.

Note: The overrides.broker property is used in both Kafka and ZooKeeper configurations. In the case of
ZooKeeper, the broker property represents the ZooKeeper server instance.

For Kafka storage

#...
kind: KafkaNodePool
spec:
 storage:
 type: persistent-claim
 overrides:
 - broker: 0
 class: storageclass1
 - broker: 1
 class: storageclass2

For ZooKeeper storage

#...
kind: Kafka
spec:
 zookeeper:
 storage:
 type: persistent-claim
 overrides:
 - broker: 0
 class: storageclass1
 - broker: 1
 class: storageclass2

The available configuration options for persistent storage are listed in the Strimzi documentation.

Related Information
Pod scheduling

PersistentStorage schema reference | Strimzi API reference

Storage Classes | Kubernetes

Node Affinity | Kubernetes

JBOD storage
Just a bunch of disks (JBOD) refers to a system configuration where disks are used independently rather than
organizing them into redundant arrays. Learn how you can configure JBOD storage for Kafka.

JBOD storage allows you to configure your Kafka cluster to use multiple volumes. This approach provides increased
data storage capacity for Kafka nodes, and can lead to performance improvements. A JBOD configuration is defined

18

https://docs.cloudera.com/csm-operator/1.2/kafka-deploy-configure/topics/csm-op-pod-scheduling.html
https://strimzi.io/docs/operators/0.43.0/configuring#type-PersistentClaimStorage-reference
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#node-affinity
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#node-affinity

Cloudera Streams Messaging Operator Storage configuration

by one or more volumes, each of which can be either ephemeral or persistent. JBOD is only applicable to the Kafka
storage in the KafkaNodePool resource.

To use JBOD storage, set the storage.type to jbod and specify the volumes.

#...
kind: KafkaNodePool
spec:
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 1
 type: persistent-claim
 size: 100Gi
 deleteClaim: false

This example uses a jbod storage type with two attached persistent volumes. The volumes must all be identified by a
unique ID.

You can always increase or decrease the number of disks or increase the volume size by modifying the
KafkaNodePool resource and reapplying the changes. However, you cannot change the IDs once volumes are
created.

The available configuration options are listed in the Strimzi documentation.

Related Information
JbodStorage schema reference | Strimzi API reference

Storage recommendations
Cloudera recommends using persistent storage to store Kafka and ZooKeeper data. Ephemeral storage is only suitable
for short-lived test clusters. Consider the following when using persistent storage.

Local storage

Using local storage makes the deployment similar to a bare-metal deployment in terms of scheduling and availability.
It provides good throughput as both Kafka and ZooKeeper storage operations have less overhead when replication
and network hops are not necessary.

However, the Kafka and ZooKeeper pods become bound to the node where the backing volume is located. This
means that the pods cannot be scheduled to a different node, which impacts availability

Distributed storage

Using distributed storage with synchronous replication allows leveraging the flexibility of Kubernetes pod
scheduling. Both Kafka and ZooKeeper pods can be migrated across nodes due to the availability of the same storage
on different nodes. This improves the availability of the Kafka cluster. Node failures do not bring down Kafka
brokers and ZooKeeper servers permanently.

However, distributed storage reduces throughput in the Kafka cluster. The synchronous replication of storage adds
extra overhead to disk writes. Additionally, if the backing storage class does not support data locality, reads and
writes require extra network hops.

19

https://strimzi.io/docs/operators/0.43.0/configuring#type-JbodStorage-reference

Cloudera Streams Messaging Operator Pod scheduling

Pod scheduling

Learn about the default affinity rules and tolerations that Strimzi sets for pod scheduling. Additionally, learn what
affinity rules Cloudera recommends for making pod scheduling stricter.

The scheduling of Kafka and ZooKeeper pods can be customized in the Kafka and KafkaNodePool resources
through various configurations such as storage configurations, affinity rules, and tolerations. Strimzi by default only
sets a few of the pod scheduling configurations. It is your responsibility to ensure that pod scheduling configurations
are customized correctly for your environment and use case.

Both storage and rack awareness configuration might have an impact on pod scheduling. For storage, depending on
the configuration, it is possible that a pod is bound to a node or a group of nodes and cannot be scheduled elsewhere.

If rack awareness is configured, your pods by default get preferred and required affinity rules, which influence pod
scheduling.

Related Information
Storage recommendations

Rack awareness

Default tolerations
The Strimzi Cluster Operator does not set any tolerations on the Kafka broker and ZooKeeper pods by default. The
pods get a default toleration from the Kubernetes platform.

The default tolerations are as follows.

#...
kind: Kafka
spec:
 kafka:
 template:
 pod:
 tolerations:
 - effect: NoExecute
 key: node.kubernetes.io/not-ready
 operator: Exists
 tolerationSeconds: 300
 - effect: NoExecute
 key: node.kubernetes.io/unreachable
 operator: Exists
 tolerationSeconds: 300

This means that whenever the Kubernetes node running the pod is tainted as unreachable or not-ready, the pod
should be terminated after five minutes. This means that even if you lose an entire Kubernetes node, the pod will be
terminated and rescheduled only after five minutes.

Depending on your platform and the type of failure of a Kubernetes worker node, it is possible that the pods will
not be rescheduled from a dead worker node and the pod will stay in terminating state forever. In this case manual
intervention is needed to move forward.

Related Information
Taints and Tolerations | Kubernetes

Node Shutdowns | Kubernetes

20

https://docs.cloudera.com/csm-operator/1.2/kafka-deploy-configure/topics/csm-op-configuring-storage.html#concept_xnw_x3w_jbc
https://docs.cloudera.com/csm-operator/1.2/kafka-deploy-configure/topics/csm-op-rack-awareness.html
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/cluster-administration/node-shutdown/

Cloudera Streams Messaging Operator Pod scheduling

Pod scheduling recommendations
Learn about the pod scheduling configurations recommended by Cloudera.

Tolerations

Instead of using the default tolerations with 300 seconds, you can consider setting tolerations with smaller timeouts if
a five minute downtime of a Kafka broker or ZooKeeper is not acceptable for you.

For Kafka brokers it is possible to set tolerations globally in spec.kafka.template.pod.tolerations in the Kafka
resource or you can set it only for a group of nodes in spec.template.pod.tolerations in the KafkaNodePool
resource.

For ZooKeeper it is only possible to set tolerations globally in spec.zookeeper.template.pod.tolerations in the Kafka
resource.

Other affinity rules

You can use required and preferred rules to fine tune scheduling according to your needs.

If you use required rules, it is your platform’s responsibility to always have enough resources (for example, enough
nodes) to satisfy the rules. Otherwise, the scheduler will not be able to schedule pods and they will be in a pending
state.

If you use preferred rules with any weight, ensure that the rule weight is correctly set. The scheduler will consider the
rules with higher weight more important than others with lower weight.

Note: Kubernetes will still run the pod even if it has to break a preferred rule.

For Kafka brokers it is possible to set affinity rules globally in spec.kafka.template.pod.affinity in the Kafka
resource or you can set it only for a group of nodes in spec.template.pod.affinity in the KafkaNodePool resource.

For ZooKeeper it is only possible to set affinity rules globally in spec.zookeeper.template.pod.affinity in the Kafka
resource.

The following collects preferred and required rules for typical use cases. Use either the preferred or required rules
from the following examples.

Run each Kafka broker pod on different nodes

For Preferred rule

#...
kind: Kafka
spec:
 kafka:
 template:
 pod:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: strimzi.io/name
 operator: In
 values:
 - [***CLUSTER NAME***]-kafka
 topologyKey: "kubernetes.io/hostname"
 weight: 99

21

Cloudera Streams Messaging Operator Pod scheduling

For Required rule

#...
kind: Kafka
spec:
 kafka:
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/name
 operator: In
 values:
 - [***CLUSTER NAME***]-kafka
 topologyKey: "kubernetes.io/hostname"

Run each ZooKeeper pod on different nodes

For Preferred rule

#...
kind: Kafka
spec:
 zookeeper:
 template:
 pod:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: strimzi.io/name
 operator: In
 values:
 - [***CLUSTER NAME***]-zookeeper
 topologyKey: "kubernetes.io/hostname"
 weight: 99

For Required rule

#...
kind: Kafka
spec:
 zookeeper:
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/name
 operator: In
 values:
 - [***CLUSTER NAME***]-zookeeper
 topologyKey: "kubernetes.io/hostname"

22

Cloudera Streams Messaging Operator Pod scheduling

Run ZooKeeper and Kafka broker pods on different nodes

For Preferred rule

#...
kind: Kafka
spec:
 kafka:
 template:
 pod:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: strimzi.io/cluster
 operator: In
 values:
 - [***CLUSTER NAME***]
 topologyKey: "kubernetes.io/hostname"
 weight: 99
#...
 zookeeper:
 template:
 pod:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: strimzi.io/cluster
 operator: In
 values:
 - [***CLUSTER NAME***]
 topologyKey: "kubernetes.io/hostname"
 weight: 99

For Required rule

#...
kind: Kafka
spec:
 kafka:
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/cluster
 operator: In
 values:
 - [***CLUSTER NAME***]
 topologyKey: "kubernetes.io/hostname"
#...
 zookeeper:
 template:
 pod:
 affinity:
 podAntiAffinity:

23

Cloudera Streams Messaging Operator Rack awareness

 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/cluster
 operator: In
 values:
 - [***CLUSTER NAME***]
 topologyKey: "kubernetes.io/hostname"

Rack awareness

Racks provide information about the physical location of a broker or a client. A Kafka cluster can be made rack aware
by configuring rack awareness for the Kafka brokers, consumers, and ZooKeeper servers. Enabling rack awareness
can help in hardening your cluster, it provides durability guarantees, and significantly decreases the chances of data
loss.

To enable rack awareness for a Kafka cluster running in Kubernetes with Cloudera Streams Messaging - Kubernetes
Operator you complete the following tasks.

1. Configure rack information for your Kubernetes nodes using labels.
2. Configure rack awareness for both Kafka and ZooKeeper clusters.
3. Configure follower fetching for both Kafka brokers and consumers.

Note: Although the feature is called rack awareness, the term rack does not necessarily mean an actual
physical server rack. Instead, a rack from Kafka's perspective represents any physical location or independent
physical infrastructure like data centers, regions, zones, and so on.

Configuring rack information on Kubernetes nodes
Before you can enable rack awareness for Kafka or ZooKeeper, you must ensure that a label is configured in your
Kubernetes cluster that holds rack information. You configure labels with kubectl label.

About this task

Kubernetes nodes can hold their respective rack information in labels. You can set any labels to store your rack
information, however, Cloudera recommends using the topology.kubernetes.io/zone label. This is because it is a
well-known Kubernetes label and cloud providers typically set this label for you automatically. If your (cloud)
environment provider does not automatically set this label in your environment, you have to set it manually. This is
done with kubectl label.

Procedure

1. Set your chosen label with kubectl label.

kubectl label node [***NODE NAME***] topology.kubernetes.io/zone=[***ZONE/
RACK***]

Repeat this step for each of your nodes. For example, assuming you have six nodes, three different racks, and two
nodes per rack, you would run commands similar to the following.

kubectl label node kubernetes-m02 topology.kubernetes.io/zone=eu-zone-1
kubectl label node kubernetes-m03 topology.kubernetes.io/zone=eu-zone-1
kubectl label node kubernetes-m04 topology.kubernetes.io/zone=eu-zone-2
kubectl label node kubernetes-m05 topology.kubernetes.io/zone=eu-zone-2
kubectl label node kubernetes-m06 topology.kubernetes.io/zone=eu-zone-3

24

Cloudera Streams Messaging Operator Rack awareness

kubectl label node kubernetes-m07 topology.kubernetes.io/zone=eu-zone-3

2. Verify your configuration.

kubectl get node -o=custom-columns=NODE:.metadata.name,ZONE:.metadata.la
bels."topology\.kubernetes\.io/zone" | sort -k2

The output lists your nodes and their rack information (zone). Output will be similar to the following example.

NODE ZONE
kubernetes-m01 <none>
kubernetes-m02 eu-zone-1
kubernetes-m03 eu-zone-1
kubernetes-m04 eu-zone-2
kubernetes-m05 eu-zone-2
kubernetes-m06 eu-zone-3
kubernetes-m07 eu-zone-3

Note: Rack information for the control-plane node (kubernetes-m01) is not set in this example, because it
should not function as a workload node.

Related Information
toplogy.kubernetes.io/zone | Kubernetes

Configuring rack awareness for ZooKeeper
ZooKeeper rack awareness is configured in the Kafka resource by specifying affinity rules.

Zookeeper rack awareness can only be configured through the Kafka resource. As a result, you can only set
configuration that applies for all ZooKeeper instances.

To configure rack awareness for ZooKeeper, Cloudera recommends setting the following two affinity rules for
Zookeeper in the Kafka resource.

#...
kind: Kafka
spec:
 zookeeper:
 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: Exists
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 labelSelector:
 matchLabels:
 strimzi.io/cluster: [***CLUSTER NAME***]
 strimzi.io/name: [***CLUSTER NAME***]-zookeeper
 topologyKey: topology.kubernetes.io/zone
 weight: 100

These rules are proper for most cases, but it is still possible that ZooKeeper pods are scheduled to another node in a
different rack after a node failure. This is because these rules do not force keeping the ZooKeeper pods in a specific
rack.

25

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

Cloudera Streams Messaging Operator Rack awareness

Currently, the only way to enforce ZooKeeper instances to stick to specific racks is to use storage overrides with
your own storage classes and volume node affinities. If a pod has a persistent volume claim on a volume with node
affinity set, the scheduler considers the restrictions on the volume in use when scheduling the pod. This way, you can
configure a rack-aware cluster without the limitations mentioned above.

Related Information
Storage overrides

Configuring rack awareness for Kafka brokers
Rack awareness for Kafka is configured in your Kafka resource by specifying the Kubernetes node label that holds
rack information. Optionally, you can configure nodeAffinity rules in the KafkaNodePool resource for stricter broker
placement.

About this task

Kafka brokers are made rack-aware by configuring the broker.rack property. When broker racks are configured,
Kafka intentionally places replicas of the same partition (whenever a topic is created, modified, and so on) into
different racks to protect the data from rack failures.

In Cloudera Streams Messaging - Kubernetes Operator, you do not set broker.rack directly in your Kafka resource
to configure rack awareness. Instead, you specify which node label to use as rack information by configuring the kafk
a.rack.topologyKey property in the Kafka resource.

If kafka.rack.topologyKey is set, the broker.rack property of each broker is automatically set based on the node label
value that the broker pod is scheduled to. Additionally, the broker pods automatically get an affinity and anti-affinity
rule. These rules guarantee best effort spreading of brokers between racks, but do not force having the same broker
always in the same rack.

Because the default rules only guarantee best effort spreading, Cloudera recommends that you override these rules
with stricter rules explicitly configuring which group of nodes should be placed in which racks.

The following steps demonstrate how to configure kafka.rack.topologyKey and demonstrate what rules you have to
set in the KafkaNodePool resource if you want to ensure that a group of nodes are always placed in the same
rack.

Before you begin

• Ensure that you chose and configured a label that holds rack information. See Configuring rack information on
Kubernetes nodes on page 24.

• The default affinity rules are documented in Default affinity rules for rack awareness on page 29.

Procedure

1. Configure kafka.rack.topologyKey in your Kafka resource.

#...
kind: Kafka
spec:
 kafka:
 rack:
 topologyKey: topology.kubernetes.io/zone

26

https://docs.cloudera.com/csm-operator/1.2/kafka-deploy-configure/topics/csm-op-configuring-storage.html#pnavId4

Cloudera Streams Messaging Operator Rack awareness

2. Explicitly configure which group of nodes are placed in which rack.

This can be done by adding a required nodeAffinity rule in your KafkaNodePool resources. This step is
marked as optional but is recommended by Cloudera. The following examples demonstrate a configuration where
there are two node pools. The nodes in each pool are assigned to separate racks (zones).

For First pool

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
 name: first-pool
 labels:
 strimzi.io/cluster: my-cluster
spec:
 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - eu-zone-1

For Second pool

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
 name: second-pool
 labels:
 strimzi.io/cluster: my-cluster
spec:
 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - eu-zone-2

Results
After the changes are applied, a rolling restart is initiated.

What to do next
After the cluster is restarted, check the broker.rack values of each broker. You can get the broker.rack values of
multiple brokers that are in the same pool with the following command.

for broker in [***CLUSTER NAME***]-[***POOL NAME***]-[***ID RANGE***]; do
 kubectl exec -namespace [***NAMESPACE***] -it \
 $broker --container kafka \
 -- /bin/bash -c "cat /tmp/strimzi.properties" \
 | grep -E "broker.id|broker.rack" && echo "\n"

27

Cloudera Streams Messaging Operator Rack awareness

done

• [***CLUSTER NAME***] is the name of your cluster.
• [***POOL NAME***] is the name of the node pool.
• [***ID RANGE***] is a range of broker IDs enclosed in curly braces ({}). For example, {1..3}.

This command will output the broker IDs and the rack information set for each broker. For example:

broker.id=0
broker.rack=eu-zone-1

broker.id=1
broker.rack=eu-zone-1

broker.id=2
broker.rack=eu-zone-1

Configuring follower fetching
You enable follower fetching by configuring your Kafka resource and specifying rack information in your Kafka
clients.

About this task

If rack awareness is enabled for Kafka brokers, consumers by default continue to consume messages from partition
leaders. This behavior remains the same even if the consumer and the partition leader are located in different racks.

It is possible (especially in cloud environments) that a consumer application is in a different region than the partition
leader, but there is a partition follower in the same region as the consumer application. In this case it is better to
consume from the partition follower instead. This way you can avoid unnecessary traffic across data centers, reducing
costs and application latency. This is called follower fetching.

Follower fetching is enabled by configuring the replica selector implementation in your Kafka resource to be rack-
aware. Additionally, you need to configure the client.rack property of your clients.

Procedure

1. Update your Kafka resource.

To enable follower fetching, set the replica.selector.class broker property to the RackAwareReplicaSelector.

#...
kind: Kafka
spec:
 kafka:
 rack:
 topologyKey: topology.kubernetes.io/zone
 config:
 replica.selector.class: org.apache.kafka.common.replica.RackAware
ReplicaSelector

2. Wait until the rolling restart finishes.

Use the following command to monitor cluster state.

kubectl get pods --namespace [***NAMESPACE***] --output wide --watch

28

Cloudera Streams Messaging Operator Configuring Kafka broker node IDs

3. Configure your consumers.

client.rack=[***RACK ID***]

The [***RACK ID***] is one of the rack IDs (zones) that you configured in the topology.kubernetes.io/zone
label. The client reads from a follower replica if a follower replica host broker has a broker.rack value that is
identical with the value of client.rack on the client side. If there isn't one, the client fetches data from the leader.

Default affinity rules for rack awareness
Kafka broker pods automatically get the following affinity and anti-affinity rules when rack awareness is enabled.

Affinity rule

This is a required rule, the scheduler will only schedule a broker pod to a node, if the node has the configured label
set.

template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: Exists

Anti-affinity rule

This is a preferred rule, it spreads Kafka brokers evenly across racks in a best-effort manner.

template:
 pod:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 labelSelector:
 matchLabels:
 strimzi.io/cluster:
 strimzi.io/name:
 topologyKey: topology.kubernetes.io/zone
 weight: 100

Configuring Kafka broker node IDs

Learn how you can configure Kafka brokers to get IDs from a specified range.

It might be important to specify the ID range of the Kafka brokers to avoid confusion before creating the cluster. This
can be configured on the level of the Kafka node pools. Your chosen range is configured using an annotation in the
KafkaNodePool resource.

#...
kind: KafkaNodePool
metadata:
 name: pool-a
 labels:

29

Cloudera Streams Messaging Operator Configuring Kafka for Prometheus monitoring

 strimzi.io/cluster: my-cluster
 annotations:
 strimzi.io/next-node-ids: "[0-99]"

In this example, a range from 0 to 99 is configured. The desired range can be provided by ranges, individual numbers,
and so on. The range can also be provided in a reversed order, in that case the IDs are assigned in reversed order if
possible.

Configuring Kafka for Prometheus monitoring

To monitor your Kafka cluster with Prometheus, you must configure your Kafka cluster to expose the necessary
metric endpoints that integrate with your Prometheus deployment. This is done by configuring metricsConfig
properties for components in your Kafka resource.

About this task

By default cluster components deployed with your Kafka resource do not expose metrics that Prometheus can
scrape. In order to use Prometheus to monitor your Kafka cluster, you must enable and expose these metrics. This is
done by adding a metricsConfig property to the spec of each cluster component in your Kafka resource.

Specifying metricsConfig in the Kafka resource enables the Prometheus JMX Exporter which exposes metrics
through a HTTP endpoint. The metrics are exposed on port 9094. The metricsConfig property can reference a
ConfigMap that holds your JMX metrics configuration or will include the metrics configurations in-line. The
following steps demonstrate the configuration by referencing a ConfigMap.

Before you begin

A Prometheus deployment that can connect to the metric endpoints of the Kafka cluster running in the Kubernetes
environment is required. Any properly configured Prometheus deployment can be used to monitor Kafka. You can
find additional information and examples on Prometheus setup in the Strimzi documentation.

Procedure

1. Create a ConfigMap with JMX metrics configuration for both Kafka and ZooKeeper.

kind: ConfigMap
apiVersion: v1
metadata:
 name: kafka-metrics
 labels:
 app: strimzi
data:
 kafka-metrics-config.yml: |
 [***KAFKA METRICS CONFIGURATION***]
 zookeeper-metrics-config.yml: |
 [***ZOOKEEPER METRICS CONFIGURATION***]

Replace [***KAFKA METRICS CONFIGURATION***] and [***ZOOKEEPER METRICS
CONFIGURATION***] with your JMX Prometheus metrics configurations.

2. Update your Kafka resource with metricsConfig property.

Add metricsConfig to the spec of both Kafka and ZooKeeper. The property needs to reference the ConfigMap you
created in Step 1.

#...
kind: Kafka
spec:
 kafka:

30

https://strimzi.io/docs/operators/0.43.0/deploying#assembly-metrics-prometheus-str

Cloudera Streams Messaging Operator Configuring logging for Kafka cluster components

 metricsConfig:
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: kafka-metrics
 key: kafka-metrics-config.yml
 zookeeper:
 metricsConfig:
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: kafka-metrics
 key: zookeeper-metrics-config.yml

What to do next

• Configure Prometheus and specify alert rules to start scraping metrics from the ZooKeeper and Kafka pods.
You can find an example rules file (prometheus-rules.yaml) as well as various other configuration examples on
the Cloudera Archive. Examples related to Prometheus are located in the /csm-operator/1.2/examples/metrics
directory.

• Review Cloudera recommendations on what alerts and metrics to configure. See Monitoring with Prometheus.

Related Information
Cloudera Archive

Prometheus JMX Exporter | GitHub

Configuring logging for Kafka cluster components

Learn how to configure logging for Kafka cluster components. You can configure logging for these components
directly in the Kafka resource, or by referencing a ConfigMap.

The logging properties of Kafka cluster components like Kafka brokers, ZooKeeper, Cruise Control, and all other
components deployed and managed through the Kafka resource are configured in the Kafka resource.

Logging properties are specified in spec.[***COMPONENT***].logging. Logging properties can be added directly
to this property, or can be defined in an external ConfigMap that is referenced in the Kafka using configMapKeyRef
property.

You choose the configuration method by setting the logging.type property to either inline or external.

Inline

Inline configuration means that you directly specify the logging properties in the Kafka resource at
the spec of each component.

#...
kind: Kafka
spec:
 #...
 logging:
 type: inline
 loggers:
 kafka.root.logger.level: INFO

External

External configuration means that you reference your own ConfigMap that holds the logging
properties.

#...

31

https://docs.cloudera.com/csm-operator/1.2/monitoring-diagnostics/topics/csm-op-prometheus-monitoring.html
https://archive.cloudera.com/p/csm-operator/1.2/
https://github.com/prometheus/jmx_exporter

Cloudera Streams Messaging Operator Listener configuration

kind: Kafka
spec:
 #...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-config-map-key

A ConfigMap is generated for each Kafka cluster component after pod creation. These ConfigMaps contain the actual
logging configuration. Do not edit the generated ConfigMaps directly, as direct changes are ignored.

Depending on the changes made, they are either applied dynamically, or a rolling restart is triggered.

The following Kafka cluster components use log4j configuration:

• Kafka
• ZooKeeper

The following Kafka cluster components use log4j2 configuration:

• CruiseControl
• UserOperator
• EntityOperator

Related Information
Logging options for Kafka components and operators | Strimzi

Listener configuration

Client access to your cluster is set up in Cloudera Streams Messaging - Kubernetes Operator by configuring listeners
in your Kafka resource. Listeners can be used to expose your brokers, allowing clients to access them.

Each listener is configured as an array in your Kafka resource. For example:

#...
kind: Kafka
spec:
 kafka:
 version: 3.8.0.1.2
 replicas: 3
 listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false

You can configure any number of listeners as long as their names and ports are unique. Their configuration is also
highly customizable. For an exhaustive list of accepted properties, see the GenericKafkaListener as well as
other listener schema references in the Strimzi API reference.

Listener categories and types

There are two categories of listeners, internal and external. Internal listeners are used to expose Kafka to clients that
are internal to the Kubernetes cluster. External listeners provide a way to expose Kafka to the outside world.

Listeners are further categorized by their type. The different listener types expose Kafka with different connection
mechanisms. The types of listeners available are as follows.

32

https://strimzi.io/docs/operators/0.43.0/deploying#logging_options_for_kafka_components_and_operators

Cloudera Streams Messaging Operator Listener configuration

Internal listener types

• internal

An internal type listener uses a Kubernetes headless Service that gives each broker pod a stable
hostname. These hostnames are set as advertised listeners for Kafka. In addition, a ClusterIp
Kubernetes Service is set up that acts as the Kafka bootstrap. The initial connection is done
using the bootstrap, subsequent connections are opened using the hostnames given to the pods
by the headless Kubernetes Service.

• cluster-ip

With a cluster-ip type listener, individual ClusterIP type Kubernetes services are set up for each
broker. The hostnames of the ClusterIP services are configured as the advertised listeners for
Kafka. In addition, another ClusterIP is provisioned that acts as the Kafka bootstrap. The initial
connection is done using the bootstrap, subsequent connections are opened using the ClusterIP
Services corresponding to each broker.

All Kafka resources that you create in Cloudera Streams Messaging - Kubernetes Operator most
likely contain an internal listener by default. This means that you can test your cluster and connect
your client as soon as the cluster is up and running. To connect a client, direct it to the address
of the bootstrap service that was set up by the listener. From there Kubernetes and the Strimzi
Cluster Operator handle everything else ensuring that connection requests are sent to the appropriate
brokers.

External listener types

33

Cloudera Streams Messaging Operator Listener configuration

• nodeport

A nodeport type listener sets up NodePort type Kubernetes Services to provide external access to
Kafka.

34

Cloudera Streams Messaging Operator Listener configuration

• route

A route type listener uses OpenShift routes and the default HAProxy router to provide external
access to Kafka.

35

Cloudera Streams Messaging Operator Listener configuration

• loadbalancer

A loadbalancer type listener sets up LoadBalancer type Kubernetes Services and cloud provider
or infrastructure managed load balancers to provide external access to Kafka.

• ingress

An ingress type listener uses Kubernetes Ingress and the Ingress-NGINX controller to provide
external access to Kafka.

36

Cloudera Streams Messaging Operator Listener configuration

Which of the available external listener types you choose will depend on your requirements and
infrastructure. Each external listener type is further documented in their dedicated section. See these
sections for more information on how they work as well as instructions on how to set them up.

Related Information
Strimzi API Reference

NodePort
Learn about Kubernetes NodePorts and how NodePorts are used to provide Kafka clients access to your cluster.

NodePort is a Kubernetes Service type that allocates a port, referred to as a node port, on every node of the
Kubernetes cluster. NodePort ensures that all traffic routed to the node port gets to a specific pod.

To set up external cluster access with NodePorts, you add nodeport type listeners to your Kafka resource (listener.typ
e:nodeport).

Note: By default the node port numbers are assigned by Kubernetes from a configurable default range.
Unless you choose to configure specific port numbers, new ports might be assigned when you redeploy the
Kafka resource.

Once configuration is done, the Strimzi Cluster Operator deploys multiple NodePort Services. Specifically, you will
have the following:

• One NodePort that serves as an external bootstrap. This is used by clients for the initial connection and to receive
metadata (advertised listeners) from the Kafka cluster.

• A NodePort for each Kafka broker. These are used by clients to directly access the individual brokers.

The addresses of the nodes and the node ports are collected by the Strimzi Cluster Operator and configured as the
advertised listeners of the brokers. So brokers are automatically configured to advertise the right address and ports.
As a result, once listener setup is complete, you can connect your clients running outside of the Kubernetes network
by directing them to the NodePort Service that acts as the external bootstrap. Kubernetes handles everything else and
ensures that client requests are routed to the correct brokers.

Configuring nodeport listeners
Complete the following steps to set up and configure a nodeport type listener in your Kafka resource. The following
steps also include an example on how to connect a Kafka console client to the cluster.

About this task

These steps demonstrate basic listener configuration with typical customizations. In addition to the configuration
shown here, you can further customize your listener and enable or disable TLS encryption using the tls property,
specify a client authentication mechanism with the authentication property, as well as add various additional
configurations using the configuration property. For a comprehensive list of available properties, see the
GenericKafkaListener schema reference in the Strimzi API reference.

37

https://strimzi.io/docs/operators/0.43.0/configuring

Cloudera Streams Messaging Operator Listener configuration

Procedure

1. Configure your Kafka resource.

Add an external listener that has its type property set to nodeport. In addition, Cloudera recommends that you
customize your listeners and specify exact port numbers with the nodePort property. This way, you do not need to
reconfigure your clients every time you redeploy Kafka.

However, note that no validation is done, so you must ensure that the configured ports are not used by any other
service and are within the range assigned for node ports. If port numbers are not specified, the Strimzi Cluster
Operator chooses available ports from the range assigned to node ports.

The following snippet shows a configuration where listener.type is set to nodeport and exact port numbers are also
specified.

#...
kind: Kafka
spec:
 kafka:
 listeners:
 - name: external
 port: 9094
 type: nodeport
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 nodePort: 32000
 brokers:
 - broker: 0
 nodePort: 32001
 - broker: 1
 nodePort: 32002
 - broker: 2
 nodePort: 32003

2. Verify that NodePort Services are created and running.

kubectl get services --namespace [***NAMESPACE***]

The output will be similar to the following example.

NAME TYPE CLUSTER-IP EXTERN
AL-IP
#...
my-cluster-kafka-external-bootstrap NodePort 10.43.137.124 <none>

my-cluster-kafka-0 NodePort 10.43.78.187 <none>

my-cluster-kafka-1 NodePort 10.43.5.207 <none>

my-cluster-kafka-2 NodePort 10.43.75.51 <none>

Notice that there is a NodePort Service deployed for each Kafka broker. Additionally you have a separate external
bootstrap NodePort called [***CLUSTER NAME***]-kafka-external bootstrap. Clients connecting to the
Kafka cluster should be directed to the external bootstrap.

3. Get the node port of the external bootstrap service.

kubectl get service [***CLUSTER NAME***]-kafka-external-bootstrap \
 --namespace [***NAMESPACE***] \

38

Cloudera Streams Messaging Operator Listener configuration

 --output=jsonpath='{.spec.ports[0].nodePort}{"\n"}'

4. Get the address (hostname or IP) of any node.

kubectl get node [***NODE NAME***] \
 --output=jsonpath='{range.status.addresses[*]}{.type}{"\t"}{.address}{"
\n"}'

5. Configure and run your client.

The following example shows a Kafka console producer.

kafka-console-producer.sh \
 --bootstrap-server [***NODE ADDRESS***]:[***NODE PORT***] \
 --topic [***TOPIC***]

Results
A nodeport type listener is configured. External Kafka clients can now access your Kafka cluster through the
NodePort Services.
Related Information
Service | Kubernetes

Accessing Kafka: Part 2 – Node ports | Strimzi blog

GenericKafkaListener schema reference | Strimzi API reference

Route
Routes is an OpenShift concept and solution that allows you to expose Kubernetes Services at a public URL so that
external clients can reach your applications running in the Kubernetes cluster.

To set up external cluster access using Openshift routes, you add a route type listener to your Kafka resource (list
ener.type:route).

Once configuration is done, the Strimzi Cluster Operator deploys multiple routes as well as multiple ClusterIP type
Kubernetes Services. This means that you will have the following:

• A route and a corresponding ClusterIP that serves as an external bootstrap. This is used by clients for the initial
connection and to receive metadata (advertised listeners) from the Kafka cluster.

• A unique route and a CluserIP for each Kafka Broker. The routes and the corresponding ClusterIPs are used to
access the brokers directly and to distinguish the traffic for different brokers.

Kafka clients connect to the bootstrap route, which routes the request through the bootstrap ClusterIP to one of the
brokers. From this broker, the client receives metadata that contains the hostnames of the per-broker routes. The
client uses these addresses to connect to the routes dedicated to the specific broker. Afterward, the route directs traffic
through its corresponding ClusterIP to its corresponding broker.

The Strimzi Cluster Operator uses the HAProxy router and sets up routes with passthrough termination. This results
in the following:

• Traffic going through a route is always secured and uses TLS encryption.
• Encrypted traffic is sent to the ClusterIP Service without data being decrypted in the process.
• The port that the routes listen on is fixed and is always 443. This is because HAProxy uses port 443 by default for

HTTPS requests.

The Strimzi Cluster Operator collects the hostnames assigned to the routes and uses the addresses to configure the
advertised listeners in the Kafka brokers. So brokers are automatically configured to advertise the right address and
ports. As a result, once setup is complete, you can connect your clients running outside of the Kubernetes network by
directing them to the bootstrap route. Kubernetes and OpenShift handle everything else and ensure that client requests
are routed to the correct brokers.

39

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/04/23/accessing-kafka-part-2/
https://strimzi.io/docs/operators/0.43.0/configuring#type-GenericKafkaListener-reference

Cloudera Streams Messaging Operator Listener configuration

Configuring route listeners
Complete the following steps to set up and configure a route type listener in your Kafka resource. The following steps
also include an example on how to connect a Kafka console client to the cluster.

About this task

These steps demonstrate basic listener configuration with typical customizations. In addition to the configuration
shown here, you can further customize your listener and specify a client authentication mechanism with the authenti
cation property and add various additional configurations using the configuration property. For a comprehensive list
of available properties, see GenericKafkaListener schema reference in the Strimzi API reference.

Procedure

1. Configure your Kafka resource.

Add an external listener that has its type property set to route. Additionally, you must ensure that tls is set to true
as TLS/SSL encryption is mandatory when using routes.

Optionally, you can further customize the listener. For example, the following configuration snippet shows an
example where the hostnames of routes are specified with the host property.

#...
kind: Kafka
spec:
 kafka:
 listeners:
 - name: external
 port: 9094
 type: route
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 host: kafka-bootstrap.router.com
 brokers:
 - broker: 0
 host: kafka-0.router.com
 - broker: 1
 host: kafka-1.router.com
 - broker: 2
 host: kafka-2.router.com

Note: Hosts are automatically assigned by OpenShift if you do not assign them. If you choose to override
hostnames, ensure that they are available for use and match the configuration of the router as the Strimzi
Cluster Operator does not perform any validation.

2. Verify that the configured services are created and ready.

oc get svc

3. Get the host of the bootstrap route.

oc get routes [***CLUSTER NAME***]-kafka-bootstrap \
 --output=jsonpath='{.status.ingress[0].host}{"\n"}'

40

Cloudera Streams Messaging Operator Listener configuration

4. Extract the TLS certificate from your broker and import it into a Java truststore file.

Extracting the TLS certificate is required because TLS encryption is mandatory when using routes. Because
of this, you must run your clients with a valid certificate. You can use the OpenShift CLI (oc) to extract the
certificate and the keytool utility to import the certificate into a Java truststore file. For example:

oc extract secret/[***CLUSTER NAME***]-cluster-ca-cert \
 --keys=ca.crt --to=- > ca.crt

keytool -import -trustcacerts -alias [***ALIAS***] \
 -file ca.crt \
 -keystore truststore.jks \
 -storepass [***PASSWORD***] \
 -noprompt

5. Ensure that the resulting truststore is available on the machine where you run your client and that the client has
access to the file.

6. Configure and run your client.

The following example shows a Kafka console producer.

kafka-console-producer.sh \
 --bootstrap-server [***BOOTSTRAP ROUTE HOST***]:443 \
 --producer-property security.protocol=SSL \
 --producer-property ssl.truststore.password=[***PASSWORD***] \
 --producer-property ssl.truststore.location=[***TRUSTSTORE LOCATION***]
 \
 --topic [***TOPIC***]

Tip: Instead of passing TLS/SSL properties directly using the --producer-property option, you can also
create a configuration file containing the properties and pass the file with --producer.config option.

Related Information
Service | Kubernetes

Accessing Kafka: Part 3 – OpenShift Routes | Strimzi blog

GenericKafkaListener schema reference | Strimzi API reference

Load balancer
Load balancers automatically and efficiently distribute network traffic between multiple backend servers. A load
balancer setup can be used to expose your Kafka brokers to the outside world.

There are many load balancer implementations available and all cloud providers provide their own solutions.
Different implementations handle load balancing on different levels of the network, most commonly you have
layer 4 (transport) and layer 7 (application) load balancing. Strimzi in Cloudera Streams Messaging - Kubernetes
Operator uses layer 4 load balancing. This is because common load balancer implementations do not support the
Kafka protocol.

To set up external cluster access using load balancers, you add a loadbalancer type listener to your Kafka resource
(listeners.type:loadbalancer).

Once configuration is done, the Strimzi Cluster Operator sets up multiple load balancers as well as multiple
LoadBalancer type Kubernetes Services. This means that you will have the following:

• A load balancer and a corresponding LoadBalancer Service that serves as an external bootstrap. This is used by
clients for the initial connection and to receive metadata (advertised listeners) from the Kafka cluster.

• A unique load balancer and a LoadBalancer Service for each Kafka Broker.

41

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/04/30/accessing-kafka-part-3/
https://strimzi.io/docs/operators/0.43.0/configuring#type-GenericKafkaListener-reference

Cloudera Streams Messaging Operator Listener configuration

Note: Do not confuse the LoadBalancer type Service with the actual load balancers. The LoadBalancer
Services are managed by Kubernetes. The load balancers are separate entities and are managed by the
infrastructure or cloud provider.

The Strimzi Cluster Operator creates the LoadBalancer type Services first. Following the creation of the Services, the
load balancers are automatically created. Typically your infrastructure provider assigns the load balancer a hostname
and IP address. These are automatically added to the status section of the Kafka resource. The Strimzi Cluster
Operator collects both hostname and IP address and uses them to configure the advertised listeners of your Kafka
brokers.

The Strimzi Cluster Operator uses hostnames instead of IP addresses by default. This is because load balancer IP
addresses might change, the hostnames, however, are fixed and remain the same as long as the load balancer is
running. By default, the Strimzi Cluster Operator uses the IP address if there is no hostname assigned to the load
balancer. In case you want to use IP addresses, you can do so by manually configuring them during setup.

Once the listener is configured, you can connect your clients running outside of the Kubernetes network by directing
them to the bootstrap load balancer. The load balancers, Kubernetes, and Kafka handle everything else and ensure
that client requests are routed to the correct brokers.

Configuring load balancer listeners
Complete the following steps to set up and configure a loadbalancer listener in your Kafka resource. The following
steps also include an example on how to connect a Kafka console client to the cluster.

About this task

These steps demonstrate basic listener configuration with typical customizations. In addition to the configuration
shown here, you can further customize your listener and enable and disable TLS encryption using the tls property,
specify a client authentication mechanism with the authentication property, as well as add various additional
configurations using the configuration property. For a comprehensive list of available properties, see the
GenericKafkaListener schema reference in the Strimzi API reference.

Procedure

1. Configure your Kafka resource.

Add a new external listener that has its type set to loadbalancer.

Optionally, you can further customize the listener. For example, the following configuration snippet shows
an example where the advertised hostnames and ports are specified using advertisedHost and advertisedPort
properties.

#...
kind: Kafka
spec:
 kafka:
 listeners:
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: tls
 configuration:
 brokers:
 - broker: 0
 advertisedHost: my-broker-0.cloudera.com
 advertisedPort: 12340
 - broker: 1
 advertisedHost: my-broker-1.cloudera.com
 advertisedPort: 12341
 - broker: 2

42

Cloudera Streams Messaging Operator Listener configuration

 advertisedHost: my-broker-2.cloudera.com
 advertisedPort: 12342

Tip: The advertisedHost property also accepts IP addresses. Specify IP addresses instead if DNS
resolution does not work for the Kafka clients. Configuring exact hostnames or ports does not change the
hostname or port of the load balancer, instead it changes the address advertised by Kafka.

2. Verify that LoadBalancer type services as well as load balancers are running

kubectl get services --namespace [***NAMESPACE***]

The output will be similar to the following example.

NAME TYPE CLUSTER-IP EXTER
NAL-IP
#...
my-cluster-kafka-external-bootstrap LoadBalancer 10.43.18.136 10.65
.0.5
my-cluster-kafka-external-0 LoadBalancer 10.43.1.63 10.
65.0.6
my-cluster-kafka-external-1 LoadBalancer 10.43.46.74 10.
65.0.7
my-cluster-kafka-external-2 LoadBalancer 10.43.113.194 10.
65.0.8

Notice that there is a LoadBalancer Service deployed for each Kafka broker. Additionally you have a separate
external bootstrap LoadBalancer called [***CLUSTER NAME***]-kafka-external-bootstrap.

Clients connecting to the Kafka cluster should be directed to the external bootstrap. The addresses in the EXTE
RNAL-IP column are the hostnames or IPs of the load balancers. Having this column populated with values
indicates that the load balancers are created.

3. Extract the TLS certificate form your broker and import it into a Java truststore file.

Doing the following is only required if you have TLS/SSL encryption enabled for the load balancer listener.

kubectl get secret [***CLUSTER NAME***]-cluster-ca-cert \
 --namespace [***NAMESPACE***] --output jsonpath='{.data.ca\.crt}' \
 | base64 -d > ca.crt

keytool -import -trustcacerts -alias [***ALIAS***] \
 -file ca.crt \
 -keystore truststore.jks \
 -storepass [***PASSWORD***] \
 -noprompt

4. Ensure that the resulting truststore is available on the machine where you run your client and that the client has
access to the file.

5. Get the address of the bootstrap load balancer.

kubectl get kafka [***CLUSTER NAME***] \
 --namespace [***NAMESPACE***] \
 --output=jsonpath='{.status.listeners[?(@.name=="[***LISTENER
 NAME***]")].bootstrapServers}{"\n"}'

Clients that you want to connect to the cluster should be directed to this address.

6. Configure and run your client.

The following example shows a Kafka console producer. Configuring TLS/SSL related properties is only required
if TLS/SSL is enabled for the load balancer listener.

kafka-console-producer.sh \

43

Cloudera Streams Messaging Operator Listener configuration

 --bootstrap-server [***BOOTSTRAP LOAD BALANCER HOST***]:9094 \
 -- producer-property security.protocol=SSL \
 --producer-property ssl.truststore.password=[***PASSWORD***] \
 --producer-property ssl.truststore.location=[***TRUSTSTORE LOCATION***]
 \
 --topic [***TOPIC***]

Tip: Instead of passing TLS/SSL properties directly using the --producer-property option, you can also
create a configuration file containing the properties and pass the file with --producer.config option.

Related Information
Service | Kubernetes

Accessing Kafka: Part 4 – Load Balancers | Strimzi blog

GenericKafkaListener schema reference | Strimzi API reference

Ingress
You can use Ingress to route HTTP/HTTPS traffic from outside the cluster to services within the cluster.

Important: If you are on OpenShift, use OpenShift routes (route type listeners) to configure external access
to the cluster instead of Ingress.

Ingress has two main components. You have Ingress resources, which define the traffic routing rules to your services
and pods. In addition, you have Ingress controllers, which route incoming requests based on the rules defined by
Ingress resources.

The Ingress API is a native part of Kubernetes, Ingress controllers are not. This means that while creating Ingress
resources is possible by default on any Kubernetes cluster, the Ingress controller must be installed separately,
otherwise, Ingress cannot function.

While there are numerous controller implementations available for Kubernetes, Strimzi only supports Ingress-Nginx
controllers running in TLS passthrough mode.

To set up external cluster access with Ingress, you add an ingress type listener to your Kafka resource (listener.type:in
gress) and specify the hostnames for each broker and a bootstrap using the configuration property. In addition, TLS
must be enabled for the listener, and, depending on your environment, specifying the Ingress class might be required.

Once configuration is done, the Strimzi Cluster Operator deploys multiple Ingress resources as well as multiple
ClusterIP Services. This means that you will have the following:

• An Ingress and a corresponding ClusterIP that serves as an external bootstrap. This is used by clients for the initial
connection and to receive metadata (advertised listeners) from the Kafka cluster.

• A unique Ingress and a ClusterIP for each Kafka Broker. These are used to access the brokers directly and to
distinguish the traffic for different brokers.

Kafka clients connect to the bootstrap Ingress, which routes the request through the corresponding bootstrap service
to one of the brokers. Connections to the individual brokers are then established using advertised listeners received
from the broker. Traffic is then routed from the client to the broker through the broker-specific Ingresses and services.

Once the listener is configured, you can connect your clients running outside of the Kubernetes network by directing
them to the bootstrap Ingress. Kubernetes, Ingress, and Kafka handle everything else and ensure that client requests
are routed to the correct brokers.

Related Information
Ingress-Nginx Controller | Kubernetes Github.io

Configuring ingress listeners
Complete the following steps to set up and configure an ingress listener in your Kafka resource. The following steps
also include an example on how to connect a Kafka console client to the cluster.

44

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/05/13/accessing-kafka-part-4/
https://strimzi.io/docs/operators/0.43.0/configuring#type-GenericKafkaListener-reference
https://kubernetes.github.io/ingress-nginx/

Cloudera Streams Messaging Operator Listener configuration

About this task

These steps demonstrate basic listener configuration. In addition to the configuration shown here, you can further
customize your listener and specify a client authentication mechanism with the authentication property and add
various additional configurations using the configuration property. For a comprehensive list of available properties,
see GenericKafkaListener schema reference in the Strimzi API reference.

Before you begin

• Ensure that an Ingress-Nginx controller is deployed in your Kubernetes cluster.
• Ensure that the Ingress-Nginx controller has TLS Passthrough enabled.

Procedure

1. Configure your Kafka resource.

To set up an ingress type listener, you need to configure multiple properties in your Kafka resource.

a) Add an external listener that has its type property set to ingress.
b) Specify Ingress hosts used for the different brokers as well as the bootstrap.

This is done with the configuration property. Add the hostnames to the bootstrap and broker-[***INDEX***]
prefixes that identify the bootstrap and brokers.

c) Ensure that tls is set to true.
d) Specify the Ingress class with the class property.

Once configuration is done, your Kafka resource should look similar to the following example.

#...
kind: Kafka
spec:
 kafka:
 listeners:
 - name: external
 port: 9094
 type: ingress
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 host: my-bootstrap.cloudera.com
 brokers:
 - broker: 0
 host: my-broker-0.cloudera.com
 - broker: 1
 host: my-broker-1.cloudera.com
 - broker: 2
 host: my-broker-2.cloudera.com
 class: nginx

2. Verify that both Ingress resources and ClusterIP Services are created and running.

Use kubectl get ingress to list ingresses.

kubectl get ingress --namespace [***NAMESPACE***]

The output will be similar to the following example.

NAME CLASS HOSTS ADDRESS
 PORTS
#...

45

https://kubernetes.github.io/ingress-nginx/
https://kubernetes.github.io/ingress-nginx/user-guide/tls/#ssl-passthrough

Cloudera Streams Messaging Operator Listener configuration

my-cluster-kafka-bootstrap nginx my-bootstrap.cloudera.com 10.14.9
1.1 80, 443
my-cluster-kafka-0 nginx my-broker-0.cloudera.com 10.14.9
1.1 80, 443
my-cluster-kafka-1 nginx my-broker-1.cloudera.com 10.14.9
1.1 80, 443
my-cluster-kafka-2 nginx my-broker-2.cloudera.com 10.14.9
1.1 80, 443

Use kubectl get servicesto list Kubernetes Services.

kubectl get services --namespace [***NAMESPACE***]

The output will be similar to the following example.

NAME TYPE CLUSTER-IP EXTERN
AL-IP
#...
my-cluster-kafka-external-bootstrap ClusterIP 10.43.16.137 <none>
my-cluster-kafka-0 ClusterIP 10.43.67.184 <none>
my-cluster-kafka-1 ClusterIP 10.43.189.61 <none>
my-cluster-kafka-2 ClusterIP 10.43.177.221 <none>

3. Extract the TLS certificate from your broker and import it into a Java truststore file.

Extracting the TLS certificate is required because TLS encryption is mandatory when using Ingress. Because of
this, you must run your clients with a valid certificate. You can use the kubectl get to extract the certificate and the
keytool utility to import the certificate into a Java truststore file. For example:

kubectl get secret [***CLUSTER NAME***]-cluster-ca-cert \
 --namespace [***NAMESPACE***] \
 --output jsonpath='{.data.ca\.crt}' \
 | base64 -d > ca.crt

keytool -import -trustcacerts -alias [***ALIAS***] \
 -file ca.crt \
 -keystore truststore.jks \
 -storepass [***PASSWORD***] \
 -noprompt

4. Ensure that the resulting truststore is available on the machine where you will run your client and that the client
has access to the file.

5. Configure your client.

The following example shows a Kafka console producer. The port used by Ingress is typically 443.

kafka-console-producer.sh \
 --bootstrap-server [***BOOTSTRAP INGRESS HOST***]:443 \
 --producer-property security.protocol=SSL \
 --producer-property ssl.truststore.password=[***PASSWORD***] \
 --producer-property ssl.truststore.location=[***TRUSTSTORE LOCATION***]
 \
 --topic [***TOPIC***]

Tip: Instead of passing TLS/SSL properties directly using the --producer-property option, you can also
create a configuration file containing the properties and pass the file with --producer.config option.

Related Information
Service | Kubernetes

Accessing Kafka: Part 5 – Ingress | Strimzi blog

GenericKafkaListener schema reference | Strimzi API reference

46

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/05/23/accessing-kafka-part-5/
https://strimzi.io/docs/operators/0.43.0/configuring#type-GenericKafkaListener-reference

Cloudera Streams Messaging Operator Accessing the Cruise Control REST API

Accessing the Cruise Control REST API

Learn how you set up access to the Cruise Control REST API.

The Cruise Control REST API supports a number of GET requests, which can be used for read-only operations.
These operations do not perform any Kafka changes and do not change the state or configuration of Cruise Control.
Having access to these endpoints enables you to carry out operations such as the following.

• Query detailed Cruise Control specific statistics and data in a secure way. For example you can get access to
information surrounding cluster and partition load as well as user tasks.

• Monitor Kafka cluster with the Cruise Control user interface.
• Debug Cruise Control securely.

Important: Using REST API endpoints that have a method different from GET (for example, POST, PUT,
DELETE, and so on) interfere with the Strimzi Cluster Operator’s management of Cruise Control leading to
unexpected behavior. The use of these endpoints is not recommended or supported by Cloudera.

You configure access control to the Cruise Control REST API endpoints using a single Kubernetes Secret. The
Secret contains the list of all users who are granted access to the endpoints and their role.

Strimzi uses roles to grant users or third-party applications different levels of access to the Cruise Control REST API.
Each user is configured with a static password for basic HTTP authentication.

By default Cruise Control defines the following three roles.

• VIEWER – has access to the most lightweight kafka_cluster_state, user_tasks and review_board
endpoints.

• USER – has access to all GET endpoints except bootstrap and train.
• ADMIN – has access to all endpoints.

Strimzi supports the USER and VIEWER roles only. This restriction is in place so that REST API calls made by users
and third-party applications do not interfere with the calls, for example, the write operations, made by the Strimzi
Cluster Operator and potentially cause damage to the Kafka cluster managed by Strimzi.

Configuring Cruise Control users
Learn how to configure REST API users for Cruise Control. Users you configure are granted access to the Cruise
Control REST API.

About this task

You specify the users you want to grant access to the Cruise Control REST API in a Secret. The Secret must be
referenced in spec.cruiseControl.apiusers of the Kafka resource.

Procedure

1. Create API users in Jetty’s HashLoginService file format (cruise-control-auth.txt).

Add your users, their passwords, as well as the roles.

[***USER 1***]: [***PASSWORD 1***], VIEWER
[***USER 2***]: [***PASSWORD 2***], USER

Important: Ensure that there are no ADMIN role users defined in the file that you create. ADMIN role
users are not supported. If you specify ADMIN role users, Cruise Control will fail to start.

47

Cloudera Streams Messaging Operator Accessing the Cruise Control REST API

2. Create a Secret using the file you created in the previous step.

kubectl create secret generic cruise-control-api-users-secret \
 --from-file=cruise-control-auth.txt=cruise-control-auth.txt

3. Reference the Secret in spec.cruiseControl.apiUsers of the Kafka resource.

#...
kind: Kafka
spec:
 cruiseControl:
 config:
 webserver.security.enable: true
 webserver.ssl.enable: true
 apiUsers:
 type: hashLoginService
 valueFrom:
 secretKeyRef:
 name: cruise-control-api-users-secret
 key: cruise-control-auth.txt

• webserver.security.enable – Enables HTTP Basic authentication for the Cruise Control REST API and
enforces the policies defined in spec.cruiseControl.apiUsers.

• webserver.ssl.enable – Enables TLS encryption for the Cruise Control REST API.
• apiUsers – Configures the Cruise Control REST API users by referencing a Secret.

Note: Both webserver.security.enable and webserver.ssl.enable are set to true by default. Explicitly
configuring them is not required.

Related Information
Cruise Control REST API reference

API users | Strimzi API reference

Security | Cruise Control

Configuring external access
Learn how to enable external access for the Cruise Control REST API. Configuring external access makes it possible
for Cruise Control users to access the REST API from outside the Kubernetes cluster.

About this task

The Cruise Control REST API can be secured with authentication, authorization and encryption. As a result, it is
considered safe to allow access from outside the Kubernetes cluster as well. Cloudera recommends that access control
is always used when enabling external access to Cruise Control.

By default, the Strimzi Cluster Operator generates a strict network policy that blocks external connections to Cruise
Control. Additionally, the TLS certificates for Cruise Control are automatically generated and cannot be modified. As
a result, to set up external access to Cruise Control you require the following.

• Have or create a resource, like an NGINX-based Ingress, to route and manage traffic coming from outside the
cluster. Any type of resource can be used that can route outside traffic.

• Create a new network policy that enables access to Cruise Control.
• Use the Cruise Control certificates internally.

When TLS is enabled for Cruise Control the service certificates are generated by Strimzi and cannot be modified.
This is because most of the ssl. configurations are restricted and managed by the Strimzi Cluster Operator.
Because of this, the resource (for example, an Ingress) providing access to the Kubernetes cluster must use the

48

https://docs.cloudera.com/csm-operator/1.2/cctrl-rest-api-reference/index.html
https://strimzi.io/docs/operators/0.43.0/configuring.html#property-cruise-control-capacity-api-users-reference
https://github.com/linkedin/cruise-control/wiki/Security

Cloudera Streams Messaging Operator Accessing the Cruise Control REST API

generated TLS credentials to communicate with Cruise Control. External connections can be configured with user
generated and managed certificates.

The following steps demonstrate how you can configure NGINX-based Ingress to access Cruise Control. This is just a
specific example and any other type of Ingress can be used.

Procedure

1. Create a NetworkPolicy that allows the connection from the Ingress pod.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: [***NEW CRUISE CONTROL NETWORK POLICY NAME***]
 namespace: [***CRUISE CONTROL NAMESPACE***]
spec:
 podSelector:
 matchLabels:
 strimzi.io/cluster: [***KAFKA CLUSTER NAME***]
 strimzi.io/kind: Kafka
 strimzi.io/name: [***KAFKA CLUSTER NAME***]-cruise-control
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector: {}
 podSelector:
 matchLabels:
 app.kubernetes.io/instance: ingress-nginx
 ports:
 - protocol: TCP
 port: 9090

2. Get the generated Cruise Control certificate and key.

kubectl get secret [***KAFKA CLUSTER NAME***]-cruise-control-certs \
 --namespace [***KAFKA NAMESPACE***] \
 --output "jsonpath={.data.cruise-control\.crt}" \
| base64 -d > cert.crt

kubectl get secret [***KAFKA CLUSTER NAME***]-cruise-control-certs \
 --namespace [***KAFKA NAMESPACE***] \
 --output "jsonpath={.data.cruise-control\.key}" \
| base64 -d > cert.key

3. Create a Secret with the specific format of your Ingress using the files created in the previous step.

These needed to be updated manually if the Cruise Control Secret was regenerated.

kubectl create secret tls [***CRUISE CONTROL INGRESS SECRET NAME***] \
 --key ./cert.key \
 --cert ./cert.crt \
 --namespace [***KAFKA NAMESPACE***]

4. Create the Ingress rule.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: cruise-control-ingress-service
 namespace: [***KAFKA NAMESPACE***]
 annotations:
 nginx.ingress.kubernetes.io/use-regex: 'true'

49

Cloudera Streams Messaging Operator Accessing the Cruise Control REST API

 nginx.ingress.kubernetes.io/backend-protocol: 'HTTPS'
 nginx.ingress.kubernetes.io/proxy-ssl-secret: '[***KAFKA NAMESPACE***]
/[***CRUISE CONTROL INGRESS SECRET NAME***]'
spec:
 ingressClassName: nginx
 tls:
 - hosts:
 - [***HOST NAME***]
 secretName: [***INGRESS SECRET NAME***]
 rules:
 - host: [***HOST NAME***]
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: [***KAFKA CLUSTER NAME***]-cruise-control
 port:
 number: 9090

• nginx.ingress.kubernetes.io/backend-protocol– Instructs the Ingress to use encrypted communication between
the Ingress and the Cruise Control pod.

• nginx.ingress.kubernetes.io/proxy-ssl-secret – Specifies the Secret which contains the Cruise Control
certificate in the required format of the Ingress solution.

• spec.tls – Enables secure connection between the clients and the Ingress itself. This property must define the
same host as the rule. the Secret should point to the Secret where the credentials for the secure client
communication are stored.

Related Information
Ingress | Kubernetes

Network Policies | Kubernetes

TLS/HTTPS | Ingress-Nginx Controller

50

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.github.io/ingress-nginx/user-guide/tls/

	Contents
	Deploying Kafka
	Deploying a Kafka cluster
	Validating a Kafka cluster

	Deploying Cruise Control
	Deploying and configuring the Strimzi Entity Operator
	Deploying and configuring the Strimzi Topic Operator
	Deploying and configuring the Strimzi User Operator

	Configuring Kafka brokers
	Updating broker configuration
	Configurable broker properties and exceptions

	Storage configuration
	Ephemeral storage
	Persistent storage
	JBOD storage
	Storage recommendations

	Pod scheduling
	Default tolerations
	Pod scheduling recommendations

	Rack awareness
	Configuring rack information on Kubernetes nodes
	Configuring rack awareness for ZooKeeper
	Configuring rack awareness for Kafka brokers
	Configuring follower fetching
	Default affinity rules for rack awareness

	Configuring Kafka broker node IDs
	Configuring Kafka for Prometheus monitoring
	Configuring logging for Kafka cluster components
	Listener configuration
	NodePort
	Configuring nodeport listeners

	Route
	Configuring route listeners

	Load balancer
	Configuring load balancer listeners

	Ingress
	Configuring ingress listeners

	Accessing the Cruise Control REST API
	Configuring Cruise Control users
	Configuring external access

