Cloudera Streams Messaging - Kubernetes Operator 1.4.0

Kafka Deployment and Configuration

Date published: 2024-06-11
Date modified: 2025-07-14

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

This content is modified and adapted from Strimzi Documentation by Strimzi Authors, which islicensed under CC BY 4.0.

https://strimzi.io/documentation/
https://creativecommons.org/licenses/by/4.0/

Cloudera Streams Messaging - Kubernetes Operator | Contents | iii

D= o] 10V aTo TN = = TS 5
Deploying a Kafka cluster in KREft MOGE...........cirieiiieiiesesee e 6
Deploying a Kafka cluster in KRaft combined MOGE...........ccooeiriiniiiniceeeee e 8
Deploying a Kafka cluster in ZOOKEEPEr MOE.........co.eirueirieirierieirees ettt e 12
Validating @ KafKa CIUSEN ..ot bbbt et 14

Deploying Cruise CONLIol........coiieiiiieccie et 15

Deploying and configuring the Strimzi Entity Operator.........ccccvveveveesieenneenne 16
Deploying and configuring the Strimzi TOPIC OPEraLON.cc.eiveriereeieeeeeeeieres ettt e e e 17
Deploying and configuring the Strimzi USer OPEIator...........co.ereeieeriirieerenie sttt sae e 18

Configuring Kafka Drokers..........cooeiiiin e 20
Updating Broker CONFIQUIBLION.coiiiiieieiete ettt sttt ne b 20
Configurable broker properties and EXCEPLIONS..........ccviiririeireerieer e bbb 20

Storage CoONFIQUI ALTON.........eciie ettt e re e e e e reeenne s 22
00 = 0= = S (= o R 23
o B I =L 0] 0 L= 23
8T I (o] o L= P 25
StOrage rECOMMENUALIONS.cciiieiiieseeses e ste e et e e e s s estestesresrestestesee e esse e e s eseesesseesesseseesaenteseeseensenseneensnnens 26

PO SCNEAUIING. ..o e 26
DEfAUIT LOIEIAIIONS.eeeveeeeeieeie ettt b et bRt b et b e se b s e b e bt et r et r et n e 27
Pod scheduling reCOMMENTALTONS.........ccoiiiiirere ettt b et e bbb s sae b b e 27

RACK QWA BNESS........eiiiiieeee e et ee e 30
Configuring rack information on KUDEMELES NOUES.........cceeriireriiririereee et s eb e ere e 30
Configuring rack awareness fOr ZOOKEEPETcovci ittt sttt sttt st st b et ee e 31
Configuring rack awareness for Kafka DroKErS...........cciiiiiinine bbb 32
Configuring fOHOWES FEICNING.c.ieieiieiee bbb 34
Default affinity rules fOr raCk BWEBIENESS.........coiriiirieireee ettt b e es 35

Configuring Kafka broker Node IDS.........cccoiieiiieiie i 36

Configuring Kafka for Prometheus monitoring........ccccovvvvceeiieniensen e 36

Configuring logging for Kafka cluster components..........c.ccccoeevcieeeicieecceeecnenn, 37

Listener CONfIQUIatioN........ccceeiieeieesie e e e nnee s 38

INOUEPOI. ...ttt bbbt bbbt se bt se bt s e e bt s bRt e bRt e b e st e b et e b e e e b e s e e b e se e b e s e e bt s b e bt s b e st s b enesbe e ebeneebene 43
Configuring NOTEPOIT TISEENENS.......cviuiiiieririe ettt st 43

ROULE... .. s h e b e b s e e e s h e e e s R e R e R e R e e R e e r e e r e n e e 45
ConfigUIiNG FOULE TISTENETS......cuiiieieieeierieierieert ettt b ettt b e b et se et seebeseene 46

L 0B DBIANCETeceectiect e bbb b bR bbb e e e bbb 47
Configuring load DalanCer [ISIENETS.........oiiiiiieee bbb e 48

1076 =TT 50
Configuring INGIESS [ISIENES.... ..ottt b e sb s 50
Accessing the Cruise Control REST APl ... 53
Configuring CruiSE CONIOI USEI'S......ccueueeeieeeetesestestestestestesteseeseeseseeseesessessestestessessestessessessessensessssessessessensenes 53

CoNfigUIING EXTEINGl GCCESS......cueiuiiieiieitesiesesesteeeee e e e ste s e s e s te s e steste e seeeeseesaesseseesesseasesbesaeseessenteseensaneenennsnsens 54

Cloudera Streams Messaging - Kubernetes Operator Deploying Kafka

Y ou deploy a Kafka cluster by creating a Kafka resource and one or more KafkaNodePool resourcesin the
Kubernetes cluster. The Kafka cluster can use either KRaft (recommended) or ZooK eeper (deprecated) for metadata
management. After cluster deployment you can validate your cluster with the console producer and consumer tools
shipped with Kafka.

The Kaf ka resource describes a Kafka cluster instance. This resource specifies the following about Kafka:

» Kafkaconfiguration that is common for the whole Kafka cluster (Kafka version, cluster name, and so on)
» Cruise Control configuration

» Entity Operator configuration

e ZooKeeper configuration (if ZooK eeper is used instead of KRaft)

A Kaf kaNodePool resource refersto adistinct group of Kafka nodes within a Kafka cluster. Using node pools
enables you to specify different configurations for each node within the same Kafka cluster. Configuration options not
specified in the node pool are inherited from the Kafka configuration.

Y ou can deploy a Kafka cluster with one or more node pools. The number of node pools you create depends on how
many groups of Kafka brokers you want to have that have differing configurations. The node pool configuration
includes mandatory and optional settings. Configuration for replicas, roles, and storage is mandatory.

Y ou can deploy Kafkain either KRaft or ZooK eeper mode. However, Cloudera recommends that you deploy clusters
in KRaft mode. This is because ZooK eeper-based clusters are deprecated. Additionally, ZooK eeper will be removed
in afuture release.

KRaft offers enhanced reiability, scalability, and throughput over ZooK eeper. Metadata operations are more efficient
asthey are directly integrated. Additionally, when using KRaft, you are no longer required to maintain ZooK eeper,
which reduces operational overhead.

When you deploy a Kafka cluster in KRaft mode, you assign roles to each node in the Kafka cluster. Roles are
assigned in the Kaf kaNodePool resource. There are two roles, broker and controller.

« Broker # These nodes manage Kafka records stored in topic partitions. Nodes with the broker role are your Kafka
brokers.

» Controller # These nodes manage cluster metadata and the state of the cluster using a Raft-based consensus
protocol. Controller nodes are the KRaft equivalent of ZooK eeper nodes.

A single Kafka node can have asingle role or both roles. If you assign both roles to the node, it performs both broker
and controller tasks. Depending on role assignments, your cluster will be running in one of the following modes.

« KRaft mode # In this mode, each Kafka node is either a broker or controller. Recommended for production
clusters.

» KRaft combined mode # In this mode, some or all nodes in the cluster have both controller and broker roles
assigned to them.

Combined mode is not recommended or supported for production environments. Use combined mode in development
environments. Cloudera recommends that you always fully separate controller and broker nodes to avoid resource
contention between roles.

Cloudera Streams Messaging - Kubernetes Operator Deploying Kafka

Y ou deploy a Kafka cluster in KRaft mode by deploying a Kafka resource and at |east two KafkaNodePool resources.
One KafkaNodepool describes your brokers, the other describes KRaft controllers. The Kafka resource must

include the strimzi.io/kraft="enabled" annotation. Deploying Kafkain KRaft mode is the recommended mode for
deployment.

» Ensurethat the Strimzi Cluster Operator isinstalled and running. See Installation.
« Ensurethat a namespace is available where you can deploy your cluster. If not, create one.

kubect| create nanespace[*** NAMESPACE* * *]

« Ensurethat the Secr et containing credentials for the Docker registry where Cloudera Streams Messaging -
Kubernetes Operator artifacts are hosted is available in the namespace where you plan on deploying your cluster.
If the Secr et isnot available, createit.

kubect| create secret docker-registry [***CREDENTI ALS SECRET***] \
--fromfile=[***PATH TO CREDENTI ALS JSON***] \
- - nanespace=[*** NAMESPACE* * *]

e [***CREDENTIALS SECRET***] must be the same as the name of the Secr et containing registry
credentials that you created during Strimzi installation.

e [***PATH TO CREDENTIALSJSON***] isthe path to a Docker configuration JSON file that includes a
registry hostname where artifacts are available as well as credentials providing access to the registry. For more
information, see Installing Strimzi with Helm.

» Scaling node pools that include KRaft controllers (controller roles) is not possible.
* Thefollowing steps contain Kaf ka and Kaf kaNodePool resource examples. Y ou can find additional examples
on the Cloudera Archive.

1. Createa YAML configuration containing your Kaf ka resource manifest.

api Versi on: kafka.strinzi.iol/vlbeta2
ki nd: Kaf ka
nmet adat a:
nane: my-cl uster
annot at i ons:
strinzi.io/ node-pool s: enabl ed
strinei.io/kraft: enabl ed

spec:
kaf ka:
version: 3.9.0.1.4
|'i steners:

- nane: plain
port: 9092
type: interna
tls: false

- nane: tls
port: 9093
type: interna
tls: true

config:

of fsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.mn.isr: 2
default.replication.factor: 3

6

https://docs.cloudera.com/csm-operator/1.4/installation/topics/csm-op-install-overview.html
https://docs.cloudera.com/csm-operator/1.4/installation/topics/csm-op-install-strimzi-overview.html

Cloudera Streams Messaging - Kubernetes Operator Deploying Kafka

nmn.insync.replicas: 2
entityQperator:
topi cOperator: {}
user Qperator: {}

« strimzi.io/node-pools: enabled - Enables Kafka node pools. KRaft mode is only supported with node pools.
« strimzi.io/kraft: enabled - Enables KRaft mode for the cluster.

» gpec.kafkaversion - Specifies the Kafka version to use. Must specify a Cloudera Kafka version supported
by Cloudera Streams Messaging - Kubernetes Operator. For example, 3.9.0.1.4. Do not add Apache Kafka
versions, they are not supported. You can find alist of supported Kafka versionsin the Release Notes.

2. CreateaYAML configuration containing your Kaf kaNodePool resource manifest for brokers.

api Versi on: kafka.strinzi.io/vlbeta2
ki nd: Kaf kaNodePoo
nmet adat a:
nane: broker
| abel s:
strinei.iolcluster: my-cluster
spec:
replicas: 3
rol es:
- broker
st or age:
type: jbod
vol unes:
- id: 0
type: persistent-claim
size: 10G
kraft Met adat a: shared
del eted aim false

« spec.roles - Specifies the roles of the nodesin this pool. The value broker means that the replicas in this node
pool are all brokers.

» gpec.storage.volumes.kraftM etadata - Specifies whether a volume should be used for storing KRaft metadata.
Used to specify which volume should be used to store metadata. In this example, volume O is specified for
storage. This property is optional.

3. CreateaYAML configuration containing your Kaf kaNodePool resource manifest for KRaft controllers.

api Versi on: kafka.strinzi.iolvlbeta2
ki nd: Kaf kaNodePoo
net adat a:
nane: controller
| abel s:
strinei.iolcluster: my-cluster
spec:
replicas: 3
rol es:
- controller
st orage:
type: jbod
vol unes:
- id: O
type: persistent-claim
size: 10G
kraf t Met adat a: shared
del eteC aim false

« gpec.roles - Specifies the roles of the nodesin this pool. The value controller means that the replicasin this
node pool are all KRaft controllers.

Cloudera Streams Messaging - Kubernetes Operator

Deploying Kafka

» gpec.storage.volumes.kraftM etadata - Specifies whether a volume should be used for storing KRaft metadata.
Used to specify which volume should be used to store metadata. In this example, volume 0 is specified for

storage. This property is optional.
4. Deploy the cluster.

kubect| apply \
--filename [**KAFKA YAM.***], [*** BROKER NODE POOL
YAML**#*] [*** CONTROLLER NODE POOL YAML***] \
--nanespace [*** NAMESPACE* * *]

5. Verify that pods are created.

kubect| get pods --namespace [*** NAMESPACE***]

If cluster deployment is successful, you should see an output similar to the following.

NANME READY
my-cl ust er - broker-0 1/1
my-cl ust er-broker-1 1/1
my-cl ust er - br oker - 2 1/1
my-cl uster-control ler-3 1/1
my-cl uster-controller-4 1/1
my-cl uster-controller-5 1/1

my-cl uster-entity-operator-858b7649df-v8jth 2/ 2

strinezi-cl uster-operat or-589f 9f d659- 4bqnp 1/1

STATUS

Runni
Runni
Runni
Runni
Runni
Runni
Runni

Runni

ng
ng
ng
ng
ng
ng
ng
ng

RESTARTS

O O O o o o o o

The READY column shows the number of ready and total containersinside the pod, while the STATUS column

shows if the pod is running or not.

In this example there are atotal of six nodes (each node is a pod). Three are dedicated brokers, the other three are

dedicated controllers.

Validate your cluster. Complete Validating a Kafka cluster.

Broker Configs | Apache Kafka

Deploying a Kafka cluster in KRaft mode | Strimzi

Kafka schemareference | Strimzi APl Reference
KafkaNodePool schemareference | Strimzi APl Reference

Y ou deploy a Kafka cluster in KRaft combined mode by deploying a Kafka resource and one or more
KafkaNodePool resources. Typically you create two node pools, one describing nodes with both roles, and one that
describes nodes that have the broker role only. Alternatively, you can create clusters where al nodes have both
roles. In this case, asingle node pooal is sufficient. The Kafka resource must include the strimzi.io/kraft="enabled"

annotation.

https://docs.cloudera.com/csm-operator/1.4/kafka-deploy-configure/topics/csm-op-deploying-kafka.html#task_xxf_bwz_gbc
https://kafka.apache.org/39/documentation.html#brokerconfigs
https://strimzi.io/docs/operators/0.45.0/deploying#deploying-kafka-cluster-kraft-str
https://strimzi.io/docs/operators/0.45.0/configuring#type-Kafka-reference
https://strimzi.io/docs/operators/0.45.0/configuring#type-KafkaNodePool-reference

Cloudera Streams Messaging - Kubernetes Operator Deploying Kafka

f Important: Cloudera does not recommend that you use combined mode in production environments.

» Ensurethat the Strimzi Cluster Operator isinstalled and running. See Installation.
« Ensure that a namespace is available where you can deploy your cluster. If not, create one.

kubect| create nanespace[*** NAMESPACE* * *]

« Ensurethat the Secr et containing credentials for the Docker registry where Cloudera Streams Messaging -
Kubernetes Operator artifacts are hosted is available in the namespace where you plan on deploying your cluster.
If the Secr et isnot available, createit.

kubect| create secret docker-registry [***CREDENTI ALS SECRET***] \
--fromfile=[***PATH TO CREDENTI ALS JSON***] \
- - nanespace=[*** NAMESPACE* * *]

o [***CREDENTIALS SECRET***] must be the same as the name of the Secr et containing registry
credentials that you created during Strimzi installation.

e [***PATH TO CREDENTIALSJSON***] isthe path to a Docker configuration JSON file that includes a
registry hostname where artifacts are available as well as credentials providing access to the registry. For more
information, see Installing Strimzi with Helm.

« Scaling node pools that include KRaft controllers (controller roles) is not possible.

Because of thislimitation, you can only scale clusters running in combined mode if the cluster includes a node
pool that has broker nodes only. The examplesin these steps set up a broker-only node pooal.

» Ranger authorization does not work with combined mode.

» Thefollowing steps contain Kaf ka and Kaf kaNodePool resource examples. Y ou can find additional examples
on the Cloudera Archive.

1. CreateaYAML configuration containing your Kaf ka resource manifest.

api Versi on: kafka.strinzi.io/vlbeta2
ki nd: Kaf ka
net adat a:
nane: my-cl uster
annot at i ons:
strinzi.io/ node-pool s: enabl ed
strinei.io/kraft: enabl ed

spec:
kaf ka:
version: 3.9.0.1.4
|l i steners:

- nane: plain
port: 9092
type: interna
tls: false

- nane: tls
port: 9093
type: interna
tls: true

config:

of fsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.mn.isr: 2
default.replication.factor: 3

https://docs.cloudera.com/csm-operator/1.4/installation/topics/csm-op-install-overview.html
https://docs.cloudera.com/csm-operator/1.4/installation/topics/csm-op-install-strimzi-overview.html

Cloudera Streams Messaging - Kubernetes Operator Deploying Kafka

nmn.insync.replicas: 2
entityQperator:
topi cOperator: {}
user Qperator: {}

« strimzi.io/node-pools: enabled - Enables Kafka node pools. KRaft mode is only supported with node pools.

« strimzi.io/kraft: enabled - Enables KRaft mode for the cluster.

» gpec.kafkaversion - Specifies the Kafka version to use. Must specify a Cloudera Kafka version supported
by Cloudera Streams Messaging - Kubernetes Operator. For example, 3.9.0.1.4. Do not add Apache Kafka
versions, they are not supported. You can find alist of supported Kafka versionsin the Release Notes.

2. CreateaYAML configuration containing your Kaf kaNodePool resource manifests.

The configuration and number of Kaf kaNodePool s you create depends on the deployment architecture that
you want.

The following example creates two Kaf kaNodePool s. One node pool specifies both the broker and controller
roles. These nodes will run in combined mode. Additionally, a second node pool is created that includes broker
nodes only.

The second node pool is added because node pools that include controller nodes cannot be scaled. Creating a
separate node pool for brokers when you first deploy the cluster makes it easier to scale the cluster in the future.

Note: You can deploy a cluster with asingle Kaf kaNodePool that has combined roles. However, in
B this case, if you want to scale the cluster, you must create a new Kaf kaNodePool that includes broker
nodes only.

api Versi on: kafka.strinzi.iol/vlbeta2
ki nd: Kaf kaNodePool

net adat a:
nane: conbi ned
| abel s:
strinei.iol/cluster: my-cluster
spec:
replicas: 3
rol es:
- controller
- broker
st or age:
type: jbod
vol unes:
- id: O
type: persistent-claim
size: 10G

kraft Met adat a: shared

del eteCl aim false
api Versi on: kafka.strinzi.iol/vlbeta2
ki nd: Kaf kaNodePool

nmet adat a:
name: broker-only
| abel s:
strinei.iolcluster: my-cluster
spec:
replicas: 3
rol es:
- broker
st orage:
type: jbod
vol unes:
- id: 0
type: persistent-claim
size: 10G

kraf t Met adat a: shared

10

Cloudera Streams Messaging - Kubernetes Operator

Deploying Kafka

deleteC aim false

» gpec.roles - Specifies the roles of the nodesin the pool. The combined node pool has both the controller
and broker roles specified. Therefore, the three Kafka nodes described in the combined node pool operate
in combined mode. On the other hand, the broker-only node pool has broker specified as the role. The three

Kafka nodes described by the broker-only pool operate as brokers.

« gpec.storage.volumes.kraftM etadata - Specifies whether a volume should be used for storing KRaft metadata.
Used to specify which volume should be used to store metadata. In this example, volume 0 is specified for

storage. This property is optional.
3. Deploy the cluster.

kubect| apply \

--filename [**KAFKA YAML***], [***NODE POOL YAML***] \

--nanespace [*** NAMESPACE***]

4. Verify that pods are created.

kubect| get pods --nanmespace [*** NAMESPACE***]

If cluster deployment is successful, you should see an output similar to the following.

NAME READY
my-cl ust er - broker-onl y-0 1/1
my-cl ust er-broker-only-1 1/1
my-cl ust er - br oker - onl y- 2 1/1
my- cl ust er - conbi ned- 3 1/1
my- cl ust er - conbi ned- 4 1/1
my- cl ust er - conbi ned- 5 1/1

my-cl uster-entity-operator-74c95d6667-r st kf 2/ 2

strinzi-cl uster-operat or-589f 9f d659- 4bqgnp 1/1

STATUS

Runni
Runni
Runni
Runni
Runni
Runni
Runni

Runni

ng
ng
ng
ng
ng
ng
ng
ng

RESTARTS

O O O o o o o o

The READY column shows the number of ready and total containersinside the pod, while the STATUS column

showsif the pod is running or not.

In this example, there are atotal of six nodes (each node is a pod). Nodes 0, 1, and 2 are brokers, while nodes 3, 4,
and 5 are both brokers and controllers. This means the cluster has atotal of six brokers and three controllers.

Validate your cluster. Complete Validating a Kafka cluster.

Broker Configs | Apache Kafka

Deploying a Kafka cluster in KRaft mode | Strimzi

Kafka schemareference | Strimzi APl Reference
KafkaNodePool schemareference | Strimzi APl Reference

11

https://docs.cloudera.com/csm-operator/1.4/kafka-deploy-configure/topics/csm-op-deploying-kafka.html#task_xxf_bwz_gbc
https://kafka.apache.org/39/documentation.html#brokerconfigs
https://strimzi.io/docs/operators/0.45.0/deploying#deploying-kafka-cluster-kraft-str
https://strimzi.io/docs/operators/0.45.0/configuring#type-Kafka-reference
https://strimzi.io/docs/operators/0.45.0/configuring#type-KafkaNodePool-reference

Cloudera Streams Messaging - Kubernetes Operator Deploying Kafka

Y ou deploy a Kafka cluster in ZooK eeper mode by deploying a Kafka resource and at least a single KafkaNodePool
resource. The Kafka resource must include ZooK eeper configuration.

Important: ZooK eeper-based clusters are deprecated. Additionally, ZooK eeper will be removed in a
future release. Cloudera recommends that you deploy your Kafka cluster in KRaft mode instead. For more
information, see Deploying a Kafka cluster in KRaft mode.

Warning: Strimzi allows creating Kafka brokers by creating only asingle Kaf ka resource. However,
A Cloudera Streams Messaging - Kubernetes Operator only supports creating Kafka brokers by creating

Kaf kaNodePool resources. Node pools alow for more flexible deployments with easier scaling options.

Moreover, certain features like rack awareness and scaling are limited without node pools. Broker creation

using the Kaf ka resource only is deprecated, and resultsin unnecessary effort of migrating the deployment

to use node pools.

« Ensurethat the Strimzi Cluster Operator isinstalled and running. See Installation.
» Ensure that a namespace is available where you can deploy your cluster. If not, create one.

kubect| create nanespace[*** NAMESPACE* * *]

« Ensurethat the Secr et containing credentials for the Docker registry where Cloudera Streams Messaging -
Kubernetes Operator artifacts are hosted is available in the namespace where you plan on deploying your cluster.
If the Secr et isnot available, createit.

kubect| create secret docker-registry [***CREDENTI ALS SECRET***] \
--fromfile=s[***PATH TO CREDENTI ALS JSON***] \
- - nanespace=[** * NAMESPACE* * *

e [***CREDENTIALS SECRET***] must be the same as the name of the Secr et containing registry
credentials that you created during Strimzi installation.

e [***PATH TO CREDENTIALS JSON***] isthe path to a Docker configuration JSON file that includes a
registry hostname where artifacts are available as well as credentials providing access to the registry. For more
information, see Installing Strimzi with Helm.

» Thefollowing steps contain Kaf ka and Kaf kaNodePool resource examples. Y ou can find additional examples
on the Cloudera Archive.

1. CreateaYAML configuration containing both your Kaf ka and Kaf kaNodePool resource manifests.
The following examples deploy a simple Kafka cluster with three replicas in a single node pool.

api Versi on: kafka.strinzi.iol/vlbeta2
ki nd: Kaf kaNodePoo
met adat a:
nane: first-pool
| abel s:
strinei.iolcluster: my-cluster
spec:
replicas: 3
rol es:
- broker
st orage:
type: jbod
vol unes:

12

https://docs.cloudera.com/csm-operator/1.4/kafka-deploy-configure/topics/csm-op-deploying-kafka.html#task_bbl_tqf_j2c
https://docs.cloudera.com/csm-operator/1.4/installation/topics/csm-op-install-overview.html
https://docs.cloudera.com/csm-operator/1.4/installation/topics/csm-op-install-strimzi-overview.html

Cloudera Streams Messaging - Kubernetes Operator

Deploying Kafka

- id: 0
type: persistent-claim
size: 100G
deleted aim false
api Versi on: kafka.strinzi.iol/vlbeta2
ki nd: Kaf ka
net adat a:
nane: my-cl uster
annot at i ons:
strinzi.io/node-pool s: enabl ed

spec:
kaf ka:
version: 3.9.0.1.4
|'i steners:
- nane: plain
port: 9092
type: interna
tls: false
- name: tls
port: 9093
type: interna
tls: true
config:
of fsets.topic.replication.factor: 3
transaction.state.log.replication.factor
transaction.state.log.mn.isr: 2
default.replication.factor: 3
m n.insync.replicas: 2
zookeeper:
replicas: 3
st orage:
type: persistent-claim
size: 100G

del eted aim false
crui seControl: {}
entityQperator:
topi cOperator: {}
user Operator: {}

3

* The spec.kafkaversion property in the Kaf ka resource must specify a Cloudera Kafka version supported
by Cloudera Streams Messaging - Kubernetes Operator. For example, 3.9.0.1.4. Do not add Apache Kafka
versions, they are not supported. Y ou can find alist of supported Kafka versionsin the Rel ease Notes.

* You can find additional information about the properties configured in this example in the Strimzi and Apache

Kafka documentation.
2. Deploy the cluster.

kubect!| apply --filenanme [***YAML CONFI G***] --nanespace [***NAMESPACE***]

3. Verify that pods are created.

kubect| get pods --nanmespace [*** NAMESPACE***]

If cluster deployment is successful, you should see an output similar to the following.

NAMVE

my-cl uster-entity-operator-79846¢c5chd-j qn9k
my-cl ust er-crui se-control -8475¢c5gdwO-j ugi 7h
my-cl uster-first-pool -0

my-cl uster-first-pool -1
ny-cluster-first-pool -2

my- cl ust er - zookeeper -0

READY
2/2
1/1
1/1
1/1
1/1
1/1

STATUS
Runni ng
Runni ng
Runni ng
Runni ng
Runni ng
Runni ng

RESTARTS

[olololoNoNe)

13

Cloudera Streams Messaging - Kubernetes Operator Deploying Kafka

my-cl ust er - zookeeper -1 1/1 Runni ng 0
my- cl ust er - zookeeper - 2 1/1 Runni ng 0
stringi-cl uster-operator-5b465446b8-j f pnr 1/1 Runni ng 0

The READY column shows the number of ready and total containersinside the pod, while the STATUS column
showsiif the pod is running or not.

In this example there are atotal of six nodes (each nodeis a pod). Three are Kafka broker nodes, the other three
are ZooK eeper nodes.

Validate your cluster. Complete Validating a Kafka cluster.

Broker Configs | Apache Kafka

Deploying a ZooK eeper-based Kafka cluster | Strimzi
Kafka schemareference | Strimzi APl Reference
KafkaNodePool schemareference | Strimzi APl Reference

After the Kafka broker pods are successfully started, you can use the Kafka console producer and consumer to
validate the cluster. The following steps use the exact same docker images that were used to deploy the Kafka
cluster by the Strimzi Cluster Operator. The images contain all the Kafka built-in tools and you can start a custom
Kubernetes pod, starting the Kafka tools in the containers.

The following example commands assume that the cluster is configured with PLAINTEXT authentication and
credentials do not need to be provided. If your cluster is secured, you will need to pass the corresponding security
parameters in the command line as well.

1. Create atopic.

| MACE=$(kubect| get pod [***BROKER PCD***] --namespace [***NAMESPACE***]
--out put jsonpath='{.spec.containers[0].imge}")

kubect!| run kafka-admn -it \

--nanespace [***NAMESPACE***] \

- -i mage=$l MAGE \

--rmetrue \

--restart=Never \

--conmand -- /opt/kaf ka/ bi n/ kaf ka-topi cs.sh \
--boot strap-server [***CLUSTER NAME***] - kaf ka- boot st rap: 9092 \
--create \
--topic ny-topic

2. Produce message to the topic using the Kafka console producer.
kubect!| run kafka-producer -it \

--nanespace [***NAMESPACE***] \
- -i mage=$l MAGE \

--rmetrue \
--restart=Never \
--conmand -- /opt/kaf ka/ bi n/ kaf ka- consol e- producer. sh \

14

https://docs.cloudera.com/csm-operator/1.4/kafka-deploy-configure/topics/csm-op-deploying-kafka.html#task_xxf_bwz_gbc
https://kafka.apache.org/39/documentation.html#brokerconfigs
https://strimzi.io/docs/operators/0.45.0/deploying#deploying-kafka-cluster-zookeeper-str
https://strimzi.io/docs/operators/0.45.0/configuring#type-Kafka-reference
https://strimzi.io/docs/operators/0.45.0/configuring#type-KafkaNodePool-reference

Cloudera Streams Messaging - Kubernetes Operator Deploying Cruise Control

--boot strap-server [***CLUSTER NAME***] - kaf ka- boot st rap: 9092 \
--topic ny-topic

Start typing to produce messages.

>hel |l o
>csm
>oper at or
SAC

3. Consume the messages using the Kafka Console consumer.

kubect| run kaf ka-consunmer -it \
--nanespace [***NAMESPACE***] \
- -i mage=$l MAGE \

--rmetrue \
--restart=Never \
--conmand -- /opt/kaf ka/ bi n/ kaf ka- consol e- consuner. sh \

--boot strap-server [***CLUSTER NAME***] - kaf ka- boot st rap: 9092 \
--topic ny-topic \
--from begi nni ng

If successful, the messages you produced are printed on the output.

>hel | o
>csm
>oper at or

Learn how to deploy Cruise Control alongside your Kafka Cluster using cruiseControl propertiesin the Kafka
resource. Deploying Cruise Control is optional but strongly recommended as it automates the partition rebalancing in
the cluster.

Y ou can deploy Cruise Control alongside a Kafka cluster by adding cruiseControl properties to your Kaf ka resource.
Deploying Cruise Control creates a Cruise Control deployment that contains a Cruise Control pod.

If you specify an empty object (cruiseControl: {}), Cruise Control is deployed with the upstream recommended
default configuration. Y ou can customize the configuration of Cruise Control by specifying the required optionsin the
cruiseControl property.

Cruise Control requires at least two Kafka brokers. If you try to add Cruise Control while there is only asingle Kafka
broker in the cluster, the deployment fails. Increase your broker replica count if necessary.

1. Add acruiseControl property to your Kaf ka resource.

#. ..
ki nd: Kaf ka
spec:
crui seControl: {}

15

Cloudera Streams Messaging - Kubernetes Operator Deploying and configuring the Strimzi Entity Operator

2. Create or update your resource.

kubect! apply --filename [***YAML CONFI G***] --namespace [***NAMESPACE***]

3. Verify the status of the deployment.
kubect| get depl oynents --nanespace [***NAVMESPACE***]
If deployment is successful, you should see a Cruise Control deployment in the output.

NAVE READY UP-TO DATE AVAILABLE AGE
my-cl ust er-crui se-control 1/1 1 1 5nmils

The READY column shows the number of replicas that are ready/expected. The deployment is successful when
the AVAILABLE output shows 1.

After Cruise Control is deployed, you can use Kaf kaRebal ance resourcesto rebalance your cluster. Typically you
initiate a rebalance process when scaling your cluster, but rebalances can be carried out at any time.

Scaling brokers

CruiseControl Spec schema reference | Strimzi APl Reference
KafkaRebalance schema reference | Strimzi APl Reference
Rebalancing clusters using Cruise Control | Strimzi

Learn how to deploy and configure the Strimzi Entity Operator in your cluster by configuring your Kafka resource.
Deploying the Entity Operator isrequired if you want to use custom resources to manage Kafka topics and usersin
your cluster.

The Entity Operator is responsible for managing Kafka users (clients) and Kafka topics in your Kafka cluster. The
Entity Operator comprises the following two operators.

« Strimzi Topic Operator — An operator application that creates and manages Kafka topicsin your Kafka cluster
with Kaf kaTopi ¢ resources.

e Strimzi User Operator — An operator application that creates and manages Kafka usersin your Kafka cluster with
Kaf kaUser resources.

To deploy and configure the Entity Operator you configure your Kaf ka resource to include the entityOperator
property. The entityOperator property can include topicOperator and userOperator properties.

These properties specify which of the two operators are deployed with the Entity Operator. Y ou can choose to deploy
either the Topic or User Operator, or deploy both at once.

The following example deploys both the Topic and User Operator with default configurations.

#. ..
ki nd: Kaf ka
spec:
entityQperator:
topi cOperator: {}
user Operator: {}

16

https://docs.cloudera.com/csm-operator/1.4/kafka-operations/topics/csm-op-scaling-brokers.html
https://strimzi.io/docs/operators/0.45.0/configuring#type-CruiseControlSpec-reference
https://strimzi.io/docs/operators/0.45.0/configuring#type-KafkaRebalance-reference
https://strimzi.io/docs/operators/0.45.0/deploying#cruise-control-concepts-str

Cloudera Streams Messaging - Kubernetes Operator Deploying and configuring the Strimzi Entity Operator

Note: Your configuration must include either the topicOperator or userOperator property. If neither are
E included, the Entity Operator is not deployed.

Y ou can further configure all three operators by including additional supported properties in the configuration. The
entityOperator property can include the template property that specifies configuration related to pod and deployment
templates. The topicOperator and userOperator support various sub-properties that allow you to configure watched
namespaces, reconciliation intervals, and others.

The Entity, Topic, and User Operator are deployed by the Strimzi Cluster Operator. On successful deployment, the
Cluster Operator creates an Entity Operator deployment and pod. The Topic and User Operator run within the pod in
their own containers.

Deploying the Topic or User Operator as standalone components is not supported in Cloudera Streams Messaging -
Kubernetes Operator.

EntityOperatorSpec schema reference | Strimzi APl Reference

Y ou deploy and configure the Strimzi Topic Operator by configuring the entityOperator property in your Kafka
resource to include topicOperator properties. Deploying the Topic Operator is required if you want to manage Kafka
topics with KafkaT opic resources instead of the KafkaAdmin API.

The Topic Operator enables you to manage Kafka topics using Kaf kaTopi ¢ resources. In Cloudera Streams
Messaging - Kubernetes Operator, you deploy the Topic Operator through the Strimzi Entity Operator. The Entity and
Topic Operator are both deployed by the Strimzi Cluster Operator.

To deploy the Topic Operator, you configure the entityOperator property in your Kafka resource to include topi
cOperator properties. Y ou configure the Topic Operator by specifying additional sub-properties in the topicOperator

property.

By default, the Topic Operator watches Kaf kaTopi ¢ resourcesin the namespace of the Kafka cluster deployed by
the Cluster Operator. Y ou can also specify a namespace to watch using the watchedNamespace property.

A single Topic Operator can watch a single namespace. One namespace should be watched by only one Topic
Operator. If you are deploying multiple Kafka clusters into the same namespace, enable the Topic Operator for
only one Kafka cluster or use the watchedNamespace property to configure the Topic Operators to watch other
namespaces

e Strimzi must be installed in your cluster. The Strimzi Cluster Operator must be running. See Installation.

« For afull list of supported properties, see the Entity TopicOperatorSpec schema reference in the Strimzi API
Reference.

1. Edit the entityOperator property in your Kafka resource to include topicOperator properties.

The following example configures the Topic Operator to watch a specified namespace. Additionally, it configures
the reconciliation interval as well as various resource properties.

#. ..
ki nd: Kaf ka
spec:
entityQperator:
t opi cOper at or:

17

https://strimzi.io/docs/operators/0.45.0/configuring#type-EntityOperatorSpec-reference
https://docs.cloudera.com/csm-operator/1.4/installation/topics/csm-op-install-overview.html
https://strimzi.io/docs/operators/0.45.0/configuring#type-EntityTopicOperatorSpec-reference

Cloudera Streams Messaging - Kubernetes Operator Deploying and configuring the Strimzi Entity Operator

wat chedNanespace: [***TOPI C NAMESPACE ***]
reconciliationlnterval Ms: 60000
resour ces:
requests:
cpu: "1"
menory: 500M
limts:
cpu: "1"
menory: 500M

If you want to deploy the Topic Operator with default configuration, add an empty object ({}).

#. ..

ki nd: Kaf ka

spec:

entityQperator:
topi cOperator: {}

2. Create or update your Kafka resource.

kubect!| apply --filename [***YAML CONFI G-**] --nanespace [***NAMESPACE***]
3. Verify the status of the deployment.

kubect| get pods --namespace [*** NAMESPACE***]

If deployment is successful, you should see an Entity Operator pod in the output.

NAME READY STATUS RESTARTS
#. ..
my-cl uster-entity-operator-67947ff779- k5sbv 2/2 Runni ng 0

The READY column shows the number of replicas that are ready/expected. Deployment is successful when the
STATUS displays as Running.

B Note: The Topic Operator is running in a container within the Entity Operator pod.
Create and manage Kafka topics with Kaf kaTopi ¢ resources. See Managing topics.

Y ou deploy and configure the Strimzi User Operator by configuring the entityOperator property in your Kafka
resource to include userOperator properties. Deploying the User Operator isrequired if you want to manage Kafka
users with KafkaUser resourcesinstead of the KafkaAdmin API.

The User Operator enables you to manage Kafka users (clients) with Kaf kaUser resources. In Cloudera Streams
Messaging - Kubernetes Operator you deploy the User Operator through the Strimzi Entity Operator. The Entity and
User Operator are both deployed by the Strimzi Cluster Operator.

To deploy the User Operator, you configure the entityOperator property in your Kaf ka resource to include userOper
ator properties. Y ou configure the User Operator by specifying additional sub-propertiesin the userOperator property.

By default, the User Operator watches Kaf kaUser resourcesin the namespace of the Kafka cluster deployed by the
Cluster Operator. Y ou can also specify a namespace to watch using the watchedNamespace property. A single User
Operator can watch a single namespace. One namespace should be watched by only one User Operator.

18

https://docs.cloudera.com/csm-operator/1.4/kafka-operations/topics/csm-op-managing-topics.html

Cloudera Streams Messaging - Kubernetes Operator Deploying and configuring the Strimzi Entity Operator

e Strimzi must beinstalled in your cluster. The Strimzi Cluster Operator must be running. See Installation.

« For afull list of supported properties, see the EntityUserOperatorSpec schema reference in the Strimzi AP
Reference.

1. Edit the entityOperator property in your Kafka resource to include userOperator properties.

The following example configures the User Operator to watch a specified namespace. Additionally, it configures
the reconciliation interval as well as various resource properties.

#. ..
ki nd: Kaf ka
spec:
entityQperator:
user Oper at or:
wat chedNanmespace: [***USER NAMESPACE* * *]
reconciliationlnterval Ms: 60000
resour ces
requests:
cpu: "1"
menory: 500M
limts:
cpu: "1"
menory: 500M

If you want to deploy the User Operator with default configuration, add an empty object ({}).
#. ..
ki nd: Kaf ka
spec:

entityQperator:
user Operator: {}

2. Create or update your Kafka resource.

kubect! apply --filename [***YAML CONFI G***] --namespace [***NAMESPACE***]

3. Verify the status of the deployment.
kubect| get pods --nanmespace [*** NAMESPACE***]

If deployment is successful, you should see an Entity Operator pod in the output.

NAVE READY STATUS RESTARTS
#...
my-cl uster-entity-operator-67947ff779- k5sbv 2/ 2 Runni ng 0

The READY column shows the number of replicas that are ready/expected. Deployment is successful when the
STATUS displays as Running.

Ij Note: The User Operator is running in a container within the Entity Operator pod.

Create and manage Kafka users with Kaf kaUser resources. See User management.

19

https://docs.cloudera.com/csm-operator/1.4/installation/topics/csm-op-install-overview.html
https://strimzi.io/docs/operators/0.45.0/configuring#type-EntityUserOperatorSpec-reference
https://docs.cloudera.com/csm-operator/1.4/kafka-security/topics/csm-op-user-management.html

Cloudera Streams Messaging - Kubernetes Operator Configuring Kafka brokers

Learn how you can update Kafka broker propertiesin your Kafka resource. Additionally, learn which broker
properties are configurable and which are managed by Strimzi.

Broker Configs | Apache Kafka

Y ou update broker configuration by editing your Kafka and KafkaNodePool resources.

Y ou can update your Kaf ka and Kaf kaNodePool resource with kubectl edit. Which resource you update depends
on what exact broker configurations you want to change.

Most broker configuration properties are specified in your Kaf ka resource. For example, properties like the default
replication factor (default.replication.factor), minimum in sync replicas (min.insync.replicas), aswell as many others.
The Kaf kaNodePool resource contains configuration related to replicas, roles, and storage. Additionally, it can
contain configuration related to CPU and memory resources, VM options, as well as templates.

1. Edit your resource.
kubect| edit [***RESOURCE***] --nanmespace [*** NAMESPACE***]

Running kubectl edit opens the resource manifest in an editor.
2. Make your changes.
3. Savethefile.

Once the changes are saved, arolling update is triggered and the brokers restart one after the other with the applied
changes.

Note: The Strimzi Cluster Operator supports dynamic updates for broker configuration properties. Properties
IE that support dynamic updates are updated without restarting the brokers

Learn which Kafka broker properties you can configure in the Kafka resource and which are managed by Strimzi.

Kafka broker properties are configured by adding them to spec.kafka.config in your Kaf ka resource. The values can
be on of the following JSON types:

e String
¢ Number
* Boolean

Y ou can find full reference of the available broker propertiesin the Apache Kafka documentation. While all
properties can be specified, some properties are managed by Strimzi. Broker properties managed by Strimzi generally
cannot be configured, however, there are afew exceptions.

20

https://kafka.apache.org/39/documentation.html#brokerconfigs

Cloudera Streams Messaging - Kubernetes Operator Configuring Kafka brokers

If spec.kafka.config contains a broker property that cannot be changed, it is disregarded, and a warning message is
logged to the Strimzi Cluster Operator 1og. All other supported properties are forwarded to Kafka.

Strimzi takes care of configuring and managing options related to the following.

« Security (encryption, authentication, and authorization)
» Listener configuration

» Broker ID configuration

» Configuration of log data directories

e Inter-broker communication

e ZooKeeper connectivity

This means that the properties with the following prefixes cannot be set.

« controller
 cruise.control.metrics.reporter.bootstrap.
e cruise.control.metrics.topic

e host.name
 inter.broker.listener.name
e listener.

o listeners.

e log.dir

e password.

e port

e process.roles
e sadl.

e security.

e servers,nodeid
e s

e super.user

» zookeeper.clientCnxnSocket
» zookeeper.connect

» zookeeper.set.acl

» zookeeper.sd

There are afew exceptions within the list of broker properties managed by Strimzi. These properties are forwarded to
Kafkarather than being disregarded. The properties are as follows:

» Any sd configuration for supported TL S versions and cipher suites

» Configuration for the zookeeper.connection.timeout.ms property to set the maximum time allowed for establishing
a ZooK egper connection.

e Thefollowing Cruise Control metrics properties:

e cruise.control.metrics.topic.num.partitions
 cruise.control.metrics.topic.replication.factor

e cruise.control.metrics.topic.retention.ms

e cruise.control.metrics.topic.auto.create.retries
 cruise.control.metrics.topic.auto.create.timeout.ms
 cruise.control.metrics.topic.min.insync.replicas

21

Cloudera Streams Messaging - Kubernetes Operator Storage configuration

» Thefollowing controller properties:

« controller.quorum.election.backoff.max.ms
« controller.quorum.election.timeout.ms
 controller.quorum.fetch.timeout.ms

KafkaClusterSpec schemareference | Strimzi APl Reference
KafkaNodePool schmeareference | Strimzi APl Reference
Supported TL S versions and cipher suites | Strimzi

Learn about storage configuration, available storage types, and storage configuration recommendations for Kafka and
ZooK eeper in Cloudera Streams Messaging - Kubernetes Operator.

f Warning: You cannot change the storage type following cluster deployment.

Kafka and Zookeeper storage is configured in separate resources. Kafka storage is configured in the
Kaf kaNodePool resource using the spec.storage property. ZooK eeper Storage is configured in the Kaf ka resource
using the spec.zookeeper.storage property.

#. ..
ki nd: Kaf kaNodePool

spec:
st or age:
type: persistent-claim
size: 100G

deleteC aim true

This configuration snippet defines a 100 GB persistent storage with the default storage class for Kafkain a
Kaf kaNodePool resource. The deleteClaim property specifiesif the persistent volume claim has to be deleted
when the cluster is un-deployed.

#. ..
ki nd: Kaf ka
spec:
zookeeper :
st or age:
type: persistent-claim
size: 100G
del eted aim false

This configuration snippet defines a 100 GB persistent storage with the default storage class for ZooKeeper in a
Kaf ka resource. The deleteClaim property specifiesif the persistent volume claim has to be deleted when the
cluster is un-deployed.

Cloudera Streams Messaging - Kubernetes Operator supports multiple types of storage depending on the platform.
The supported storage types are as follows:

e Ephemera
e Persistent

22

https://strimzi.io/docs/operators/0.45.0/configuring#type-KafkaClusterSpec-reference
https://strimzi.io/docs/operators/0.45.0/configuring#type-KafkaNodePool-reference
https://strimzi.io/docs/operators/0.45.0/configuring.html#con-common-configuration-ssl-reference

Cloudera Streams Messaging - Kubernetes Operator Storage configuration

e JBOD (Just a Bunch of Disks) — Kafka brokers only

The storage type is configured with storage.type. The property accepts three values, ephemeral, persistent-claim, and
jbod. Each value corresponds to its respective storage type. JBOD (jbod) is only supported for Kafka. JBOD is not
supported for ZooK eeper clusters.

The following sections provide a more in-depth look at each storage type, and collect Cloudera recommendations on
storage.

Learn about ephemeral storage.

When using ephemeral storage, datais only retained as long as the pod that usesit is running and it is lost when the
pod is deleted. Ephemeral storage can be used for both Kafka brokers and ZooK eeper servers. Since this storage type
does not preserve your data on the long run, thisis not recommended and should only be used for development and
test clusters.

To use ephemeral storage, set storage.type to ephemeral.

#. ..
ki nd: Kaf kaNodePool
spec:
st or age:
type: epheneral

#. ..
ki nd: Kaf ka
spec:
zookeeper :
st or age:
type: epheneral

The available configuration options are listed in the Strimzi documentation.

Ephemeral Storage schema reference | Strimzi API reference

Learn about persistent storage, which is the storage type recommended by Clouderafor Kafka and ZooK eeper
clusters.

When using persistent storage, datais retained even in case of a system disruption. Because of this, persistent storage
is the storage type recommended by Clouderafor production environments. When using this configuration, asingle
persistent storage volume is defined. Persistent storage can be used for both Kafka brokers and ZooK eeper servers.

To use persistent storage, set storage.type to persistent-claim.

Note: Persistent volumes used by the Kafka and ZooK eeper servers may have an effect on the scheduling of
B their podsif their node affinity is set.

23

https://strimzi.io/docs/operators/0.45.0/configuring#type-EphemeralStorage-reference

Cloudera Streams Messaging - Kubernetes Operator Storage configuration

#. ..
ki nd: Kaf kaNodePool
spec:
st or age:
type: persistent-claim

#. ..
ki nd: Kaf ka
spec:
zookeeper :
st or age:
type: persistent-claim

Storage classes define storage profiles and dynamically provision persistent volumes based on that profile. If thereis
no default storage class, or you would not like to use the default, you can specify your storage class by setting storage.
class.

Tip: For Kafka brokers, Clouderarecommends a St or ageCl ass that has volume expansion enabled (allo
wvolumeexpansion set to true).

#...
ki nd: Kaf kaNodePool
spec:
st or age:
type: persistent-claim
cl ass: custom st orage-cl ass

#...
ki nd: Kaf ka
spec:
zookeeper :
st or age:
type: persistent-claim
cl ass: custom st orage-cl ass

These examples configure a custom storage class for the podsin the cluster which it is configured for. Custom storage
classes can be configured on a more granular level aswell with storage overrides.

Persistent volumes can be configured on a per-broker and ZooK eeper server basis by specifying the Kubernetes
storage class for each volume with storage overrides. Specifying storage overrides can be used to influence the
storage parameters and pod scheduling constraints of each broker and ZooK eeper server.

Note: The overrides.broker property is used in both Kafka and ZooK eeper configurations. In the case of
ZooK eeper, the broker property represents the ZooK eeper server instance.

24

Cloudera Streams Messaging - Kubernetes Operator Storage configuration

#. ..
ki nd: Kaf kaNodePoo
spec:
st or age:
type: persistent-claim
overrides:
- broker: O
cl ass: storagecl assl
- broker: 1
cl ass: storagecl ass2
#. ..
ki nd: Kaf ka
spec:
zookeeper :
st or age:
type: persistent-claim
overrides:
- broker: 0
cl ass: storagecl assl
- broker: 1

cl ass: storagecl ass2

The available configuration options for persistent storage are listed in the Strimzi documentation.

Pod scheduling

PersistentStorage schema reference | Strimzi API reference
Storage Classes | Kubernetes

Node Affinity | Kubernetes

Just abunch of disks (JBOD) refersto a system configuration where disks are used independently rather than
organizing them into redundant arrays. Learn how you can configure JBOD storage for Kafka.

JBOD storage allows you to configure your Kafka cluster to use multiple volumes. This approach provides increased
data storage capacity for Kafka nodes, and can lead to performance improvements. A JBOD configuration is defined
by one or more volumes, each of which can be either ephemeral or persistent. BOD is only applicable to the Kafka
storagein the Kaf kaNodePool resource.

To use JBOD storage, set the storage.type to jbod and specify the volumes.

#. ..
ki nd: Kaf kaNodePool

spec:
st or age:
type: jbod
vol unes:
- id: 0
type: persistent-claim
si ze: 100G
del eteC aim false
- id: 1

25

https://docs.cloudera.com/csm-operator/1.4/kafka-deploy-configure/topics/csm-op-pod-scheduling.html
https://strimzi.io/docs/operators/0.45.0/configuring#type-PersistentClaimStorage-reference
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#node-affinity
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#node-affinity

Cloudera Streams Messaging - Kubernetes Operator Pod scheduling

type: persistent-claim
size: 100G
del eteC aim false

This example uses ajbod storage type with two attached persistent volumes. The volumes must al be identified by a
unique ID.

Y ou can aways increase or decrease the number of disks or increase the volume size by modifying the
Kaf kaNodePool resource and reapplying the changes. However, you cannot change the IDs once volumes are
created.

The available configuration options are listed in the Strimzi documentation.

JbodStorage schemareference | Strimzi API reference

Cloudera recommends using persistent storage to store Kafka and ZooK eeper data. Ephemeral storage is only suitable
for short-lived test clusters. Use adynamic provisioner storage class with block storage (ReadWriteOnce access) and
prefer SSD or NVMe disks.

Consider the following when using persistent storage.

Using local storage makes the deployment similar to a bare-metal deployment in terms of scheduling and availability.
It provides good throughput as both Kafka and ZooK eeper storage operations have less overhead when replication
and network hops are not necessary.

However, the Kafka and ZooK eeper pods become bound to the node where the backing volumeislocated. This
means that the pods cannot be scheduled to a different node, which impacts availability

Using distributed storage with synchronous replication allows leveraging the flexibility of Kubernetes pod
scheduling. Both Kafka and ZooK eeper pods can be migrated across nodes due to the availability of the same storage
on different nodes. Thisimproves the availability of the Kafka cluster. Node failures do not bring down Kafka
brokers and ZooK eeper servers permanently.

However, distributed storage reduces throughput in the Kafka cluster. The synchronous replication of storage adds
extraoverhead to disk writes. Additionally, if the backing storage class does not support data locality, reads and
writes require extra network hops.

Learn about the default affinity rules and tolerations that Strimzi sets for pod scheduling. Additionally, learn what
affinity rules Cloudera recommends for making pod scheduling stricter.

The scheduling of Kafka broker, KRaft controller, and ZooK eeper pods can be customized in the Kaf ka and

Kaf kaNodePool resources through various configurations such as storage configurations, affinity rules, and
tolerations. Strimzi by default only sets afew of the pod scheduling configurations. It is your responsibility to ensure
that pod scheduling configurations are customized correctly for your environment and use case.

Both storage and rack awareness configuration might have an impact on pod scheduling. For storage, depending on
the configuration, it is possible that a pod is bound to a node or a group of nodes and cannot be scheduled elsewhere.

If rack awareness is configured, your pods by default get preferred and required affinity rules, which influence pod
scheduling.

26

https://strimzi.io/docs/operators/0.45.0/configuring#type-JbodStorage-reference

Cloudera Streams Messaging - Kubernetes Operator

Storage recommendations
Rack awareness

The Strimzi Cluster Operator does not set any tolerations on the Kafka broker, KRaft controller, and ZooK eeper pods
by default. The pods get a default toleration from the Kubernetes platform.

The default tolerations are as follows.

#. ..
ki nd: Kaf ka
spec:
kaf ka:
tenpl at e:
pod:
tol erations:
- effect: NoExecute
key: node. kuber netes. i o/ not -ready
operator: Exists
tol erati onSeconds: 300
- effect: NoExecute
key: node. kuber net es. i o/ unr eachabl e
operator: Exists
tol erati onSeconds: 300

This means that whenever the Kubernetes node running the pod is tainted as unreachable or not-ready, the pod
should be terminated after five minutes. This means that even if you lose an entire Kubernetes node, the pod will be
terminated and rescheduled only after five minutes.

Depending on your platform and the type of failure of a Kubernetes worker node, it is possible that the pods will
not be rescheduled from a dead worker node and the pod will stay in terminating state forever. In this case manual
intervention is needed to move forward.

Taints and Tolerations | Kubernetes
Node Shutdowns | Kubernetes

Learn about the pod scheduling configurations recommended by Cloudera.

Instead of using the default tolerations with 300 seconds, you can consider setting tolerations with smaller timeouts if
afive minute downtime of Kafka brokers, KRaft controllers or ZooKeeper nodesis not acceptable for you.

For Kafka brokersit is possible to set tolerations globally using spec.kafka.template.pod.tolerations in the Kaf ka
resource. Alternatively, you can set tolerations for a group of broker nodes only using spec.template.pod.tolerationsin
the Kaf kaNodePool resource.

For KRaft controllers, configuration of the tolerations is the same as for Kafka brokers. Y ou can set tolerations
globally using spec.kafka.template.pod.tolerations in the Kaf ka resource. Alternatively, you can set tolerations for a
group of controller nodes only using spec.template.pod.tolerations in the Kaf kaNodePool resource.

For ZooK eeper it isonly possible to set tolerations globally in spec.zookeeper.template.pod.tolerations in the Kaf ka
resource.

27

Pod scheduling

https://docs.cloudera.com/csm-operator/1.4/kafka-deploy-configure/topics/csm-op-configuring-storage.html#concept_xnw_x3w_jbc
https://docs.cloudera.com/csm-operator/1.4/kafka-deploy-configure/topics/csm-op-rack-awareness.html
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/cluster-administration/node-shutdown/

Cloudera Streams Messaging - Kubernetes Operator Pod scheduling

Y ou can use required and preferred rules to fine tune scheduling according to your needs.

If you use required rules, it is your platform’s responsibility to always have enough resources (for example, enough
nodes) to satisfy the rules. Otherwise, the scheduler will not be able to schedule pods and they will be in a pending
state.

If you use preferred rules with any weight, ensure that the rule weight is correctly set. The scheduler will consider the
rules with higher weight more important than others with lower weight.

E Note: Kuberneteswill still run the pod evenif it has to break a preferred rule.

For Kafka brokersit is possible to set affinity rules globally using spec.kafka.template.pod.affinity in the Kaf ka
resource. Alternatively, you can set affinity rules for a group of broker nodes only using spec.template.pod.affinity in
the Kaf kaNodePool resource.

For KRaft controllers, configuration of affinity rulesisthe same as for Kafka brokers. Y ou can set affinity rules
globally using spec.kafka.template.pod.affinity in the Kaf ka resource. Alternatively, you can set affinity rulesfor a
group of controller nodes only using spec.template.pod.affinity in the Kaf kaNodePool resource.

For ZooK eeper it isonly possible to set affinity rules globally in spec.zookeeper.template.pod.affinity in the Kaf ka
resource.

The following collects a number of example required rules for typical use cases.

Run each Kafka broker pod on different nodes

#. ..
ki nd: Kaf kaNodePool
spec:
tenpl at e:
pod:
affinity:
podAnti Affinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:
- | abel Sel ector:
mat chExpr essi ons:
- key: strinzi.iolcluster
operator: In
val ues:
- [***CLUSTER NAME***]
- key: strinei.iolbroker-role
operator: In
val ues:
"true"
t opol ogyKey: kubernetes. i o/ host name

Run each KRaft controller pod on different nodes

#. ..

ki nd: Kaf kaNodePool

spec:

tenpl at e:
pod:
affinity:
podAnti Affinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:
- | abel Sel ector:
mat chExpr essi ons:
- key: strinzi.iolcluster

operator: In
val ues:

28

Cloudera Streams Messaging - Kubernetes Operator

Pod scheduling

- [***CLUSTER NAME***]
- key: strinei.iol/controller-role
operator: In
val ues:
"true"
t opol ogyKey: kubernet es. i o/ host name

Run each Zookeeper pod on different nodes

#...
ki nd: Kaf ka
spec:

zookeeper:

tenpl at e:
pod:
affinity:
podAnti Affinity:

requi r edDur i ngSchedul i ngl gnor edDur i ngExecuti on:

- | abel Sel ector:
mat chExpr essi ons:

- key: strinzi.iol/conponent-type

operator: In
val ues:
- zookeeper
- key: strinzi.iol/cluster
operator: In
val ues:
- [***CLUSTER NAME***]
t opol ogyKey: kubernetes. i o/ host name

Run ZooK eeper and Kafka broker pods on different nodes

#. ..
ki nd: Kaf ka
spec:
kaf ka:
tenpl at e:
pod:
affinity:
podAnti Affinity:

requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:

- | abel Sel ect or:

mat chExpr essi ons:
- key: strinei.iolcluster

operator: In

val ues:
- [***CLUSTER NAME***]
t opol ogyKey: kubernetes. i o/ host name
zookeeper:
tenpl at e:
pod:
affinity:
podAnti Affinity:

requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:

- | abel Sel ector:
mat chExpr essi ons:
- key: strinzi.iolcluster
operator: In
val ues:
- [***CLUSTER NAME***]
t opol ogyKey: kubernet es. i o/ host nane

29

Cloudera Streams Messaging - Kubernetes Operator Rack awareness

Run KRaft controller and Kafka broker pods on different nodes

#. ..
ki nd: Kaf ka
spec:
kaf ka:
tenpl at e:
pod:
affinity:
podAnti Affinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:
- | abel Sel ect or:
mat chExpr essi ons:
- key: strinzi.iol/cluster
operator: In
val ues:
- [***CLUSTER NAME***]
t opol ogyKey: kuber netes. i o/ host nanme

Racks provide information about the physical |ocation of a broker or aclient. A Kafka cluster can be made rack aware
by configuring rack awareness for the Kafka brokers, consumers, and ZooK eeper servers. Enabling rack awareness
can help in hardening your cluster, it provides durability guarantees, and significantly decreases the chances of data
loss.

To enable rack awareness for a Kafka cluster running in Kubernetes with Cloudera Streams Messaging - Kubernetes
Operator you complete the following tasks.

1. Configurerack information for your Kubernetes nodes using labels.
2. Configure rack awareness for both Kafka and ZooK eeper clusters.
3. Configure follower fetching for both Kafka brokers and consumers.

Note: Although the feature is called rack awareness, the term rack does not necessarily mean an actual
B physical server rack. Instead, arack from Kafka's perspective represents any physical location or independent
physical infrastructure like data centers, regions, zones, and so on.

Before you can enable rack awareness for Kafka or ZooK eeper, you must ensure that alabel is configured in your
Kubernetes cluster that holds rack information. Y ou configure labels with kubectl 1abel.

Kubernetes nodes can hold their respective rack information in labels. Y ou can set any labels to store your rack
information, however, Cloudera recommends using the topol ogy.kubernetes.io/zone label. Thisisbecauseitisa
well-known Kubernetes label and cloud providers typically set thislabel for you automatically. If your (cloud)
environment provider does not automatically set thislabel in your environment, you have to set it manually. Thisis
done with kubectl label.

30

Cloudera Streams Messaging - Kubernetes Operator

Rack awareness

1. Set your chosen label with kubectl 1abel.

kubect| | abel node [***NODE NAME***] topol ogy. kubernetes. i o/ zone=[***ZONE/
RACK***]

Repeat this step for each of your nodes. For example, assuming you have six nodes, three different racks, and two
nodes per rack, you would run commands similar to the following.

kubect| | abel node kubernetes-nD2 topol ogy. kuber net es. i o/ zone=eu- zone- 1
kubect| | abel node kubernetes-nD3 topol ogy. kuber net es. i o/ zone=eu- zone- 1
kubect| | abel node kubernetes-nD4 topol ogy. kuber net es. i o/ zone=eu- zone- 2
kubect| | abel node kubernetes-nD5 topol ogy. kuber net es. i o/ zone=eu- zone- 2
kubect| |abel node kubernetes-nD6 topol ogy. kuber net es. i o/ zone=eu- zone- 3
kubect| | abel node kubernetes-nd7 topol ogy. kuber net es. i o/ zone=eu- zone- 3

2. Verify your configuration.

kubect| get node -o=custom col ums=NODE: . net adat a. nane, ZONE: . net adat a. | a
bel s. "t opol ogy\ . kubernetes\.io/zone" | sort -k2

The output lists your nodes and their rack information (zone). Output will be similar to the following example.

NODE ZONE
kuber net es- nD1 <none>
kuber net es- nD2 eu- zone-1
kuber net es- n03 eu-zone-1
kuber net es- n04 eu- zone- 2
kuber net es- nD5 eu- zone- 2
kuber net es- nD6 eu- zone- 3
kuber net es- D7 eu- zone- 3

Note: Rack information for the control-plane node (kubernetes-m01) is not set in this example, because it
should not function as a workload node.

toplogy.kubernetes.io/zone | Kubernetes

ZooK eeper rack awarenessis configured in the Kafka resource by specifying affinity rules.

Zookeeper rack awareness can only be configured through the Kaf ka resource. As aresult, you can only set
configuration that applies for al ZooK eeper instances.

To configure rack awareness for ZooK eeper, Cloudera recommends setting the following two affinity rules for
Zookeeper in the Kaf ka resource.

#...
ki nd: Kaf ka
spec:
zookeeper:
tenpl at e:
pod:
affinity:
nodeAffinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:
nodeSel ect or Ter ns:
- mat chExpr essi ons:

31

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

Cloudera Streams Messaging - Kubernetes Operator Rack awareness

- key: topol ogy. kubernnetes.i o/ zone
operator: Exists
podAnti Affinity:
pr ef er redDur i ngSchedul i ngl gnor edDur i ngExecut i on:
- podAffinityTerm
| abel Sel ect or:
mat chLabel s:
strinei.iol/cluster: [***CLUSTER NAME***]
stringi.iol/nanme: [***CLUSTER NAME***] - ZOOKEEPER
t opol ogyKey: topol ogy. kubernetes. i o/ zone
wei ght: 100

These rules are proper for most cases, but it is still possible that ZooK eeper pods are scheduled to another nodein a
different rack after anode failure. Thisis because these rules do not force keeping the ZooK egper pods in a specific
rack.

Currently, the only way to enforce ZooK eeper instances to stick to specific racksis to use storage overrides with
your own storage classes and volume node affinities. If a pod has a persistent volume claim on a volume with node
affinity set, the scheduler considers the restrictions on the volume in use when scheduling the pod. Thisway, you can
configure arack-aware cluster without the limitations mentioned above.

Storage overrides

Rack awareness for Kafkais configured in your Kafka resource by specifying the Kubernetes node label that holds
rack information. Optionally, you can configure nodeAffinity rulesin the KafkaNodePool resource for stricter broker
placement.

Kafka brokers are made rack-aware by configuring the broker.rack property. When broker racks are configured,
Kafkaintentionally places replicas of the same partition (whenever atopic is created, modified, and so on) into
different racks to protect the data from rack failures.

In Cloudera Streams Messaging - Kubernetes Operator, you do not set broker.rack directly in your Kaf ka resource
to configure rack awareness. Instead, you specify which node label to use as rack information by configuring the kafk
arack.topologyKey property in the Kaf ka resource.

If kafka.rack.topologyKey is set, the broker.rack property of each broker is automatically set based on the node label
value that the broker pod is scheduled to. Additionally, the broker pods automatically get an affinity and anti-affinity
rule. These rules guarantee best effort spreading of brokers between racks, but do not force having the same broker
awaysin the same rack.

Because the default rules only guarantee best effort spreading, Cloudera recommends that you override these rules
with stricter rules explicitly configuring which group of nodes should be placed in which racks.

The following steps demonstrate how to configure kafka.rack.topologyK ey and demonstrate what rules you have to
setinthe Kaf kaNodePool resource if you want to ensure that a group of nodes are always placed in the same
rack.

Note: By default, KRaft controllers also get the same affinity rules as Kafka brokers. Rules are applied
B if kafka.rack.topologyKey is set in the Kaf ka resource. The broker.rack property is not used by KRaft
controllers, because al controllers hold the same data.

« Ensurethat you chose and configured alabel that holds rack information. See Configuring rack information on
Kubernetes nodes on page 30.

32

https://docs.cloudera.com/csm-operator/1.4/kafka-deploy-configure/topics/csm-op-configuring-storage.html#pnavId4

Cloudera Streams Messaging - Kubernetes Operator Rack awareness

» The default affinity rules are documented in Default affinity rules for rack awareness on page 35.

1. Configure kafka.rack.topologyKey in your Kaf ka resource.

#. ..
ki nd: Kaf ka
spec:

kaf ka:

rack:
t opol ogyKey: topol ogy. kubernetes. i o/ zone

2. Explicitly configure which group of nodes are placed in which rack.

This can be done by adding a required nodeAffinity rule in your Kaf kaNodePool resources. Thisstepis
marked as optional but is recommended by Cloudera. The following examples demonstrate a configuration where
there are two node pools. The nodes in each pool are assigned to separate racks (zones).

api Version: kafka.strinei.iolvlbeta?2
ki nd: Kaf kaNodePoo
nmet adat a:
nane: first-poo
| abel s:
strinei.iolcluster: my-cluster
spec:
tenpl at e:
pod:
affinity:
nodeAffinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:
nodeSel ect or Ter ns:
- mat chExpr essi ons:
- key: topol ogy. kubernetes. i o/ zone
operator: In
val ues:
- eu-zone-1

api Version: kafka.strinei.iolvlbeta?2
ki nd: Kaf kaNodePoo

nmet adat a:
nane: second- poo
| abel s:
strinei.iolcluster: my-cluster
spec:
tenpl at e:
pod:
affinity:

nodeAffinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:
nodeSel ect or Ter ns:
- mat chExpr essi ons:
- key: topol ogy. kubernetes.i o/ zone
operator: In
val ues:
- eu-zone-2

33

Cloudera Streams Messaging - Kubernetes Operator Rack awareness

After the changes are applied, arolling restart isinitiated.

After the cluster is restarted, check the broker.rack values of each broker. Y ou can get the broker.rack values of
multiple brokers that are in the same pool with the following command.

for broker in [***CLUSTER NAME***]-[***POCL NAMVE***]-[***| D RANGE***]; do
kubect| exec -namespace [***NAMESPACE***] -it \
$br oker --container kafka \
-- /bin/bash -c "cat /tnp/strinei.properties" \
| grep -E "broker.id|broker.rack" && echo "\n"
done

e [***CLUSTER NAME***] isthe name of your cluster.
e [***POOL NAME***] isthe name of the node pool.
e [***ID RANGE***] isarange of broker IDs enclosed in curly braces ({}). For example, {1..3}.

This command will output the broker 1Ds and the rack information set for each broker. For example:

br oker.i d=0
br oker . rack=eu-zone-1

br oker.id=1
br oker . rack=eu-zone-1

br oker . i d=2
br oker . rack=eu-zone-1

Y ou enable follower fetching by configuring your Kafka resource and specifying rack information in your Kafka
clients.

If rack awareness is enabled for Kafka brokers, consumers by default continue to consume messages from partition
leaders. This behavior remains the same even if the consumer and the partition leader are located in different racks.

It is possible (especially in cloud environments) that a consumer application isin a different region than the partition
leader, but there is a partition follower in the same region as the consumer application. In this case it is better to
consume from the partition follower instead. This way you can avoid unnecessary traffic across data centers, reducing
costs and application latency. Thisis called follower fetching.

Follower fetching is enabled by configuring the replica sel ector implementation in your Kafka resource to be rack-
aware. Additionally, you need to configure the client.rack property of your clients.

1. Update your Kaf ka resource.
To enable follower fetching, set the replica.selector.class broker property to the RackAwareReplicaSelector.

#. ..
ki nd: Kaf ka
spec:

kaf ka:

Cloudera Streams Messaging - Kubernetes Operator Rack awareness

rack:
t opol ogyKey: topol ogy. kubernetes.i o/ zone
config:
replica. selector.class: org.apache. kaf ka. cormon. repl i ca. RackAwar e
Repl i caSel ect or

2. Wait until therolling restart finishes.
Use the following command to monitor cluster state.

kubect| get pods --namespace [***NAMESPACE***] --output w de --watch

3. Configure your consumers.
client.rack=[***RACK | D***]

The [***RACK ID***] is one of the rack IDs (zones) that you configured in the topol ogy.kubernetes.io/zone
label. The client reads from afollower replicaif afollower replica host broker has a broker.rack valuethat is
identical with the value of client.rack on the client side. If thereisn't one, the client fetches data from the leader.

Kafka broker pods automatically get the following affinity and anti-affinity rules when rack awareness is enabled.

Thisisarequired rule, the scheduler will only schedule a broker pod to a node, if the node has the configured 1abel
Set.

tenpl at e:
pod:
affinity:
nodeAffinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:
nodeSel ect or Ter ns:
- mat chExpr essi ons:
- key: topol ogy. kubernnetes.i o/ zone
operator: Exists

Thisisapreferred rule, it spreads Kafka brokers evenly across racks in a best-effort manner.

tenpl at e:
pod:
affinity:
podAnti Affinity:
pr ef erredDur i ngSchedul i ngl gnor edDur i ngExecut i on:
- podAffinityTerm
| abel Sel ector:
mat chLabel s:
strinei.iolcluster: [***CLUSTER NAME***]
stringi.iol/nane: [***CLUSTER NAME***] - kaf ka
t opol ogyKey: topol ogy. kubernetes.i o/ zone
wei ght: 100

35

Cloudera Streams Messaging - Kubernetes Operator Configuring Kafka broker node IDs

Learn how you can configure Kafka brokersto get IDs from a specified range.

It might be important to specify the ID range of the Kafka brokers to avoid confusion before creating the cluster. This
can be configured on the level of the Kafka node pools. Y our chosen range is configured using an annotation in the
Kaf kaNodePool resource.

#. ..
ki nd: Kaf kaNodePool
net adat a:

nane: pool -a

| abel s:

strinei.iol/cluster: my-cluster
annot at i ons:
strinei.iolnext-node-ids: "[0-99]"

In this example, arange from 0 to 99 is configured. The desired range can be provided by ranges, individual humbers,
and so on. The range can aso be provided in areversed order, in that case the IDs are assigned in reversed order if
possible.

To monitor your Kafka cluster with Prometheus, you must configure your Kafka cluster to expose the necessary
metric endpoints that integrate with your Prometheus deployment. Thisis done by configuring metricsConfig
properties for components in your Kafka resource.

By default cluster components deployed with your Kaf ka resource do not expose metrics that Prometheus can
scrape. In order to use Prometheus to monitor your Kafka cluster, you must enable and expose these metrics. Thisis
done by adding a metricsConfig property to the spec of each cluster component in your Kafka resource.

Specifying metricsConfig in the Kafka resource enabl es the Prometheus IM X Exporter which exposes metrics
through a HT TP endpoint. The metrics are exposed on port 9094. The metricsConfig property can reference a
ConfigMap that holds your IMX metrics configuration or will include the metrics configurations in-line. The
following steps demonstrate the configuration by referencing a ConfigMap.

A Prometheus deployment that can connect to the metric endpoints of the Kafka cluster running in the Kubernetes
environment is required. Any properly configured Prometheus deployment can be used to monitor Kafka. Y ou can
find additional information and examples on Prometheus setup in the Strimzi documentation.

1. Create a ConfigMap with IMX metrics configuration for both Kafka and ZooK eeper.

ki nd: Confi gMap
api Version: vl

net adat a:
nane: kafka-netrics
| abel s:
app: strinzi
dat a:

kaf ka-metri cs-config.ym: |

36

https://strimzi.io/docs/operators/0.45.0/deploying#assembly-metrics-prometheus-str

Cloudera Streams Messaging - Kubernetes Operator Configuring logging for Kafka cluster components

[*** KAFKA METRI CS CONFI GURATI ON* **]
zookeeper-nmetrics-config.ym: |
[***ZOOKEEPER METRI CS CONFI GURATI ON***]

Replace [***KAFKA METRICS CONFIGURATION***] and [*** ZOOKEEPER METRICS
CONFIGURATION***] with your IM X Prometheus metrics configurations.

2. Update your Kaf ka resource with metricsConfig property.

Add metricsConfig to the spec of both Kafka and ZooK eeper. The property needs to reference the ConfigMap you
created in Step 1.

#. ..
ki nd: Kaf ka
spec:
kaf ka:
nmetri csConfi g:
type: jnmxPronet heusExporter
val ueFrom
conf i gvapKeyRef :
nane: kafka-netrics
key: kafka-netrics-config.ynl
zookeeper:
met ri csConfig:
type: j nmxPronet heusExporter
val ueFrom
conf i gMapKeyRef :
name: kafka-netrics
key: zookeeper-netrics-config.ynl

« Configure Prometheus and specify alert rulesto start scraping metrics from the ZooK eeper and Kafka pods.
Y ou can find an example rules file (prometheus-rules.yaml) as well as various other configuration examples on
the Cloudera Archive. Examples related to Prometheus are located in the /csm-operator/1.4/examples/metrics
directory.

* Review Clouderarecommendations on what alerts and metrics to configure. See Monitoring with Prometheus.

Cloudera Archive
Prometheus IMX Exporter | GitHub

Learn how to configure logging for Kafka cluster components. Y ou can configure logging for these components
directly in the Kafkaresource, or by referencing a ConfigMap.

The logging properties of Kafka cluster components like Kafka brokers, ZooK eeper, Cruise Control, and all other
components deployed and managed through the Kaf ka resource are configured in the Kaf ka resource.

Logging properties are specified in spec.[*** COMPONENT***] .logging. Logging properties can be added directly
to this property, or can be defined in an external ConfigMap that is referenced in the Kaf ka using configM apK eyRef
property.

Y ou choose the configuration method by setting the logging.type property to either inline or external.

Inline

37

https://docs.cloudera.com/csm-operator/1.4/monitoring-diagnostics/topics/csm-op-prometheus-monitoring.html
https://archive.cloudera.com/p/csm-operator/1.4/
https://github.com/prometheus/jmx_exporter

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

Inline configuration means that you directly specify the logging propertiesin the Kafka resource at
the spec of each component.

#...
ki nd: Kaf ka
spec:
#...
| oggi ng:
type: inline
| oggers:

kaf ka. root . | ogger. | evel : | NFO

External

Externa configuration means that you reference your own ConfigMap that holds the logging
properties.

#. ..
ki nd: Kaf ka
spec:
#. ..
| oggi ng:
type: externa
val ueFr om
confi gvapKeyRef :
name: my-config-map
key: ny-config- map-key

A ConfigMap is generated for each Kafka cluster component after pod creation. These ConfigMaps contain the actual
logging configuration. Do not edit the generated ConfigMaps directly, as direct changes are ignored.

Depending on the changes made, they are either applied dynamically, or arolling restart is triggered.

The following Kafka cluster components use logdj configuration:

« Kafka
e ZooKeeper

The following Kafka cluster components use log4j2 configuration:

e CruiseControl
e UserOperator
» EntityOperator

Logging options for Kafka components and operators | Strimzi

Client accessto your cluster is set up in Cloudera Streams Messaging - Kubernetes Operator by configuring listeners
in your Kafka resource. Listeners can be used to expose your brokers, allowing clients to access them.

Each listener is configured as an array in your Kaf ka resource. For example:

#. ..
ki nd: Kaf ka
spec:

kaf ka:

version: 3.9.0.1.4
replicas: 3
|l i steners:

38

https://strimzi.io/docs/operators/0.45.0/deploying#logging_options_for_kafka_components_and_operators

Cloudera Streams Messaging - Kubernetes Operator

name: plain
port: 9092
type: internal
tls: false

Y ou can configure any number of listeners aslong as their names and ports are unique. Their configuration is also
highly customizable. For an exhaustive list of accepted properties, seethe Gener i cKaf kalLi st ener aswell as
other listener schema referencesin the Strimzi API reference.

There are two categories of listeners, internal and external. Internal listeners are used to expose Kafka to clients that

areinterna to the Kubernetes cluster. External listeners provide away to expose Kafkato the outside world.

Listeners are further categorized by their type. The different listener types expose Kafka with different connection
mechanisms. The types of listeners available are as follows.

Internal listener types

interna

Aninternal type listener uses a Kubernetes headless Service that gives each broker pod a stable
hostname. These hostnames are set as advertised listeners for Kafka. In addition, a Clusterlp
Kubernetes Serviceis set up that acts as the Kafka bootstrap. Theinitial connection is done
using the bootstrap, subsequent connections are opened using the hostnames given to the pods
by the headless Kubernetes Service.

cluster-ip

With a cluster-ip type listener, individual ClusterlP type Kubernetes services are set up for each
broker. The hostnames of the Clusterl P services are configured as the advertised listeners for
Kafka. In addition, another ClusterlP is provisioned that acts as the Kafka bootstrap. The initial
connection is done using the bootstrap, subsequent connections are opened using the Cluster| P
Services corresponding to each broker.

All Kafkaresources that you create in Cloudera Streams Messaging - Kubernetes Operator most
likely contain an internal listener by default. This means that you can test your cluster and connect
your client as soon as the cluster is up and running. To connect a client, direct it to the address

of the bootstrap service that was set up by the listener. From there Kubernetes and the Strimzi
Cluster Operator handle everything else ensuring that connection requests are sent to the appropriate
brokers.

External listener types

39

Listener configuration

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

* nodeport

Kubernetes Cluster

Node Ports Bootstrap Service
type: NodePort

-6 —E)—

Per-broker Services
type: NodePort Broker Pods

—>

Client

A nodeport type listener sets up NodePort type Kubernetes Services to provide external accessto
Kafka

40

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

e route
Kubernetes Cluster

Bootstrap Service
Routes type: ClusterIP

,@, @_
Per-broker Services
o type: ClusterIP Broker Pods
—_—
Client
@

—>

A route type listener uses Openshift routes and the default HAProxy router to provide external
access to Kafka.

41

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

* loadbalancer

Kubernetes Cluster

Bootstrap Service
type: LoadBalancer

Load
Balancers

Per-broker Services
type: LoadBalancer

Broker Pods

O _

Client

—>

A loadbalancer type listener sets up LoadBalancer type Kubernetes Services and cloud provider
or infrastructure managed load balancers to provide external accessto Kafka.

e ingress

Kubernetes Cluster

Bootstrap Service
type: ClusterIP

[
L4

Load Balancer
(or Node Port)
type: ClusterIP

%—»—»@*®§_,@ o
@0
e—0

Ingress Service Ingress Controller .
Per-broker Services
Broker Pods

_I—-’

»
>

Aningresstype listener uses Kubernetes Ingress and the Ingress-NGINX controller to provide
external accessto Kafka.

42

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

Which of the available external listener types you choose will depend on your requirements and
infrastructure. Each external listener type is further documented in their dedicated section. See these
sections for more information on how they work as well as instructions on how to set them up.

When configuring listeners for Kafka clients, you can use ports from 9092 and above. There are two default listeners
configured in each cluster that can not be configured and accessed by external clients. These are as follows.

e Control plane listener (9090) - This port is used for controller communication
« Replication listener (9091) - This port is used by replica fetchers for replicating topic partitions

Strimzi APl Reference

Learn about Kubernetes NodePorts and how NodePorts are used to provide Kafka clients access to your cluster.

NodePort is a Kubernetes Service type that allocates a port, referred to as a node port, on every node of the
Kubernetes cluster. NodePort ensures that all traffic routed to the node port gets to a specific pod.

To set up external cluster access with NodePorts, you add nodeport type listeners to your Kafka resource (listener.typ
e:nodeport).

Note: By default the node port numbers are assigned by Kubernetes from a configurable default range.
Unless you choose to configure specific port numbers, new ports might be assigned when you redeploy the
Kaf ka resource.

Once configuration is done, the Strimzi Cluster Operator deploys multiple NodePort Services. Specifically, you will
have the following:

» One NodePort that serves as an external bootstrap. Thisis used by clients for the initial connection and to receive
metadata (advertised listeners) from the Kafka cluster.

» A NodePort for each Kafka broker. These are used by clients to directly access the individual brokers.

The addresses of the nodes and the node ports are collected by the Strimzi Cluster Operator and configured as the
advertised listeners of the brokers. So brokers are automatically configured to advertise the right address and ports.
Asaresult, once listener setup is complete, you can connect your clients running outside of the Kubernetes network
by directing them to the NodePort Service that acts as the external bootstrap. Kubernetes handles everything else and
ensures that client requests are routed to the correct brokers.

Complete the following steps to set up and configure a nodeport type listener in your Kafka resource. The following
steps also include an example on how to connect a Kafka console client to the cluster.

These steps demonstrate basic listener configuration with typical customizations. In addition to the configuration
shown here, you can further customize your listener and enable or disable TLS encryption using the tls property,
specify a client authentication mechanism with the authentication property, as well as add various additional
configurations using the configuration property. For a comprehensive list of available properties, see the
GenericKafkaListener schema reference in the Strimzi API reference.

43

https://strimzi.io/docs/operators/0.45.0/configuring

Cloudera Streams Messaging - Kubernetes Operator

Listener configuration

1. Configure your Kafkaresource.

Add an external listener that has its type property set to nodeport. In addition, Cloudera recommends that you

customize your listeners and specify exact port numbers with the nodePort property. Thisway, you do not need to
reconfigure your clients every time you redeploy Kafka.

However, note that no validation is done, so you must ensure that the configured ports are not used by any other
service and are within the range assigned for node ports. If port numbers are not specified, the Strimzi Cluster

Operator chooses available ports from the range assigned to node ports.

The following snippet shows a configuration where listener.type is set to nodeport and exact port numbers are also

specified.
#. ..
ki nd: Kaf ka
spec:
kaf ka:
i steners:
- nane: externa
port: 9094
type: nodeport
tls: true
aut henti cati on:
type: tls
configuration:
boot st rap:
nodePort: 32000
br okers:
- broker: O
nodePort: 32001
- broker: 1
nodePort: 32002
- broker: 2
nodePort: 32003

2. Verify that NodePort Services are created and running.

kubect |

The output will be similar to the following example.

NAME
AL-1 P
#

my- cl ust er - kaf ka- ext er nal - boot st rap

my-cl ust er - kaf ka- 0
my-cl ust er - kaf ka- 1

my- cl ust er - kaf ka- 2

Notice that there is a NodePort Service deployed for each Kafka broker. Additionally you have a separate external

TYPE

NodePor t
NodePor t
NodePor t

NodePor t

bootstrap NodePort called [*** CLUSTER NAME* **] -kafka-external

Kafka cluster should be directed to the external bootstrap.

3. Get the node port of the external bootstrap service.

kubect |
--nanespace [***NAMESPACE***] \

get services --nanespace [***NAMESPACE***]

CLUSTER- | P

10. 43. 137. 124
10. 43. 78. 187
10. 43. 5. 207

10. 43.75.51

EXTERN

<none>

<none>

<none>

<none>

bootstrap. Clients connecting to the

get service [***CLUSTER NAME***] - kaf ka- ext ernal - boot strap \

44

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

- - out put =j sonpat h='{. spec. ports[0].nodePort}{"\n"}"

4. Get the address (hostname or |P) of any node.

kubect| get node [***NODE NAME***] \
- - out put =j sonpat h=' {range. st at us. addresses[*] }{.type}{"\t"}{. address}{"
\nll}l

5. Configure and run your client.
The following example shows a Kafka console producer.

kaf ka- consol e- producer. sh \
--boot strap-server [***NODE ADDRESS***]:[***NODE PORT***] \
--topic [***TOPI Cr**]

A nodeport type listener is configured. External Kafka clients can now access your Kafka cluster through the
NodePort Services.

Service | Kubernetes
Accessing Kafka: Part 2 — Node ports | Strimzi blog
GenericKafkal istener schema reference | Strimzi API reference

Routes is an OpenShift concept and solution that allows you to expose Kubernetes Services at a public URL so that
external clients can reach your applications running in the Kubernetes cluster.

To set up external cluster access using Openshift routes, you add a route type listener to your Kaf ka resource (list
ener.type:route).

Once configuration is done, the Strimzi Cluster Operator deploys multiple routes as well as multiple Clusterl P type
Kubernetes Services. This means that you will have the following:

* A route and a corresponding Clusterl P that serves as an external bootstrap. Thisis used by clients for the initial
connection and to receive metadata (advertised listeners) from the Kafka cluster.

e A unique route and a CluserI P for each Kafka Broker. The routes and the corresponding Cluster| Ps are used to
access the brokers directly and to distinguish the traffic for different brokers.

Kafka clients connect to the bootstrap route, which routes the request through the bootstrap Cluster| P to one of the
brokers. From this broker, the client receives metadata that contains the hostnames of the per-broker routes. The
client uses these addresses to connect to the routes dedicated to the specific broker. Afterward, the route directs traffic
through its corresponding Clusterl P to its corresponding broker.

The Strimzi Cluster Operator uses the HAProxy router and sets up routes with passthrough termination. This results
in the following:

« Traffic going through aroute is always secured and uses TL S encryption.
« Encrypted traffic is sent to the Clusterl P Service without data being decrypted in the process.

« The port that the routes listen on isfixed and is always 443. This is because HAProxy uses port 443 by default for
HTTPS requests.

The Strimzi Cluster Operator collects the hostnames assigned to the routes and uses the addresses to configure the
advertised listenersin the Kafka brokers. So brokers are automatically configured to advertise the right address and
ports. As aresult, once setup is complete, you can connect your clients running outside of the Kubernetes network by
directing them to the bootstrap route. Kubernetes and OpenShift handle everything else and ensure that client requests
are routed to the correct brokers.

45

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/04/23/accessing-kafka-part-2/
https://strimzi.io/docs/operators/0.45.0/configuring#type-GenericKafkaListener-reference

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

Complete the following steps to set up and configure aroute type listener in your Kafka resource. The following steps
aso include an example on how to connect a Kafka console client to the cluster.

These steps demonstrate basic listener configuration with typical customizations. In addition to the configuration
shown here, you can further customize your listener and specify a client authentication mechanism with the authenti
cation property and add various additional configurations using the configuration property. For a comprehensive list
of available properties, see GenericKafkaListener schema reference in the Strimzi API reference.

1. Configure your Kafkaresource.

Add an external listener that has its type property set to route. Additionally, you must ensure that tlsis set to true
as TLS/SSL encryption is mandatory when using routes.

Optionally, you can further customize the listener. For example, the following configuration snippet shows an
example where the hostnames of routes are specified with the host property.

#. ..
ki nd: Kaf ka
spec:
kaf ka:
|l i steners:
- nane: externa
port: 9094
type: route
tls: true
aut henti cati on:
type: tls
configuration:
boot st r ap:
host: kaf ka- boot strap. router.com
br okers:
- broker: O
host: kafka-0.router.com
- broker: 1
host: kafka-1.router.com
- broker: 2
host: kafka-2.router.com

Note: Hosts are automatically assigned by OpenShift if you do not assign them. If you choose to override
hostnames, ensure that they are available for use and match the configuration of the router as the Strimzi
Cluster Operator does not perform any validation.

2. Verify that the configured services are created and ready.
oc get svc

3. Get the host of the bootstrap route.

oc get routes [***CLUSTER NAME***] - kaf ka- boot st rap
--out put =j sonpat h="{.status.ingress[0].host}{"\n

\
"y

46

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

4. Extract the TLS certificate from your broker and import it into a Java truststore file.

Extracting the TL S certificate is required because TL S encryption is mandatory when using routes. Because
of this, you must run your clients with avalid certificate. Y ou can use the OpenShift CLI (oc) to extract the
certificate and the keytool utility to import the certificate into a Javatruststore file. For example:

oc extract secret/[***CLUSTER NAME***]-cluster-ca-cert \
--keys=ca.crt --to=- > ca.crt

keytool -inport -trustcacerts -alias [***ALI AS***] \
-file ca.crt \
-keystore truststore.jks \
-storepass [*** PASSWORD***] \

- nopr onpt

5. Ensure that the resulting truststore is available on the machine where you run your client and that the client has
access to thefile.

6. Configure and run your client.
The following example shows a Kafka consol e producer.

kaf ka- consol e- producer. sh \
--boot st rap-server [***BOOISTRAP ROUTE HOST***]: 443 \
--producer-property security.protocol =SSL \
--producer-property ssl.truststore. password=[*** PASSWORD***] \
--producer-property ssl.truststore.location=[***TRUSTSTORE LOCATI ON***]
\
--topic [***TOPI Cx**]

Tip: Instead of passing TLS/SSL properties directly using the --producer-property option, you can also
Q create a configuration file containing the properties and pass the file with --producer.config option.

Service | Kubernetes
Accessing Kafka: Part 3 — OpenShift Routes | Strimzi blog
GenericKafkal istener schemareference | Strimzi API reference

Load balancers automatically and efficiently distribute network traffic between multiple backend servers. A load
balancer setup can be used to expose your Kafka brokers to the outside world.

There are many load balancer implementations available and all cloud providers provide their own solutions.
Different implementations handle load balancing on different levels of the network, most commonly you have
layer 4 (transport) and layer 7 (application) load balancing. Strimzi in Cloudera Streams Messaging - Kubernetes
Operator uses layer 4 load balancing. Thisis because common load balancer implementations do not support the
Kafka protocol.

To set up externa cluster access using load balancers, you add a loadbal ancer type listener to your Kafka resource
(listeners.type:loadbal ancer).

Once configuration is done, the Strimzi Cluster Operator sets up multiple load balancers as well as multiple
LoadBalancer type Kubernetes Services. This means that you will have the following:

« A load balancer and a corresponding LoadBalancer Service that serves as an external bootstrap. Thisis used by
clientsfor theinitial connection and to receive metadata (advertised listeners) from the Kafka cluster.

e A unique load balancer and a LoadBalancer Service for each Kafka Broker.

47

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/04/30/accessing-kafka-part-3/
https://strimzi.io/docs/operators/0.45.0/configuring#type-GenericKafkaListener-reference

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

Note: Do not confuse the LoadBalancer type Service with the actual load balancers. The LoadBalancer
Services are managed by Kubernetes. The load balancers are separate entities and are managed by the
infrastructure or cloud provider.

The Strimzi Cluster Operator creates the LoadBalancer type Services first. Following the creation of the Services, the
load balancers are automatically created. Typically your infrastructure provider assigns the load balancer a hostname
and |P address. These are automatically added to the status section of the Kaf ka resource. The Strimzi Cluster
Operator collects both hostname and 1P address and uses them to configure the advertised listeners of your Kafka
brokers.

The Strimzi Cluster Operator uses hostnames instead of |P addresses by default. Thisis because load balancer IP
addresses might change, the hostnames, however, are fixed and remain the same as long as the load balancer is
running. By default, the Strimzi Cluster Operator uses the IP address if there is no hostname assigned to the load
balancer. In case you want to use | P addresses, you can do so by manually configuring them during setup.

Once the listener is configured, you can connect your clients running outside of the Kubernetes network by directing
them to the bootstrap load balancer. The load balancers, Kubernetes, and Kafka handle everything else and ensure
that client requests are routed to the correct brokers.

Complete the following steps to set up and configure aloadbalancer listener in your Kafka resource. The following
steps also include an example on how to connect a Kafka console client to the cluster.

These steps demonstrate basic listener configuration with typical customizations. In addition to the configuration
shown here, you can further customize your listener and enable and disable TLS encryption using the tls property,
specify aclient authentication mechanism with the authentication property, as well as add various additional
configurations using the configuration property. For a comprehensive list of available properties, see the
GenericKafkaListener schema reference in the Strimzi API reference.

1. Configure your Kafkaresource.
Add anew external listener that hasits type set to loadbalancer.

Optionally, you can further customize the listener. For example, the following configuration snippet shows
an example where the advertised hosthames and ports are specified using advertisedHost and advertisedPort
properties.

#. ..
ki nd: Kaf ka
spec:
kaf ka:
|isteners:
- nanme: externa
port: 9094
type: | oadbal ancer
tls: true
aut henti cati on:
type: tls
configuration:
br okers:
- broker: O
adverti sedHost: nmny-broker-0.cl oudera. com
advertisedPort: 12340
- broker: 1
adverti sedHost: ny-broker-1.cl oudera.com
advertisedPort: 12341
- broker: 2

48

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

adverti sedHost: my-broker-2.cl oudera.com
advertisedPort: 12342

O Tip: The advertisedHost property also accepts | P addresses. Specify |P addresses instead if DNS

resolution does not work for the Kafka clients. Configuring exact hostnames or ports does not change the
hostname or port of the load balancer, instead it changes the address advertised by Kafka.

2. Verify that LoadBalancer type services as well asload balancers are running
kubect| get services --nanespace [***NAVESPACE***]

The output will be similar to the following example.

NAME TYPE CLUSTER- I P EXTER
NAL- | P

#. ..

my- cl ust er - kaf ka- ext er nal - boot st rap LoadBal ancer 10. 43. 18. 136 10. 65
.0.5

my- cl ust er - kaf ka- ext ernal -0 LoadBal ancer 10.43.1. 63 10.
65.0.6

my- cl ust er - kaf ka- ext ernal -1 LoadBal ancer 10. 43.46. 74 10.
65.0.7

my- cl ust er - kaf ka- ext er nal - 2 LoadBal ancer 10. 43. 113. 194 10.
65.0.8

Notice that there is a LoadBalancer Service deployed for each Kafka broker. Additionally you have a separate
external bootstrap LoadBalancer called [*** CLUSTER NAME* **] -kafka-external -bootstrap.

Clients connecting to the Kafka cluster should be directed to the external bootstrap. The addressesin the EXTE
RNAL-IP column are the hostnames or 1Ps of the load balancers. Having this column populated with values
indicates that the load balancers are created.

3. Extract the TLS certificate form your broker and import it into a Java truststore file.
Doing the following is only required if you have TLS/SSL encryption enabled for the load balancer listener.

kubect| get secret [***CLUSTER NAME***]-cl uster-ca-cert \
- - namespace [***NAMESPACE***] --output jsonpath='{.data.ca\.crt}' \
| base64 -d > ca.crt

keytool -inport -trustcacerts -alias [***ALI AS***] \
-file ca.crt \
-keystore truststore.jks \
-storepass [*** PASSWORD***] \

- nopr onpt
4. Ensurethat the resulting truststore is available on the machine where you run your client and that the client has
access to thefile.
5. Get the address of the bootstrap load balancer.

kubect| get kafka [***CLUSTER NAME***] \
--nanespace [***NAMESPACE***] \
--out put =j sonpat h="{.status.|isteners[?(@ nanme=="[***L| STENER
NAME***]")] . boot strapServers}{"\n"}"'

Clients that you want to connect to the cluster should be directed to this address.
6. Configure and run your client.

The following example shows a Kafka console producer. Configuring TLS/SSL related propertiesis only required
if TLS/SSL isenabled for the load balancer listener.

kaf ka- consol e- producer. sh \

49

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

- - boot st rap-server [***BOOTSTRAP LOAD BALANCER HOST***]:9094 \

-- producer-property security. protocol =SSL \

--producer-property ssl.truststore. password=[*** PASSWORD***] \

--producer-property ssl.truststore.location=[***TRUSTSTORE LOCATI ON***]
\

--topic [***TOPI C**]

Tip: Instead of passing TLS/SSL properties directly using the --producer-property option, you can also
Q create a configuration file containing the properties and pass the file with --producer.config option.

Service | Kubernetes
Accessing Kafka: Part 4 — Load Balancers | Strimzi blog
GenericKafkal istener schemareference | Strimzi API reference

Y ou can use Ingress to route HTTRP/HTTPS traffic from outside the cluster to services within the cluster.

Important: If you are on OpenShift, use OpenShift routes (route type listeners) to configure external access
to the cluster instead of Ingress.

Ingress has two main components. Y ou have Ingress resources, which define the traffic routing rulesto your services
and pods. In addition, you have Ingress controllers, which route incoming requests based on the rules defined by
Ingress resources.

The Ingress APl isanative part of Kubernetes, Ingress controllers are not. This means that while creating Ingress
resources is possible by default on any Kubernetes cluster, the Ingress controller must be installed separately,
otherwise, Ingress cannot function.

While there are numerous controller implementations available for Kubernetes, Strimzi only supports Ingress-Nginx
controllers running in TLS passthrough mode.

To set up externa cluster access with Ingress, you add an ingress type listener to your Kafka resource (listener.type:in
gress) and specify the hostnames for each broker and a bootstrap using the configuration property. In addition, TLS
must be enabled for the listener, and, depending on your environment, specifying the Ingress class might be required.

Once configuration is done, the Strimzi Cluster Operator deploys multiple Ingress resources as well as multiple
Clusterl P Services. This means that you will have the following:

* AnIngressand acorresponding Cluster| P that serves as an external bootstrap. Thisis used by clientsfor the initial
connection and to receive metadata (advertised listeners) from the Kafka cluster.

* A unique Ingress and a Clusterl P for each Kafka Broker. These are used to access the brokers directly and to
distinguish the traffic for different brokers.

Kafka clients connect to the bootstrap Ingress, which routes the request through the corresponding bootstrap service
to one of the brokers. Connections to the individual brokers are then established using advertised listeners received
from the broker. Traffic isthen routed from the client to the broker through the broker-specific Ingresses and services.

Once the listener is configured, you can connect your clients running outside of the Kubernetes network by directing
them to the bootstrap Ingress. Kubernetes, Ingress, and Kafka handle everything else and ensure that client requests
arerouted to the correct brokers.

Ingress-Nginx Controller | Kubernetes Github.io

Complete the following steps to set up and configure an ingress listener in your Kafka resource. The following steps
also include an example on how to connect a Kafka console client to the cluster.

50

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/05/13/accessing-kafka-part-4/
https://strimzi.io/docs/operators/0.45.0/configuring#type-GenericKafkaListener-reference
https://kubernetes.github.io/ingress-nginx/

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

These steps demonstrate basic listener configuration. In addition to the configuration shown here, you can further
customize your listener and specify a client authentication mechanism with the authentication property and add
various additional configurations using the configuration property. For a comprehensive list of available properties,
see GenericKafkaListener schema reference in the Strimzi API reference.

« Ensurethat an Ingress-Nginx controller is deployed in your Kubernetes cluster.
» Ensurethat the Ingress-Nginx controller has TL S Passthrough enabled.

1. Configure your Kaf ka resource.
To set up an ingress type listener, you need to configure multiple properties in your Kafka resource.

a) Add an external listener that has its type property set to ingress.
b) Specify Ingress hosts used for the different brokers as well as the bootstrap.

Thisis done with the configuration property. Add the hostnames to the bootstrap and broker-[*** INDEX***]
prefixes that identify the bootstrap and brokers.

¢) Ensurethat tisis set to true.
d) Specify the Ingress class with the class property.
Once configuration is done, your Kaf ka resource should look similar to the following example.

#. ..
ki nd: Kaf ka
spec:
kaf ka:
| i steners:
- nane: externa
port: 9094
type: ingress
tls: true
aut henti cati on:
type: tls
confi guration:
boot st rap:
host: ny-bootstrap. cl oudera. com
br okers:
- broker: 0
host: nmy-broker-0. cl oudera. com
- broker: 1
host: my-broker-1. cl oudera. com
- broker: 2
host: nmy-broker-2.cl oudera. com
cl ass: ngi nx

2. Verify that both Ingress resources and Clusterl P Services are created and running.
Use kubectl get ingressto list ingresses.

kubect| get ingress --nanmespace [***NAMESPACE***]
The output will be similar to the following example.

NAME CLASS HOSTS ADDRESS
PORTS
#...

51

https://kubernetes.github.io/ingress-nginx/
https://kubernetes.github.io/ingress-nginx/user-guide/tls/#ssl-passthrough

Cloudera Streams Messaging - Kubernetes Operator Listener configuration

my- cl ust er - kaf ka- boot strap ngi nx my- boot strap. cl oudera. com 10.14.9
1.1 80, 443

my- cl ust er - kaf ka- 0 ngi nx my- br oker - 0. cl oudera.com 10.14.9
1.1 80, 443
my- cl ust er - kaf ka- 1 ngi nx my- br oker-1. cl oudera.com 10.14.9
1.1 80, 443
my- cl ust er - kaf ka- 2 ngi nx my- br oker - 2. cl oudera.com 10.14.9
1.1 80, 443

Use kubectl get servicesto list Kubernetes Services.
kubect| get services --nanespace [***NAMESPACE***]

The output will be similar to the following example.

NAVE TYPE CLUSTER-1 P EXTERN
AL-1P

#...

ny-cl ust er - kaf ka- external -bootstrap CusterlP 10.43.16. 137 <none>
my- cl ust er - kaf ka- 0 ClusterlP 10.43.67.184 <none>
my-cl ust er - kaf ka- 1 Clusterl P 10.43.189.61 <none>
my- cl ust er - kaf ka- 2 Clusterl P 10.43.177.221 <none>

3. Extract the TLS certificate from your broker and import it into a Java truststore file.

Extracting the TLS certificate is required because TL S encryption is mandatory when using Ingress. Because of
this, you must run your clients with avalid certificate. Y ou can use the kubectl get to extract the certificate and the
keytool utility to import the certificate into a Java truststore file. For example:

kubect| get secret [***CLUSTER NAME***]-cl uster-ca-cert \
--nanespace [***NAMESPACE***] \
--output jsonpath='"{.data.ca\.crt}' \
| base64 -d > ca.crt

keytool -inport -trustcacerts -alias [***ALI AS***] \
-file ca.crt \
-keystore truststore.jks \
-storepass [*** PASSWORD***] \

- nopr onpt
4. Ensurethat the resulting truststore is available on the machine where you will run your client and that the client
has access to thefile.
5. Configure your client.
The following example shows a Kafka console producer. The port used by Ingressistypically 443.

kaf ka- consol e- producer. sh \
--boot st rap-server [***BOOTSTRAP | NGRESS HOST***]: 443 \
--producer-property security.protocol =SSL \
--producer-property ssl.truststore. password=[*** PASSWORD***] \
--producer-property ssl.truststore.|location=[***TRUSTSTORE LOCATI ON***]
\
--topic [***TOPI Cx**]

Tip: Instead of passing TLS/SSL properties directly using the --producer-property option, you can also
Q create a configuration file containing the properties and pass the file with --producer.config option.

Service | Kubernetes
Accessing Kafka: Part 5— Ingress | Strimzi blog
GenericKafkal istener schemareference | Strimzi API reference

52

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/05/23/accessing-kafka-part-5/
https://strimzi.io/docs/operators/0.45.0/configuring#type-GenericKafkaListener-reference

Cloudera Streams Messaging - Kubernetes Operator Accessing the Cruise Control REST API

Learn how you set up access to the Cruise Control REST API.

The Cruise Control REST API supports a number of GET requests, which can be used for read-only operations.
These operations do not perform any Kafka changes and do not change the state or configuration of Cruise Control.
Having access to these endpoints enables you to carry out operations such as the following.

* Query detailed Cruise Control specific statistics and data in a secure way. For example you can get accessto
information surrounding cluster and partition load as well as user tasks.

* Monitor Kafka cluster with the Cruise Control user interface.
» Debug Cruise Control securely.

Important: Using REST APl endpoints that have a method different from GET (for example, POST, PUT,
DELETE, and so on) interfere with the Strimzi Cluster Operator’ s management of Cruise Control leading to
unexpected behavior. The use of these endpoints is hot recommended or supported by Cloudera.

Y ou configure access control to the Cruise Control REST API endpoints using asingle Kubernetes Secr et . The
Secr et containsthelist of al users who are granted access to the endpoints and their role.

Strimzi uses roles to grant users or third-party applications different levels of access to the Cruise Control REST API.
Each user is configured with a static password for basic HTTP authentication.

By default Cruise Control defines the following three roles.

* VIEWER - has access to the most lightweight kaf ka_cl ust er _st at e, user _tasks andr evi ew _board
endpoints.

e USER —hasaccessto al GET endpoints except boot st rap andtrai n.

e ADMIN —has accessto all endpoints.

Strimzi supports the USER and VIEWER roles only. Thisrestriction isin place so that REST API calls made by users
and third-party applications do not interfere with the calls, for example, the write operations, made by the Strimzi
Cluster Operator and potentially cause damage to the Kafka cluster managed by Strimzi.

Learn how to configure REST API users for Cruise Control. Users you configure are granted access to the Cruise
Control REST API.

Y ou specify the users you want to grant access to the Cruise Control REST APl inaSecr et . The Secr et must be
referenced in spec.cruiseControl.apiusers of the Kaf ka resource.

1. Create APl usersin Jetty’ s HashLoginService file format (cruise-control-auth.txt).
Add your users, their passwords, as well asthe roles.

[***USER 1***]: [***PASSWORD 1***], VI EVER
[***USER 2***]: [***PASSWORD 2***], USER

Important: Ensure that there are no ADMIN role users defined in the file that you create. ADMIN role
& users are not supported. If you specify ADMIN role users, Cruise Control will fail to start.

53

Cloudera Streams Messaging - Kubernetes Operator Accessing the Cruise Control REST API

2. CreateaSecr et using thefile you created in the previous step.

kubect| create secret generic cruise-control-api-users-secret \
--fromfil e=cruise-control -auth.txt=crui se-control -auth.txt

3. Referencethe Secr et in spec.cruiseControl.apiUsers of the Kaf ka resource.

#. ..
ki nd: Kaf ka
spec:
crui seControl
config:
webserver. security. enable: true
webserver. ssl . enabl e: true
api Users:
type: hashLogi nServi ce
val ueFr om
secr et KeyRef :
nane: cruise-control-api-users-secret
key: cruise-control -auth. txt

» webserver.security.enable — Enables HTTP Basic authentication for the Cruise Control REST API and
enforces the policies defined in spec.cruiseControl .apiUsers.

* webserver.ssl.enable — Enables TLS encryption for the Cruise Control REST API.

» apiUsers— Configures the Cruise Control REST API users by referencing aSecr et .

Note: Both webserver.security.enable and webserver.ssl.enable are set to true by default. Explicitly
B configuring them is not required.

Cruise Control REST API reference
APl users| Strimzi API reference
Security | Cruise Control

Learn how to enable external access for the Cruise Control REST API. Configuring external access makesit possible
for Cruise Control usersto access the REST API from outside the Kubernetes cluster.

The Cruise Control REST API can be secured with authentication, authorization and encryption. Asaresult, it is
considered safe to alow access from outside the Kubernetes cluster as well. Cloudera recommends that access control
is aways used when enabling external accessto Cruise Control.

By default, the Strimzi Cluster Operator generates a strict network policy that blocks external connectionsto Cruise
Control. Additionally, the TLS certificates for Cruise Control are automatically generated and cannot be modified. As
aresult, to set up external access to Cruise Control you require the following.

« Have or create aresource, like an NGINX-based Ingress, to route and manage traffic coming from outside the
cluster. Any type of resource can be used that can route outside traffic.

« Create anew network policy that enables access to Cruise Control.

» Usethe Cruise Control certificatesinternally.

When TLSis enabled for Cruise Control the service certificates are generated by Strimzi and cannot be modified.
Thisis because most of the ssl. configurations are restricted and managed by the Strimzi Cluster Operator.
Because of this, the resource (for example, an Ingress) providing access to the Kubernetes cluster must use the

https://docs.cloudera.com/csm-operator/1.4/cctrl-rest-api-reference/index.html
https://strimzi.io/docs/operators/0.45.0/configuring.html#property-cruise-control-capacity-api-users-reference
https://github.com/linkedin/cruise-control/wiki/Security

Cloudera Streams Messaging - Kubernetes Operator Accessing the Cruise Control REST API

generated TL S credentials to communicate with Cruise Control. External connections can be configured with user
generated and managed certificates.

The following steps demonstrate how you can configure NGINX-based Ingress to access Cruise Control. Thisisjust a
specific example and any other type of Ingress can be used.

1. CreateaNet wor kPol i cy that allows the connection from the Ingress pod.

api Ver si on: networking. k8s.io/vl
ki nd: Net wor kPol i cy
met adat a:
name: [***NEW CRU SE CONTROL NETWORK POLI CY NAME***]
nanespace: [***CRU SE CONTROL NAMESPACE***]
spec:
podSel ect or:
mat chLabel s:
strinei.iol/cluster: [***KAFKA CLUSTER NAME***]
strinei.iol/kind: Kafka
strinei.iol/name: [***KAFKA CLUSTER NAME***]-crui se-contro
pol i cyTypes:
- Ingress
i ngress:
- from
- nanespaceSel ector: {}
podSel ect or:
mat chLabel s:
app. kubernetes.i o/instance: ingress-nginx

ports:
- protocol: TCP
port: 9090

2. Get the generated Cruise Control certificate and key.

kubect| get secret [***KAFKA CLUSTER NAME***]-cruise-control -certs \
--nanespace [***KAFKA NAMESPACE***] \
--out put "jsonpath={.data.cruise-control\.crt}" \

| base64 -d > cert.crt

kubect| get secret [***KAFKA CLUSTER NAME***]-crui se-control -certs \
--nanespace [***KAFKA NAMESPACE***] \
--out put "jsonpath={.data.cruise-control\.key}" \

| base64 -d > cert. key

3. CreateaSecr et with the specific format of your Ingress using the files created in the previous step.
These needed to be updated manually if the Cruise Control Secr et was regenerated.

kubect| create secret tls [***CRU SE CONTROL | NGRESS SECRET NAME***] \
--key ./cert.key \
--cert ./cert.crt \
--nanespace [***KAFKA NAMESPACE* **]

4. Create the Ingressrule.

api Versi on: networking. k8s.io/vl
ki nd: | ngress
nmet adat a:
name: crui se-control -ingress-service
nanespace: [***KAFKA NAVESPACE* **]
annot at i ons:
ngi nx. i ngress. kubernetes. i o/ use-regex: 'true

55

Cloudera Streams Messaging - Kubernetes Operator

Accessing the Cruise Control REST API

ngi nx. i ngr ess. kuber net es. i o/ backend- pr ot ocol :
ngi nx. i ngr ess. kubernet es. i o/ proxy-ssl -secret:

/[***CRU SE CONTROL | NGRESS SECRET NAME***]'
spec:
i ngressC assNane: ngi nx
tls:
- hosts:
- [***'_m‘r '\lA,vE***]
secret Name: [***| NGRESS SECRET NAME***]

' HTTPS
'[*** KAFKA NAVESPACE* **]

rul es:
- host: [***HOST NAME***]
htt p:
pat hs:
- path: /
pat hType: Prefix
backend:
servi ce:
nane: [***KAFKA CLUSTER NAME***]-crui se-contro
port:
nunber: 9090

« nginx.ingress.kubernetes.io/backend-protocol— I nstructs the I ngress to use encrypted communication between

the Ingress and the Cruise Control pod.

« nginx.ingress.kubernetes.io/proxy-ss-secret — Specifies the Secr et which contains the Cruise Control

certificate in the required format of the Ingress solution.

» gspec.tls— Enables secure connection between the clients and the Ingress itself. This property must define the
same host astherule. the Secr et should point to the Secr et where the credentias for the secure client

communication are stored.

Ingress | Kubernetes
Network Policies | Kubernetes
TLS/HTTPS | Ingress-Nginx Controller

56

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.github.io/ingress-nginx/user-guide/tls/

	Contents
	Deploying Kafka
	Deploying a Kafka cluster in KRaft mode
	Deploying a Kafka cluster in KRaft combined mode
	Deploying a Kafka cluster in ZooKeeper mode
	Validating a Kafka cluster

	Deploying Cruise Control
	Deploying and configuring the Strimzi Entity Operator
	Deploying and configuring the Strimzi Topic Operator
	Deploying and configuring the Strimzi User Operator

	Configuring Kafka brokers
	Updating broker configuration
	Configurable broker properties and exceptions

	Storage configuration
	Ephemeral storage
	Persistent storage
	JBOD storage
	Storage recommendations

	Pod scheduling
	Default tolerations
	Pod scheduling recommendations

	Rack awareness
	Configuring rack information on Kubernetes nodes
	Configuring rack awareness for ZooKeeper
	Configuring rack awareness for Kafka brokers
	Configuring follower fetching
	Default affinity rules for rack awareness

	Configuring Kafka broker node IDs
	Configuring Kafka for Prometheus monitoring
	Configuring logging for Kafka cluster components
	Listener configuration
	NodePort
	Configuring nodeport listeners

	Route
	Configuring route listeners

	Load balancer
	Configuring load balancer listeners

	Ingress
	Configuring ingress listeners

	Accessing the Cruise Control REST API
	Configuring Cruise Control users
	Configuring external access

