
Cloudera Streams Messaging Operator for Kubernetes 1.6.0

Installation
Date published: 2024-06-11
Date modified: 2026-01-27

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streams Messaging Operator for Kubernetes | Contents | iii

Contents

Installation overview...4

Installing Strimzi with Helm... 6
Installing Strimzi in an internet environment.. 6
Installing Strimzi in an air-gapped environment... 8

Installing Cloudera Surveyor for Apache Kafka with Helm............................. 11
Installing Cloudera Surveyor in an internet environment..12
Installing Cloudera Surveyor in an air-gapped environment...19
Installing Cloudera Surveyor for evaluation..28

Installing Schema Registry with Helm...31
Installing Schema Registry in an internet environment...31
Installing Schema Registry for evaluation... 37

Installing Strimzi on Taikun CloudWorks [Technical Preview]........................39
Importing the Cloudera Kafka Operator repository and adding Strimzi to a catalog.. 40
Installing Strimzi...40

Installing Cloudera Surveyor for Apache Kafka on Taikun CloudWorks
[Technical Preview].. 42

Importing the Cloudera Surveyor repository and adding Cloudera Surveyor to a catalog................................ 43
Installing Cloudera Surveyor..43

Installing from OperatorHub in OpenShift...48

Cloudera Streams Messaging Operator for Kubernetes Installation overview

Installation overview

Get started with installing Cloudera Streams Messaging Operator for Kubernetes. Learn about installable components,
installation methods, and where installation artifacts are hosted.

Installable components

Installing Cloudera Streams Messaging Operator for Kubernetes involves installing the following components:

• Strimzi – Deploys and manages Kafka and Kafka Connect clusters on Kubernetes.
• Cloudera Surveyor – A UI application for monitoring and managing Kafka clusters.
• Schema Registry – Provides centralized schema storage and validation.

The components are independent and you can choose to install only Strimzi, only Cloudera Surveyor, or only
Schema Registry. Whether you choose to install one or more components depends on your use case and operational
objectives. Cloudera recommends installing all.

Installation methods

The following installation methods are available:

• Installing with Helm – The default installation method that works on any supported Kubernetes environment.
Installation involves logging in to the Cloudera Docker registry, creating Secrets for registry credentials and
licensing, and installing using the helm install command.

• Installing on Taikun CloudWorks – If you are on Taikun CloudWorks, use the Taikun CloudWorks UI for
installation. Installation involves importing repositories, adding components to catalogs, configuring parameters,
and then installing through the UI.

• Installing from OperatorHub in OpenShift – If you are on OpenShift, you can install from OperatorHub.
Installation involves creating Secrets for registry credentials and licensing, then installing through the standard
OperatorHub process.

Important: Neither Cloudera Surveyor or Schema Registry is available for installation from
OperatorHub. An installation from OperatorHub will only install Strimzi.

Installation artifacts and artifact locations

Cloudera Streams Messaging Operator for Kubernetes ships with various installation artifacts. These artifacts are
hosted at two locations, the Cloudera Docker registry and the Cloudera Archive.

Both the Cloudera Docker registry and the Cloudera Archive require Cloudera credentials (username and password)
for access. Credentials are provided to you as part of your license and subscription agreement. You can access both
the registry and the archive using the same credentials.
Cloudera Docker registry – container.repository.cloudera.com

The Docker registry hosts the Helm chart as well as all Docker images used for installation. This
includes Strimzi, Kafka, Cloudera Surveyor, as well as Schema Registry artifacts.

Table 1: Strimzi and Kafka artifacts on the Cloudera Docker registry

Artifact Location Description

Strimzi Docker image container.repository.cloudera.com/cl
oudera/kafka-operator:0.49.1.1.6.0-
b99

Docker image used for deploying
Strimzi and its components.

Kafka Docker image container.repository.cloudera.com/
cloudera/kafka:0.49.1.1.6.0-b99-
kafka-4.1.1.1.6

Docker image used for deploying
Kafka and related components.

4

Cloudera Streams Messaging Operator for Kubernetes Installation overview

Artifact Location Description

Strimzi Cluster Operator Helm chart oci://container.repository.cloudera.
com/cloudera-helm/csm-operator/s
trimzi-kafka-operator:1.6.0-b99

Helm chart used to install the
Strimzi Cluster Operator with helm
 install.

Table 2: Cloudera Surveyor artifacts on the Cloudera Docker registry

Artifact Location Description

Cloudera Surveyor server Docker
image

container.repository.cloudera.com/cl
oudera/surveyor:0.1.0.1.6.0-b99

Docker image used for deploying
Cloudera Surveyor.

Cloudera Surveyor UI application
Docker image

container.repository.cloudera.com/cl
oudera/surveyor-app:0.1.0.1.6.0-b99

Docker image used for deploying
Cloudera Surveyor.

Cloudera Surveyor Helm chart oci://container.repository.cloudera.
com/cloudera-helm/csm-operator/s
urveyor:1.6.0-b99

Helm chart used to install Cloudera
Surveyor with helm-install.

Table 3: Schema Registry artifacts on the Cloudera Docker registry

Artifact Location Description

Schema Registry Docker image container.repository.cloudera.com/cl
oudera/schema-registry:0.10.0.1.6.0-
b99

Docker image used for deploying
Schema Registry.

Cloudera Surveyor Helm chart oci://container.repository.cloudera.
com/cloudera-helm/csm-operator/s
chema-registry:1.6.0-b99

Helm chart used to install Schema
Registry with helm-install.

Note: The images are built for linux/arm64 and linux/amd64 architectures.

Cloudera Archive – archive.cloudera.com/p/csm-operator/

The Cloudera Archive hosts various installation artifacts including Helm charts, configuration
examples, a YAML file containing all CRDs, diagnostic tools, and the maven artifacts.

Accessing the Cloudera Archive and the artifacts it hosts is not necessary to complete installation.
All artifacts on the archive are supplemental resources. The following table collects the Cloudera
Streams Messaging Operator for Kubernetes directories located in the archive with an overview of
what artifacts they contain and how you can use them.

Table 4: Cloudera Streams Messaging Operator for Kubernetes directories on
the Cloudera Archive

Archive Directory Description

https://archive.cloudera.com/p/csm-operator/1.6/charts/ The charts directory contains the Helm charts for
components. These are the same charts that are available
on the Docker registry. Cloudera recommends that
whenever possible you install with the charts hosted on
the registry. The charts on the archive are provided in
case you cannot access the registry or want to download
the chart using a browser.

https://archive.cloudera.com/p/csm-operator/1.6/
examples/

The examples directory includes various examples
of resource configuration files. You can use these
to quickly deploy Kafka and other components in
Kubernetes following installation.

5

https://archive.cloudera.com/p/csm-operator/1.6/charts/
https://archive.cloudera.com/p/csm-operator/1.6/examples/
https://archive.cloudera.com/p/csm-operator/1.6/examples/

Cloudera Streams Messaging Operator for Kubernetes Installing Strimzi with Helm

Archive Directory Description

https://archive.cloudera.com/p/csm-operator/1.6/install/ The install directory contains a single YAML file that
collects all Strimzi Cluster Operator CRDs. The purpose
of this file is twofold.

One, the CRDs are rich in comments. Reviewing
them can help you better understand how Kafka is
deployed and managed with Strimzi in Cloudera
Streams Messaging Operator for Kubernetes. It is a
supplemental resource to the documentation.

Two, this file is used to upgrade CRDs during upgrades.

The CRDs are also included in the Strimzi Cluster
Operator Helm chart, and Helm will automatically
install the necessary CRDs to Kubernetes. You do not
need to install them separately with the file hosted on
the archive.

https://archive.cloudera.com/p/csm-operator/1.6/maven-
repository/

The maven artifacts can be used to develop your own
applications or tools for use with Cloudera Streams
Messaging Operator for Kubernetes.

https://archive.cloudera.com/p/csm-operator/1.6/tools/ The tools directory contains command line tools
that you use to collect diagnostic information and to
troubleshoot cluster issues.

Installing Strimzi with Helm

Learn how to install Strimzi in Cloudera Streams Messaging Operator for Kubernetes with Helm. Installing Strimzi
installs the applications and resources that enable you to deploy and manage Kafka in Kubernetes.

Strimzi is installed in your Kubernetes cluster with the Strimzi Cluster Operator Helm chart using the helm install
command. When you install the chart, Helm installs the Strimzi Custom Resource Definitions (CRDs) included in
Cloudera Streams Messaging Operator for Kubernetes and deploys the Strimzi Cluster Operator, which is an operator
application that manages and monitors Kafka and related components. Additionally, other cluster resources and
applications required for managing Kafka are also installed.

Installing Strimzi does not create or deploy a Kafka cluster. Kafka clusters are created following the installation by
deploying Kafka and KafkaNodePool resources in the Kubernetes cluster with kubectl or oc.

Cloudera recommends that you install Strimzi once per Kubernetes cluster. Some resources are cluster-wide, which
can cause issues if Strimzi is installed multiple times on the same cluster.

By default, the Strimzi Cluster Operator (deployed with installation) watches and manages the Kafka clusters that
are deployed in the same namespace as the Strimzi Cluster Operator. However, you can configure it to watch any
namespace. This allows you to manage multiple Kafka clusters deployed in different namespaces using a single
installation.

Installation instructions are provided for the following scenarios.

• Installing in an internet environment – Follow these steps to install Strimzi in a Kubernetes cluster with internet
access.

• Installing in an air-gapped environment – Follow these steps to install Strimzi in a Kubernetes cluster without
internet access or if you want to install from a self-hosted registry.

Installing Strimzi in an internet environment
Complete these steps to install Strimzi if your Kubernetes cluster has internet access.

6

https://archive.cloudera.com/p/csm-operator/1.6/install/
https://archive.cloudera.com/p/csm-operator/1.6/maven-repository/
https://archive.cloudera.com/p/csm-operator/1.6/maven-repository/
https://archive.cloudera.com/p/csm-operator/1.6/tools/

Cloudera Streams Messaging Operator for Kubernetes Installing Strimzi with Helm

Before you begin

• Your Kubernetes environment meets requirements listed in System requirements.
• Your Kubernetes cluster requires internet connectivity to complete these steps. It must be able to reach the

Cloudera Docker registry.
• You have access to your Cloudera credentials (username and password). Credentials are required to access the

Cloudera Archive and Cloudera Docker registry where installation artifacts are hosted.
• You have access to a valid Cloudera license.
• Review the Helm chart reference before installation.

The Helm chart accepts various configuration properties that you can set during installation. Using these
properties you can customize your installation.

• If you are planning to watch and manage more than 20 Kafka clusters with a single installation, you must increase
the memory and heap allocated to the Strimzi Cluster Operator. You can specify memory configuration in your
helm install command. For more information, see Increasing Cluster Operator memory.

Procedure

1. Create a namespace in your Kubernetes cluster.

kubectl create namespace [***NAMESPACE***]

This is the namespace where you install Strimzi. Use the namespace you create in all installation steps that follow.

2. Log in to the Cloudera Docker registry with helm.

helm registry login container.repository.cloudera.com

Enter your Cloudera credentials when prompted.

3. Create a Kubernetes Secret containing your Cloudera credentials.

kubectl create secret docker-registry [***REGISTRY CREDENTIALS SECRET***]
 \
 --namespace [***NAMESPACE***] \
 --docker-server container.repository.cloudera.com \
 --docker-username [***USERNAME***] \
 --docker-password "$(echo -n 'Enter your Cloudera password: ' >&2; read
 -s password; echo >&2; echo $password)"

• Take note of the name you specify as [***REGISTRY CREDENTIALS SECRET***]. You will need to specify
the name in a later step.

• Replace [***USERNAME***] with your Cloudera username.
• Enter your Cloudera password when prompted.

Important: The Secret containing your credentials must exist in the namespace where you install
Strimzi as well as all namespaces where you deploy Kafka or Kafka Connect clusters. Cloudera
recommends that you create the Secret in all required namespaces now if you know what namespaces
you will be using to deploy Kafka or Kafka Connect.

4. Install Strimzi with helm install.

helm install strimzi-cluster-operator \
 --namespace [***NAMESPACE***] \
 --set 'image.imagePullSecrets[0].name=[***REGISTRY CREDENTIALS
 SECRET***]' \
 --set-file clouderaLicense.fileContent=[***PATH TO LICENSE FILE***] \
 --set watchAnyNamespace=true \
 oci://container.repository.cloudera.com/cloudera-helm/csm-operator/str
imzi-kafka-operator \

7

https://docs.cloudera.com/csm-operator/1.6/release-notes/topics/csm-op-system-req.html
https://docs.cloudera.com/csm-operator/1.6/reference/topics/csm-op-helm-reference.html
https://docs.cloudera.com/csm-operator/1.6/strimzi-configure/topics/csm-op-increasing-operator-memory.html

Cloudera Streams Messaging Operator for Kubernetes Installing Strimzi with Helm

 --version 1.6.0-b99

• The string strimzi-cluster-operator is the Helm release name of the chart installation. This is an arbitrary, user
defined name. Cloudera recommends that you use a unique and easily identifiable name.

• imagePullSecrets specifies what secret is used to pull images from the Cloudera registry. Setting this property
is mandatory, otherwise, Helm cannot pull the necessary images from the Cloudera Docker registry. Ensure
that you replace [***REGISTRY CREDENTIALS SECRET***] with the name of the secret you created in Step
3 on page 7.

• clouderaLicense.fileContent is used to register your license. If this property is set, a secret is generated that
contains the license you specify. Setting this property is mandatory. The Strimzi Cluster Operator will not
function without a valid license. Ensure that you replace [***PATH TO LICENSE FILE***] with the full path
to your Cloudera license file.

• You can use --set to set various other properties of the Helm chart. This enables you to customize your
installation. For example, Cloudera recommends that you configure the Cluster Operator to watch all
namespaces, this is configured by setting watchAnyNamespace to true. Alternatively, you can configure a list
of specific namespaces to watch using watchNamespaces.

5. Verify your installation

This is done by listing the deployments and pods in your namespace. If installation is successful, you should see a
strimzi-cluster-operator deployment and pod present in the cluster.

kubectl get deployments --namespace [***NAMESPACE***]

NAME READY UP-TO-DATE AVAILABLE AGE
#...
strimzi-cluster-operator 1/1 1 1 13m

kubectl get pods --namespace [***NAMESPACE***]

NAME READY UP-TO-DATE AVAILABLE AGE
#...
strimzi-cluster-operator 1/1 1 1 13m

6. Access supplemental resources available on the Cloudera Archive.

Supplemental resources available on the Cloudera Archive include various example files, diagnostic tools, and
more. You can use these resources to quickly deploy Kafka clusters and to gain a better understanding of Strimzi
and Cloudera Streams Messaging Operator for Kubernetes.

What to do next

• Deploy a Kafka cluster, see Deploying Kafka.
• Set up Prometheus for monitoring, see Configuring Kafka for Prometheus monitoring and Monitoring with

Prometheus.

Related Information
Cloudera Archive

Installing Strimzi in an air-gapped environment
Complete these steps to install Strimzi if your Kubernetes cluster does not have internet access or if you want to
install from a self-hosted registry.

Before you begin

• Your Kubernetes environment meets requirements listed in System requirements.

8

https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-deploying-kafka.html
https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-configuring-prometheus-monitoring-kafka.html
https://docs.cloudera.com/csm-operator/1.6/monitoring-diagnostics/topics/csm-op-prometheus-monitoring.html
https://docs.cloudera.com/csm-operator/1.6/monitoring-diagnostics/topics/csm-op-prometheus-monitoring.html
https://archive.cloudera.com/p/csm-operator/1.6/
https://docs.cloudera.com/csm-operator/1.6/release-notes/topics/csm-op-system-req.html

Cloudera Streams Messaging Operator for Kubernetes Installing Strimzi with Helm

• A self-hosted Docker registry is required. Your registry must be accessible by your Kubernetes cluster.
• A machine with Internet connectivity is required. While the Kubernetes cluster does not need internet access, you

will need a machine to pull the images from the Cloudera Docker registry.
• Access to docker or equivalent utility that you can use to pull and push images is required. The following steps

use docker. Replace commands where necessary.
• You have access to your Cloudera credentials (username and password). Credentials are required to access the

Cloudera Archive and Cloudera Docker registry where installation artifacts are hosted.
• You have access to a valid Cloudera license.
• Review the Helm chart reference before installation.

The Helm chart accepts various configuration properties that you can set during installation. Using these
properties you can customize your installation.

• If you are planning to watch and manage more than 20 Kafka clusters with a single installation, you must increase
the memory and heap allocated to the Strimzi Cluster Operator. You can specify memory configuration in your
helm install command. For more information, see Increasing Cluster Operator memory.

Procedure

1. Copy the following installation artifacts to your self-hosted registry.

Table 5: Strimzi and Kafka artifacts on the Cloudera Docker registry

Artifact Location Description

Strimzi Docker image container.repository.cloudera.com/cloudera/k
afka-operator:0.49.1.1.6.0-b99

Docker image used for deploying Strimzi
and its components.

Kafka Docker image container.repository.cloudera.com/cloudera/k
afka:0.49.1.1.6.0-b99-kafka-4.1.1.1.6

Docker image used for deploying Kafka and
related components.

Strimzi Cluster Operator Helm chart oci://container.repository.cloudera.com/clou
dera-helm/csm-operator/strimzi-kafka-ope
rator:1.6.0-b99

Helm chart used to install the Strimzi Cluster
Operator with helm install.

Note: The images are built for linux/arm64 and linux/amd64 architectures.

This step involves pulling the artifacts from the Cloudera Docker registry, retagging them, and then pushing them
to your self-hosted registry. The exact steps you need to carry it out depend on your environment and how your
registry is set up. The following substeps demonstrate the basic workflow using docker and helm.

Tip: If your registry uses a non-default port, you might need to specify the registry port in helm as well as
docker commands.

a) Log in to the Cloudera Docker registry with both docker and helm.

Provide your Cloudera credentials when prompted.

docker login container.repository.cloudera.com

helm registry login container.repository.cloudera.com

b) Pull the Docker images from the Cloudera Docker registry.

docker pull \
 --platform [***PLATFORM/ARCHITECTURE***] \

9

https://docs.cloudera.com/csm-operator/1.6/reference/topics/csm-op-helm-reference.html
https://docs.cloudera.com/csm-operator/1.6/strimzi-configure/topics/csm-op-increasing-operator-memory.html

Cloudera Streams Messaging Operator for Kubernetes Installing Strimzi with Helm

 container.repository.cloudera.com/cloudera/[***IMAGE
 NAME***]:[***VERSION***]

c) Pull the Strimzi Cluster Operator Helm chart.

helm pull \
 oci://container.repository.cloudera.com/cloudera-helm/csm-operator/str
imzi-kafka-operator \
 --version 1.6.0-b99

d) Retag the Docker images you pulled so that they contain the address of your registry.

docker tag \
 [***ORIGINAL IMAGE TAG***] \
 [***YOUR REGISTRY***]/cloudera/[***IMAGE NAME***]:[***VERSION***]

e) Push the images and chart to your self-hosted registry.

docker push \
 [***YOUR REGISTRY***]/cloudera/[***IMAGE NAME***]:[***VERSION***]

helm push \
 strimzi-kafka-operator-1.6.0-b99.tgz \
 oci://[***YOUR REGISTRY***]/cloudera-helm/csm-operator/

2. Create a namespace in your Kubernetes cluster.

kubectl create namespace [***NAMESPACE***]

This is the namespace where you install Strimzi. Use the namespace you create in all installation steps that follow.

3. Log in to your self-hosted registry with helm.

helm registry login [***YOUR REGISTRY***]

Enter your credentials when prompted.

4. Create a Kubernetes Secret containing credentials for your self-hosted registry.

kubectl create secret docker-registry [***REGISTRY CREDENTIALS SECRET***]
 \
 --namespace [***NAMESPACE***] \
 --docker-server [***YOUR REGISTRY***] \
 --docker-username [***USERNAME***] \
 --docker-password "$(echo -n 'Enter your password: ' >&2; read -s passw
ord; echo >&2; echo $password)"

• Take note of the name you specify as [***REGISTRY CREDENTIALS SECRET***]. You will need to specify
the name in a later step.

• Replace [***USERNAME***] with a username valid for your self-hosted registry.
• Enter the password for the user when prompted.

Important: The Secret containing your credentials must exist in the namespace where you install
Strimzi as well as all namespaces where you deploy Kafka or Kafka Connect clusters. Cloudera
recommends that you create the Secret in all required namespaces now if you know what namespaces
you will be using to deploy Kafka or Kafka Connect.

5. Install Strimzi with helm install.

helm install strimzi-cluster-operator \
 --namespace [***NAMESPACE***] \
 --set 'image.imagePullSecrets[0].name=[***REGISTRY CREDENTIALS
 SECRET***]' \

10

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

 --set defaultImageRegistry=[***YOUR REGISTRY***] \
 --set-file clouderaLicense.fileContent=[***PATH TO LICENSE FILE***] \
 oci://[***YOUR REGISTRY***]/cloudera-helm/csm-operator/strimzi-kafka-op
erator \
 --version 1.6.0-b99 \
 --set watchAnyNamespace=true

• The string strimzi-cluster-operator is the Helm release name of the chart installation. This is an arbitrary, user
defined name. Cloudera recommends that you use a unique and easily identifiable name.

• imagePullSecrets specifies what secret is used to pull images from the specified registry. Ensure that you
replace [***REGISTRY CREDENTIALS SECRET***] with the name of the secret you created in Step 4 on
page 10.

• clouderaLicense.fileContent is used to register your license. If this property is set, a secret is generated that
contains the license you specify. Setting this property is mandatory. The Strimzi Cluster Operator will not
function without a valid license. Ensure that you replace [***PATH TO LICENSE FILE***] with the full path
to your Cloudera license file.

• You can use --set to set various other properties of the Helm chart. This enables you to customize your
installation. For example, Cloudera recommends that you configure the Cluster Operator to watch all
namespaces, this is configured by setting watchAnyNamespace to true. Alternatively, you can configure a list
of specific namespaces to watch using watchNamespaces.

6. Verify your installation

This is done by listing the deployments and pods in your namespace. If installation is successful, you should see a
strimzi-cluster-operator deployment and pod present in the cluster.

kubectl get deployments --namespace [***NAMESPACE***]

NAME READY UP-TO-DATE AVAILABLE AGE
#...
strimzi-cluster-operator 1/1 1 1 13m

kubectl get pods --namespace [***NAMESPACE***]

NAME READY UP-TO-DATE AVAILABLE AGE
#...
strimzi-cluster-operator 1/1 1 1 13m

7. Access supplemental resources available on the Cloudera Archive.

Supplemental resources available on the Cloudera Archive include various example files, diagnostic tools, and
more. You can use these resources to quickly deploy Kafka clusters and to gain a better understanding of Strimzi
and Cloudera Streams Messaging Operator for Kubernetes.

What to do next

• Deploy a Kafka cluster, see Deploying Kafka.
• Set up Prometheus for monitoring, see Configuring Kafka for Prometheus monitoring and Monitoring with

Prometheus.

Related Information
Cloudera Archive

Installing Cloudera Surveyor for Apache Kafka with Helm

Learn how to install Cloudera Surveyor in Cloudera Streams Messaging Operator for Kubernetes with Helm.
Cloudera Surveyor is a UI application that enables you to manage and monitor Kafka clusters.

11

https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-deploying-kafka.html
https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-configuring-prometheus-monitoring-kafka.html
https://docs.cloudera.com/csm-operator/1.6/monitoring-diagnostics/topics/csm-op-prometheus-monitoring.html
https://docs.cloudera.com/csm-operator/1.6/monitoring-diagnostics/topics/csm-op-prometheus-monitoring.html
https://archive.cloudera.com/p/csm-operator/1.6/

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

Cloudera Surveyor Is installed in your Kubernetes cluster with the Cloudera Surveyor Helm chart using the helm
 install command. When you install the chart, Helm deploys an instance of Cloudera Surveyor, which enables you to
manage and monitor your Kafka clusters through a UI interface.

During installation, you configure Cloudera Surveyor using a custom values file (values.yaml) passed to the Helm
chart with the --values (-f) option. This file contains properties for configuring Cloudera Surveyor itself as well as
Kafka cluster-specific settings that define which Kafka clusters Cloudera Surveyor connects to. Additionally, some
properties are configured with --set options.

Installation instructions are provided for the following scenarios.

• Installing in an internet environment – Follow these steps to install a fully secure instance of Cloudera
Surveyor in a Kubernetes cluster with internet access.

• Installing in an air-gapped environment –Follow these steps to install a fully secure instance of Cloudera
Surveyor in a Kubernetes cluster without internet access or if you want to install from a self-hosted registry.

• Installing for evaluation – Follow these steps to install an unsecure instance of Cloudera Surveyor for
development or proof of concept purposes.

Installing Cloudera Surveyor in an internet environment
Complete these steps to install Cloudera Surveyor if your Kubernetes cluster has internet access. These steps install a
fully secure instance of Cloudera Surveyor that has authentication, authorization, and channel encryption configured.
The example configuration also demonstrates how you can connect a secure Kafka cluster to Cloudera Surveyor.

Before you begin

• General prerequisites:

• Your Kubernetes environment meets requirements listed in System requirements.
• Your Kubernetes cluster requires internet connectivity to complete these steps. It must be able to reach the

Cloudera Docker registry.
• You have access to your Cloudera credentials (username and password). Credentials are required to access the

Cloudera Archive and Cloudera Docker registry where installation artifacts are hosted.
• You have access to a valid Cloudera license.
• Review the Helm chart reference before installation.

The Helm chart accepts various configuration properties that you can set during installation. Using these
properties you can customize your installation.

• Prerequisites for channel encryption (TLS):

• An Ingress controller is installed in your Kubernetes cluster. These steps use the Ingress-Nginx controller.
• Optional: cert-manager is installed in your Kubernetes cluster.

• Prerequisites for LDAP authentication:

• An LDAP server is available that has TLS enabled.
• The server is accessible from the Kubernetes cluster where Cloudera Surveyor is deployed.
• Entries containing usernames and passwords are located under a common base in the directory information

tree. Passwords must be stored in the userPassword attribute in the user entries.
• If deploying Cloudera Surveyor with FIPS mode enabled (fipsMode: true), you must manually generate and

configure an authentication key as part of installation.

The key must be generated and saved to a file, then configured using the --set-file option in your helm install
command. For more information, see Configuring LDAP authentication.

• Prerequisites for authorization:

• Ensure that Kafka ACLs are set up for your Kafka cluster. Cloudera Surveyor uses Kafka ACLs to provide
authorization.

12

https://docs.cloudera.com/csm-operator/1.6/release-notes/topics/csm-op-system-req.html
https://docs.cloudera.com/csm-operator/1.6/reference/topics/csm-op-surveyor-helm-reference.html
https://kubernetes.github.io/ingress-nginx/
https://docs.cloudera.com/csm-operator/1.6/surveyor-security/topics/csm-op-surveyor-ldap-overview.html#task_yfn_2yk_rfc

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

Procedure

1. Create a namespace in your Kubernetes cluster.

kubectl create namespace [***NAMESPACE***]

This is the namespace where you install Cloudera Surveyor. Use the namespace you create in all installation steps
that follow.

2. Log in to the Cloudera Docker registry with helm.

helm registry login container.repository.cloudera.com

Enter your Cloudera credentials when prompted.

3. Create a Kubernetes Secret containing your Cloudera credentials.

kubectl create secret docker-registry [***REGISTRY CREDENTIALS SECRET***]
 \
 --namespace [***NAMESPACE***] \
 --docker-server container.repository.cloudera.com \
 --docker-username [***USERNAME***] \
 --docker-password "$(echo -n 'Enter your Cloudera password: ' >&2; read
 -s password; echo >&2; echo $password)"

• Take note of the name you specify as [***REGISTRY CREDENTIALS SECRET***]. You will need to specify
the name in a later step.

• Replace [***USERNAME***] with your Cloudera username.
• Enter your Cloudera password when prompted.

4. Create Secrets for sensitive Kafka client configuration values.

Cloudera Surveyor connects to Kafka clusters as any other Kafka client and requires a client configuration. If the
Kafka cluster is secured, the client configuration will include sensitive property values. Cloudera recommends
that you store sensitive values in Secrets, mount the Secrets to the Cloudera Surveyor Container, and
reference the values in your configuration instead of hard-coding them.

Typically, you need to create two Secrets. One contains the Kafka cluster truststore and password, and the
other contains a JAAS configuration. The Kafka truststore must be in JKS or PKCS12 format.

kubectl create secret generic [***KAFKA TRUSTSTORE SECRET***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***KAFKA TRUSTSTORE KEY***]=[***PATH TO TRUSTSTORE***] \
 --from-file=[***KAFKA TRUSTSTORE PASSWORD KEY***]=[***PATH TO TRUSTSTORE
 PASSWORD FILE***]

kubectl create secret generic [***KAFKA SASL.JAAS.CONFIG SECRET***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***KAFKA SASL.JAAS.CONFIG KEY***]=[***PATH TO KAFKA
 SASL.JAAS.CONFIG FILE***]

• Take note of the Secret names as well as the key names you configure. You will need to specify them in a
later step.

• All key names like [***KAFKA TRUSTSTORE KEY***] or [***KAFKA SASL.JAAS.CONFIG KEY***] are
arbitrary.

13

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

• [***PATH TO KAFKA SASL.JAAS.CONFIG FILE***] is a path to a file containing JAAS configuration
similar to the following example:

org.apache.kafka.common.security.plain.PlainLoginModule required usernam
e="MY-USER" password="MY-PASSWORD";

The contents of this file are set in a later step as the value of the sasl.jaas.config Kafka client property for
Cloudera Surveyor internal Kafka clients. Ensure that the format of the configuration is valid for the sasl.jaa
s.config property. That is, its a single line of configuration.

5. Prepare a certificate and private key for Cloudera Surveyor.

• If you have cert-manager available, create a Certificate resource. Take note of the Secret name you
configure in spec.secretname of the Certificate resource, you will need to specify it in a later step.

• If you are managing keys manually, create a certificate and private key and save it to a Secret. Take note of
the Secret name, you will need to specify it in a later step.

This Secret is referred to as [***SURVEYOR TLS CERT SECRET***] in the following steps.

6. Prepare a certificate and private key for Ingress.

• If you have cert-manager available, the certificate and private key for Ingress are automatically requested
by the Ingress. You only need to ensure that you have a valid Issuer available in cert-manager. You
specify the name of the Issuer resource in a later step.

• If you are managing keys manually, create a certificate and private key and save it to a Secret. Take note of
the Secret name, you will need to specify it in a later step.

This Secret referred to as [***INGRESS TLS CERT SECRET***] in the following steps.

7. Set up resources for LDAP authentication.

a) Generate a Java truststore (PKCS12 or JKS) containing the TLS certificate of the root Certificate Authority
(CA) of the LDAP certificate chain.

keytool -import -trustcacerts -file [***LDAP ROOT CA***] \
 -keystore [***TRUSTSTORE NAME***] \
 -storepass [***TRUSTSTORE PASSWORD***] \
 -storetype PKCS12

b) Create a Secret containing the truststore and the truststore password.

kubectl create secret generic [***LDAP TRUSTSTORE SECRET***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***TRUSTSTORE SECRET KEY***]=[***TRUSTSTORE NAME***] \
 --from-file=[***TRUSTSTORE PW SECRET KEY***]=[***PATH TO TRUSTSTORE PW
 FILE***]

Take note of [***LDAP TRUSTSTORE SECRET***], [***TRUSTSTORE SECRET KEY***], and
[***TRUSTSTORE PW SECRET KEY***]. You will need to specify these names in a custom values file you
create in a later step.

c) Create a Secret containing your LDAP principal and password (bind credentials).

kubectl create secret generic [***LDAP CREDENTIALS SECRET***] \
 --namespace [***NAMESPACE***] \
 --from-literal=principal="$(echo -n 'Enter principal: ' >&2; read -s
 principal; echo >&2; echo $principal)" --from-literal=password="$(echo
 -n 'Enter password: ' >&2; read -s password; echo >&2; echo $password)"

• Take note of [***LDAP CREDENTIALS SECRET***]. You will need to specify this name in a custom
values file you create in a later step.

14

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

• Enter your principal and the password for the principal when prompted. Example principal:

cn=admin,dc=openldap-chart,dc=ldap

8. Prepare a custom values file (values.yaml).

The values file contains configuration for Cloudera Surveyor. This file specifies the Kafka clusters that Cloudera
Surveyor connects to as well as various other configuration properties.

clusterConfigs:
 clusters:
 - clusterName: [***CLUSTER NAME***]
 tags:
 - [***TAG1***]
 - [***TAG2***]
 bootstrapServers: [***BOOTSTRAP SERVERS***]
 commonClientConfig:
 security.protocol: "SASL_SSL"
 sasl.mechanism: PLAIN
 ssl.truststore.type: "pkcs12"
 ssl.truststore.location: "/opt/secrets/[***KAFKA TRUSTSTORE
 SECRET***]/[***KAFKA TRUSTSTORE FILE***]"
 ssl.truststore.password: "\\${dir:/opt/secrets/[***KAFKA
 TRUSTSTORE SECRET***]:[***KAFKA TRUSTSTORE PASSWORD FILE***]}"
 sasl.jaas.config: "\\${dir:/opt/secrets/[***KAFKA SASL.JAAS.CONFIG
 SECRET***]:[***KAFKA SASL.JAAS.CONFIG FILE***]}"
 adminOperationTimeout: PT1M
 authorization:
 enabled: true
secretsToMount:
 - create: false
 secretRef: [***KAFKA TRUSTSTORE SECRET***]
 items:
 - key: [***KAFKA TRUSTSTORE KEY***]
 path: [***KAFKA TRUSTSTORE FILE***]
 - key: [***KAFKA TRUSTSTORE PASSWORD KEY***]
 path: [***KAFKA TRUSTSTORE PASSWORD FILE***]
 - create: false
 secretRef: [***KAFKA SASL.JAAS.CONFIG SECRET***]
 items:
 - key: [***KAFKA SASL.JAAS.CONFIG KEY***]
 path: [***KAFKA SASL.JAAS.CONFIG FILE***]
surveyorConfig:
 surveyor:
 authentication:
 enabled: true
 quarkus:
 security:
 ldap:
 dir-context:
 url: ldaps://openldap-chart.ldap:1390
 principal: ${LDAP_PRINCIPAL}
 password: ${LDAP_PASSWORD}
 identity-mapping:
 rdn-identifier: uid
 search-base-dn: ou=users,dc=openldap-chart,dc=ldap
 attribute-mappings:
 "0":
 from: cn
 filter: (cn={0},ou=users,dc=openldap-chart,dc=ldap)
 filter-base-dn: ou=users,dc=openldap-chart,dc=ldap
env:
 - name: LDAP_PRINCIPAL

15

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

 valueFrom:
 secretKeyRef:
 name: [***LDAP CREDENTIALS SECRET***]
 key: principal
 - name: LDAP_PASSWORD
 valueFrom:
 secretKeyRef:
 name: [***LDAP CREDENTIALS SECRET***]
 key: password
tlsConfigs:
 enabled: true
 secretRef: [***SURVEYOR TLS CERT SECRET***]
ingress:
 enabled: true
 className: nginx
 rules:
 path: "/"
 host: "MY-DOMAIN.EXAMPLE.COM"
 port: 8443
 tls:
 enabled: true
 secretRef: "[***INGRESS TLS CERT SECRET***]"
globalTruststore:
 secretRef:
 name: [***LDAP TRUSTSTORE SECRET***]
 key: [***TRUSTSTORE SECRET KEY***]
 type: PKCS12
 password:
 secretRef:
 name: [***LDAP TRUSTSTORE SECRET***]
 key: [***TRUSTSTORE PW SECRET KEY***]

For clusterConfigs

clusterConfigs specifies the Kafka clusters that Cloudera Surveyor connects to. Clusters specified here are the
ones that will be available on the UI for monitoring and management. For more information and additional
examples, see Registering Kafka clusters.

• clusterConfigs.clusters[*] – An array of Kafka clusters and their configuration. Each entry defines the
configuration for a single Kafka cluster.

• clusterConfigs.clusters[*].clustername – The name of the cluster. This name is displayed on the UI.
• clusterConfigs.clusters[*].bootstrapServers – A comma-separated list of the bootstrap servers for the Kafka

cluster that Cloudera Surveyor connects to. Specify multiple servers for highly available connections.
• clusterConfigs.clusters[*].tags – User defined tags. Used for organization and filtering.
• clusterConfigs.clusters[*].commonClientConfig – Kafka client configuration properties applied to all

clients for this cluster. Must contain upstream Kafka client properties as a map. The exact properties that
you specify here depend on the security configuration of the Kafka cluster that you want to connect. This
example specifies a Kafka cluster that uses PLAIN authentication with TLS.

Sensitive property values are referenced from Secrets instead of being hardcoded. Secrets
containing sensitive properties are mounted using the secretsToMount property. References use Kafka
DirectoryConfigProvider syntax.

Note: References in the client configurations must be escaped because Cloudera Surveyor itself
uses the same syntax for references.

16

https://docs.cloudera.com/csm-operator/1.6/surveyor-configure/topics/csm-op-surveyor-registering-kafka.html

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

• clusterConfigs.clusters[*].authorization.enabled – Enables or disables authorization for this cluster.

For secretsToMount

secretsToMount specifies the Secrets to mount in the Cloudera Surveyor Container. You use secretsT
oMount to mount the sensitive values required for Kafka client configuration specified in clusterConfigs. For
more information and additional examples, see Managing sensitive data in client configuration

• secretsToMount[*].create – Specifies whether to create the Secret. Set to false in this example as the
Secrets are assumed to already exist.

• secretsToMount[*].secretRef – The name of the Secret to mount.
• secretsToMount[*].items[*].key – The key in the Secret to mount.
• secretsToMount[*].items[*].path – The path where the item is mounted. The path is relative to /opt/

secrets/[***SECRET NAME***]/ in the Cloudera Surveyor Container.

For surveyorConfig

surveyorConfig specifies global configuration for Cloudera Surveyor. This example sets various authentication
properties.

• surveyorConfig.surveyor.authentication.enabled - Enables or disables authentication. Set to true by
default. Included in the example as a reference, you do not need to set the property explicitly to enable
authentication.

• surveyorConfig.quarkus.security.ldap.dir-context.* - These properties configure the LDAP server that
Cloudera Surveyor connects to. They specify the server URL, the distinguished name (DN) of the bind
user, and the password of the bind user. These are required for establishing a secure connection with the
LDAP directory.

The bind user credentials (principal and password) are referenced from the LDAP_PRINCIPAL and
LDAP_PASSWORD environment variables. These environment variables are set using the env property.
Their contents are referenced from a Secret that you created in a previous step.

Important: To ensure that Cloudera Surveyor connects to the LDAP server securely, the URL
you specify in surveyorConfig.quarkus.security.ldap.dir-context.url must start with ldaps://.

• surveyorConfig.quarkus.security.ldap.identity-mapping.* - These properties configure how Cloudera
Surveyor interacts with the LDAP directory to identify users and map their group memberships. They
define the attributes and base DNs used to locate user entries and groups in the directory, as well as the
filters applied to verify group membership.

For more information regarding surveyorConfig.quarkus.* properties, see Using Security with an LDAP
Realm in the Quarkus documentation.

Note: Groups are not required for authentication. You might want to configure the surveyorConf
ig.quarkus.security.ldap.identity-mapping.attribute-mappings.* properties accordingly.

For tlsConfigs

tlsConfigs enables TLS and specifies the Secret containing the certificate of Cloudera Surveyor.

• tlsConfigs.enabled – Enables or disables TLS. Set to true by default. Included in the example as a
reference, you do not need to set the property explicitly to enable TLS.

• tlsConfigs.secretRef – Name of the Secret containing the Cloudera Surveyor certificate and key.

For ingress

ingress enables the creation of an Ingress. The Ingress provides secure external access to the Cloudera
Surveyor UI.

• ingress.enabled – Enables or disables Ingress.
• ingress.className – The class name of the Ingress controller. This example configures the Ingress-

Nginx controller.

17

https://docs.cloudera.com/csm-operator/1.6/surveyor-configure/topics/csm-op-surveyor-registering-kafka.html#task_s5f_p1l_rfc
https://quarkus.io/guides/security-ldap
https://quarkus.io/guides/security-ldap

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

• ingress.rules.host – Specifies the DNS hostname that the Ingress controller should match for incoming
HTTP/HTTPS requests.

• ingress.rules.port – The port of the Ingress rule. This is the port of the Kubernetes Service that the
Ingress forwards requests to.

• ingress.tls.enabled – Enables TLS for the Ingress.
• ingress.tls.secretRef – The name of the Secret that contains Ingress TLS certificates.

Note: If you are using cert-manager, add the cert-manager.io/issuer: [**ISSUER NAME**]
annotation to the ingress.extraAnnotations property. If this annotation is set, a certificate is requested
automatically and saved to the Secret specified in ingress.tls.secretRef.

For globalTruststore

globalTruststore specifies the Secrets containing the truststore of the LDAP server and the password for the
truststore.

• globalTruststore.secretRef.name – The name of the Kubernetes Secret containing the truststore of the
LDAP server.

• globalTruststore.secretRef.key – The key in the Kubernetes Secret that contains the truststore.
• globalTruststore.password.name – The name of the Kubernetes Secret containing the truststore

password.
• globalTruststore.password.key – The key in the Kubernetes Secret that contains the truststore password.

9. Install Cloudera Surveyor with helm install.

helm install cloudera-surveyor \
 --namespace [***NAMESPACE***] \
 --values [***VALUES FILE***] \
 --set 'image.imagePullSecrets=[***REGISTRY CREDENTIALS SECRET***]' \
 --set-file clouderaLicense.fileContent=[***PATH TO LICENSE FILE***] \
 oci://container.repository.cloudera.com/cloudera-helm/csm-operator/surv
eyor \
 --version 1.6.0-b99

• The string cloudera-surveyor is the Helm release name of the chart installation. This is an arbitrary, user
defined name. Cloudera recommends that you use a unique and easily identifiable name.

• [***VALUES FILE***] is the values file you prepared in Step 8 on page 15.
• imagePullSecrets specifies what Secret is used to pull images from the Cloudera registry. Setting this

property is mandatory, otherwise, Helm cannot pull the necessary images from the Cloudera Docker registry.
Ensure that you replace [***REGISTRY CREDENTIALS SECRET***] with the name of the Secret you
created in Step 3 on page 13.

• clouderaLicense.fileContent is used to register your license. If this property is set, a Secret is generated
that contains the license you specify. Setting this property is mandatory. Cloudera Surveyor will not function
without a valid license. Ensure that you replace [***PATH TO LICENSE FILE***] with the full path to your
Cloudera license file.

• You can use --set to override properties that are defined in your values file, or add additional properties that
are not present in your values file.

10. Verify your installation.

This is done by listing the Deployments and Pods in your namespace. If installation is successful, a Cloudera
Surveyor Deployment and two Pods will be present in the cluster.

kubectl get deployments --namespace [***NAMESPACE***]

NAME READY UP-TO-DATE AVAILABLE AGE
#...

18

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

cloudera-surveyor 2/2 2 2 13m

kubectl get pods --namespace [***NAMESPACE***]

NAME READY STATUS RESTARTS AGE
#...
cloudera-surveyor-649f755f6d-689gx 1/1 Running 0
 13m
cloudera-surveyor-649f755f6d-xj2kp 1/1 Running 0
 13m

11. Access the Cloudera Surveyor UI.

The UI is accessible by connecting to the Ingress.

kubectl get ingress cloudera-surveyor-ingress --namespac
e [***NAMESPACE***]

NAME CLASS HOSTS ADDRESS
 PORTS
cloudera-surveyor-ingress nginx my-domain.example.com 10.14.91.1 80,
 443

Typically you will be able to access the UI through the host and port listed. However, the exact port that you have
to use might be infrastructure dependent. If you are unable to connect, check the configuration of your Ingress
controller. You can also try connecting directly to the Service of the Ingress.

Results
Cloudera Surveyor is installed. You can now manage and monitor your Kafka clusters using the UI.
Related Information
Registering Kafka clusters

Using Security with an LDAP Realm | Quarkus

Installing Cloudera Surveyor in an air-gapped environment
Complete these steps to install Cloudera Surveyor if your Kubernetes cluster does not have internet access or if you
want to install from a self-hosted registry. These steps install a fully secure instance of Cloudera Surveyor that has
authentication, authorization, and channel encryption configured. The example configuration also demonstrates how
you can connect a secure Kafka cluster to Cloudera Surveyor.

19

https://docs.cloudera.com/csm-operator/1.6/surveyor-configure/topics/csm-op-surveyor-registering-kafka.html
https://quarkus.io/guides/security-ldap

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

Before you begin

• General prerequisites:

• Your Kubernetes environment meets requirements listed in System requirements.
• A self-hosted Docker registry is required. Your registry must be accessible by your Kubernetes cluster.
• A machine with Internet connectivity is required. While the Kubernetes cluster does not need internet access,

you will need a machine to pull the images from the Cloudera Docker registry.
• Access to docker or equivalent utility that you can use to pull and push images is required. The following steps

use docker. Replace commands where necessary.
• You have access to your Cloudera credentials (username and password). Credentials are required to access the

Cloudera Archive and Cloudera Docker registry where installation artifacts are hosted.
• You have access to a valid Cloudera license.
• Review the Helm chart reference before installation.

The Helm chart accepts various configuration properties that you can set during installation. Using these
properties you can customize your installation.

• Prerequisites for channel encryption (TLS):

• An Ingress controller is installed in your Kubernetes cluster. These steps use the Ingress-Nginx controller.
• Optional: cert-manager is installed in your Kubernetes cluster.

• Prerequisites for LDAP authentication:

• An LDAP server is available that has TLS enabled.
• The server is accessible from the Kubernetes cluster where Cloudera Surveyor is deployed.
• Entries containing usernames and passwords are located under a common base in the directory information

tree. Passwords must be stored in the userPassword attribute in the user entries.
• If deploying Cloudera Surveyor with FIPS mode enabled (fipsMode: true), you must manually generate and

configure an authentication key as part of installation.

The key must be generated and saved to a file, then configured using the --set-file option in your helm install
command. For more information, see Configuring LDAP authentication.

• Prerequisites for authorization:

• Ensure that Kafka ACLs are set up for your Kafka cluster. Cloudera Surveyor uses Kafka ACLs to provide
authorization.

Procedure

1. Copy the following installation artifacts to your self-hosted registry.

Table 6: Cloudera Surveyor artifacts on the Cloudera Docker registry

Artifact Location Description

Cloudera Surveyor server Docker image container.repository.cloudera.com/cloudera/s
urveyor:0.1.0.1.6.0-b99

Docker image used for deploying Cloudera
Surveyor.

Cloudera Surveyor UI application Docker
image

container.repository.cloudera.com/cloudera/s
urveyor-app:0.1.0.1.6.0-b99

Docker image used for deploying Cloudera
Surveyor.

20

https://docs.cloudera.com/csm-operator/1.6/release-notes/topics/csm-op-system-req.html
https://docs.cloudera.com/csm-operator/1.6/reference/topics/csm-op-surveyor-helm-reference.html
https://kubernetes.github.io/ingress-nginx/
https://docs.cloudera.com/csm-operator/1.6/surveyor-security/topics/csm-op-surveyor-ldap-overview.html#task_yfn_2yk_rfc

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

Artifact Location Description

Cloudera Surveyor Helm chart oci://container.repository.cloudera.com/clou
dera-helm/csm-operator/surveyor:1.6.0-b99

Helm chart used to install Cloudera Surveyor
with helm-install.

Note: The images are built for linux/arm64 and linux/amd64 architectures.

This step involves pulling the artifacts from the Cloudera Docker registry, retagging them, and then pushing them
to your self-hosted registry. The exact steps you need to carry it out depend on your environment and how your
registry is set up. The following substeps demonstrate the basic workflow using docker and helm.

Tip: If your registry uses a non-default port, you might need to specify the registry port in helm as well as
docker commands.

a) Log in to the Cloudera Docker registry with both docker and helm.

Provide your Cloudera credentials when prompted.

docker login container.repository.cloudera.com

helm registry login container.repository.cloudera.com

b) Pull the Docker images from the Cloudera Docker registry.

docker pull \
 --platform [***PLATFORM/ARCHITECTURE***] \
 container.repository.cloudera.com/cloudera/[***IMAGE
 NAME***]:[***VERSION***]

c) Pull the Cloudera Surveyor Helm chart.

helm pull \
 oci://container.repository.cloudera.com/cloudera-helm/csm-operator/sur
veyor \
 --version 1.6.0-b99

d) Retag the Docker images you pulled so that they contain the address of your registry.

docker tag \
 [***ORIGINAL IMAGE TAG***] \
 [***YOUR REGISTRY***]/cloudera/[***IMAGE NAME***]:[***VERSION***]

e) Push the images and chart to your self-hosted registry.

docker push \
 [***YOUR REGISTRY***]/cloudera/[***IMAGE NAME***]:[***VERSION***]

helm push \
 surveyor-1.6.0-b99.tgz \
 oci://[***YOUR REGISTRY***]/cloudera-helm/csm-operator/surveyor

2. Create a namespace in your Kubernetes cluster.

kubectl create namespace [***NAMESPACE***]

This is the namespace where you install Cloudera Surveyor. Use the namespace you create in all installation steps
that follow.

21

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

3. Log in to your self-hosted registry with helm.

helm registry login [***YOUR REGISTRY***]

Enter your credentials when prompted.

4. Create a Kubernetes Secret containing credentials for your self-hosted registry.

kubectl create secret docker-registry [***REGISTRY CREDENTIALS SECRET***]
 \
 --namespace [***NAMESPACE***] \
 --docker-server [***YOUR REGISTRY***] \
 --docker-username [***USERNAME***] \
 --docker-password "$(echo -n 'Enter your password: ' >&2; read -s passw
ord; echo >&2; echo $password)"

• Take note of the name you specify as [***REGISTRY CREDENTIALS SECRET***]. You will need to specify
the name in a later step.

• Replace [***USERNAME***] with a username valid for your self-hosted registry.
• Enter the password for the user when prompted.

5. Create Secrets for sensitive Kafka client configuration values.

Cloudera Surveyor connects to Kafka clusters as any other Kafka client and requires a client configuration. If the
Kafka cluster is secured, the client configuration will include sensitive property values. Cloudera recommends
that you store sensitive values in Secrets, mount the Secrets to the Cloudera Surveyor Container, and
reference the values in your configuration instead of hard-coding them.

Typically, you need to create two Secrets. One contains the Kafka cluster truststore and password, and the
other contains a JAAS configuration. The Kafka truststore must be in JKS or PKCS12 format.

kubectl create secret generic [***KAFKA TRUSTSTORE SECRET***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***KAFKA TRUSTSTORE KEY***]=[***PATH TO TRUSTSTORE***] \
 --from-file=[***KAFKA TRUSTSTORE PASSWORD KEY***]=[***PATH TO TRUSTSTORE
 PASSWORD FILE***]

kubectl create secret generic [***KAFKA SASL.JAAS.CONFIG SECRET***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***KAFKA SASL.JAAS.CONFIG KEY***]=[***PATH TO KAFKA
 SASL.JAAS.CONFIG FILE***]

• Take note of the Secret names as well as the key names you configure. You will need to specify them in a
later step.

• All key names like [***KAFKA TRUSTSTORE KEY***] or [***KAFKA SASL.JAAS.CONFIG KEY***] are
arbitrary.

• [***PATH TO KAFKA SASL.JAAS.CONFIG FILE***] is a path to a file containing JAAS configuration
similar to the following example:

org.apache.kafka.common.security.plain.PlainLoginModule required usernam
e="MY-USER" password="MY-PASSWORD";

The contents of this file are set in a later step as the value of the sasl.jaas.config Kafka client property for
Cloudera Surveyor internal Kafka clients. Ensure that the format of the configuration is valid for the sasl.jaa
s.config property. That is, its a single line of configuration.

22

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

6. Prepare a certificate and private key for Cloudera Surveyor.

• If you have cert-manager available, create a Certificate resource. Take note of the Secret name you
configure in spec.secretname of the Certificate resource, you will need to specify it in a later step.

• If you are managing keys manually, create a certificate and private key and save it to a Secret. Take note of
the Secret name, you will need to specify it in a later step.

This Secret is referred to as [***SURVEYOR TLS CERT SECRET***] in the following steps.

7. Prepare a certificate and private key for Ingress.

• If you have cert-manager available, the certificate and private key for Ingress are automatically requested
by the Ingress. You only need to ensure that you have a valid Issuer available in cert-manager. You
specify the name of the Issuer resource in a later step.

• If you are managing keys manually, create a certificate and private key and save it to a Secret. Take note of
the Secret name, you will need to specify it in a later step.

This Secret referred to as [***INGRESS TLS CERT SECRET***] in the following steps.

8. Set up resources for LDAP authentication.

a) Generate a Java truststore (PKCS12 or JKS) containing the TLS certificate of the root Certificate Authority
(CA) of the LDAP certificate chain.

keytool -import -trustcacerts -file [***LDAP ROOT CA***] \
 -keystore [***TRUSTSTORE NAME***] \
 -storepass [***TRUSTSTORE PASSWORD***] \
 -storetype PKCS12

b) Create a Secret containing the truststore and the truststore password.

kubectl create secret generic [***LDAP TRUSTSTORE SECRET***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***TRUSTSTORE SECRET KEY***]=[***TRUSTSTORE NAME***] \
 --from-file=[***TRUSTSTORE PW SECRET KEY***]=[***PATH TO TRUSTSTORE PW
 FILE***]

Take note of [***LDAP TRUSTSTORE SECRET***], [***TRUSTSTORE SECRET KEY***], and
[***TRUSTSTORE PW SECRET KEY***]. You will need to specify these names in a custom values file you
create in a later step.

c) Create a Secret containing your LDAP principal and password (bind credentials).

kubectl create secret generic [***LDAP CREDENTIALS SECRET***] \
 --namespace [***NAMESPACE***] \
 --from-literal=principal="$(echo -n 'Enter principal: ' >&2; read -s
 principal; echo >&2; echo $principal)" --from-literal=password="$(echo
 -n 'Enter password: ' >&2; read -s password; echo >&2; echo $password)"

• Take note of [***LDAP CREDENTIALS SECRET***]. You will need to specify this name in a custom
values file you create in a later step.

• Enter your principal and the password for the principal when prompted. Example principal:

cn=admin,dc=openldap-chart,dc=ldap

9. Prepare a custom values file (values.yaml).

The values file contains configuration for Cloudera Surveyor. This file specifies the Kafka clusters that Cloudera
Surveyor connects to as well as various other configuration properties.

clusterConfigs:
 clusters:
 - clusterName: [***CLUSTER NAME***]
 tags:

23

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

 - [***TAG1***]
 - [***TAG2***]
 bootstrapServers: [***BOOTSTRAP SERVERS***]
 commonClientConfig:
 security.protocol: "SASL_SSL"
 sasl.mechanism: PLAIN
 ssl.truststore.type: "pkcs12"
 ssl.truststore.location: "/opt/secrets/[***KAFKA TRUSTSTORE
 SECRET***]/[***KAFKA TRUSTSTORE FILE***]"
 ssl.truststore.password: "\\${dir:/opt/secrets/[***KAFKA
 TRUSTSTORE SECRET***]:[***KAFKA TRUSTSTORE PASSWORD FILE***]}"
 sasl.jaas.config: "\\${dir:/opt/secrets/[***KAFKA SASL.JAAS.CONFIG
 SECRET***]:[***KAFKA SASL.JAAS.CONFIG FILE***]}"
 adminOperationTimeout: PT1M
 authorization:
 enabled: true
secretsToMount:
 - create: false
 secretRef: [***KAFKA TRUSTSTORE SECRET***]
 items:
 - key: [***KAFKA TRUSTSTORE KEY***]
 path: [***KAFKA TRUSTSTORE FILE***]
 - key: [***KAFKA TRUSTSTORE PASSWORD KEY***]
 path: [***KAFKA TRUSTSTORE PASSWORD FILE***]
 - create: false
 secretRef: [***KAFKA SASL.JAAS.CONFIG SECRET***]
 items:
 - key: [***KAFKA SASL.JAAS.CONFIG KEY***]
 path: [***KAFKA SASL.JAAS.CONFIG FILE***]
surveyorConfig:
 surveyor:
 authentication:
 enabled: true
 quarkus:
 security:
 ldap:
 dir-context:
 url: ldaps://openldap-chart.ldap:1390
 principal: ${LDAP_PRINCIPAL}
 password: ${LDAP_PASSWORD}
 identity-mapping:
 rdn-identifier: uid
 search-base-dn: ou=users,dc=openldap-chart,dc=ldap
 attribute-mappings:
 "0":
 from: cn
 filter: (cn={0},ou=users,dc=openldap-chart,dc=ldap)
 filter-base-dn: ou=users,dc=openldap-chart,dc=ldap
env:
 - name: LDAP_PRINCIPAL
 valueFrom:
 secretKeyRef:
 name: [***LDAP CREDENTIALS SECRET***]
 key: principal
 - name: LDAP_PASSWORD
 valueFrom:
 secretKeyRef:
 name: [***LDAP CREDENTIALS SECRET***]
 key: password
tlsConfigs:
 enabled: true
 secretRef: [***SURVEYOR TLS CERT SECRET***]
ingress:
 enabled: true

24

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

 className: nginx
 rules:
 path: "/"
 host: "MY-DOMAIN.EXAMPLE.COM"
 port: 8443
 tls:
 enabled: true
 secretRef: "[***INGRESS TLS CERT SECRET***]"
globalTruststore:
 secretRef:
 name: [***LDAP TRUSTSTORE SECRET***]
 key: [***TRUSTSTORE SECRET KEY***]
 type: PKCS12
 password:
 secretRef:
 name: [***LDAP TRUSTSTORE SECRET***]
 key: [***TRUSTSTORE PW SECRET KEY***]

For clusterConfigs

clusterConfigs specifies the Kafka clusters that Cloudera Surveyor connects to. Clusters specified here are the
ones that will be available on the UI for monitoring and management. For more information and additional
examples, see Registering Kafka clusters.

• clusterConfigs.clusters[*] – An array of Kafka clusters and their configuration. Each entry defines the
configuration for a single Kafka cluster.

• clusterConfigs.clusters[*].clustername – The name of the cluster. This name is displayed on the UI.
• clusterConfigs.clusters[*].bootstrapServers – A comma-separated list of the bootstrap servers for the Kafka

cluster that Cloudera Surveyor connects to. Specify multiple servers for highly available connections.
• clusterConfigs.clusters[*].tags – User defined tags. Used for organization and filtering.
• clusterConfigs.clusters[*].commonClientConfig – Kafka client configuration properties applied to all

clients for this cluster. Must contain upstream Kafka client properties as a map. The exact properties that
you specify here depend on the security configuration of the Kafka cluster that you want to connect. This
example specifies a Kafka cluster that uses PLAIN authentication with TLS.

Sensitive property values are referenced from Secrets instead of being hardcoded. Secrets
containing sensitive properties are mounted using the secretsToMount property. References use Kafka
DirectoryConfigProvider syntax.

Note: References in the client configurations must be escaped because Cloudera Surveyor itself
uses the same syntax for references.

• clusterConfigs.clusters[*].authorization.enabled – Enables or disables authorization for this cluster.

For secretsToMount

secretsToMount specifies the Secrets to mount in the Cloudera Surveyor Container. You use secretsT
oMount to mount the sensitive values required for Kafka client configuration specified in clusterConfigs. For
more information and additional examples, see Managing sensitive data in client configuration

• secretsToMount[*].create – Specifies whether to create the Secret. Set to false in this example as the
Secrets are assumed to already exist.

• secretsToMount[*].secretRef – The name of the Secret to mount.
• secretsToMount[*].items[*].key – The key in the Secret to mount.

25

https://docs.cloudera.com/csm-operator/1.6/surveyor-configure/topics/csm-op-surveyor-registering-kafka.html
https://docs.cloudera.com/csm-operator/1.6/surveyor-configure/topics/csm-op-surveyor-registering-kafka.html#task_s5f_p1l_rfc

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

• secretsToMount[*].items[*].path – The path where the item is mounted. The path is relative to /opt/
secrets/[***SECRET NAME***]/ in the Cloudera Surveyor Container.

For surveyorConfig

surveyorConfig specifies global configuration for Cloudera Surveyor. This example sets various authentication
properties.

• surveyorConfig.surveyor.authentication.enabled - Enables or disables authentication. Set to true by
default. Included in the example as a reference, you do not need to set the property explicitly to enable
authentication.

• surveyorConfig.quarkus.security.ldap.dir-context.* - These properties configure the LDAP server that
Cloudera Surveyor connects to. They specify the server URL, the distinguished name (DN) of the bind
user, and the password of the bind user. These are required for establishing a secure connection with the
LDAP directory.

The bind user credentials (principal and password) are referenced from the LDAP_PRINCIPAL and
LDAP_PASSWORD environment variables. These environment variables are set using the env property.
Their contents are referenced from a Secret that you created in a previous step.

Important: To ensure that Cloudera Surveyor connects to the LDAP server securely, the URL
you specify in surveyorConfig.quarkus.security.ldap.dir-context.url must start with ldaps://.

• surveyorConfig.quarkus.security.ldap.identity-mapping.* - These properties configure how Cloudera
Surveyor interacts with the LDAP directory to identify users and map their group memberships. They
define the attributes and base DNs used to locate user entries and groups in the directory, as well as the
filters applied to verify group membership.

For more information regarding surveyorConfig.quarkus.* properties, see Using Security with an LDAP
Realm in the Quarkus documentation.

Note: Groups are not required for authentication. You might want to configure the surveyorConf
ig.quarkus.security.ldap.identity-mapping.attribute-mappings.* properties accordingly.

For tlsConfigs

tlsConfigs enables TLS and specifies the Secret containing the certificate of Cloudera Surveyor.

• tlsConfigs.enabled – Enables or disables TLS. Set to true by default. Included in the example as a
reference, you do not need to set the property explicitly to enable TLS.

• tlsConfigs.secretRef – Name of the Secret containing the Cloudera Surveyor certificate and key.

For ingress

ingress enables the creation of an Ingress. The Ingress provides secure external access to the Cloudera
Surveyor UI.

• ingress.enabled – Enables or disables Ingress.
• ingress.className – The class name of the Ingress controller. This example configures the Ingress-

Nginx controller.
• ingress.rules.host – Specifies the DNS hostname that the Ingress controller should match for incoming

HTTP/HTTPS requests.
• ingress.rules.port – The port of the Ingress rule. This is the port of the Kubernetes Service that the

Ingress forwards requests to.
• ingress.tls.enabled – Enables TLS for the Ingress.

26

https://quarkus.io/guides/security-ldap
https://quarkus.io/guides/security-ldap

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

• ingress.tls.secretRef – The name of the Secret that contains Ingress TLS certificates.

Note: If you are using cert-manager, add the cert-manager.io/issuer: [**ISSUER NAME**]
annotation to the ingress.extraAnnotations property. If this annotation is set, a certificate is requested
automatically and saved to the Secret specified in ingress.tls.secretRef.

For globalTruststore

globalTruststore specifies the Secrets containing the truststore of the LDAP server and the password for the
truststore.

• globalTruststore.secretRef.name – The name of the Kubernetes Secret containing the truststore of the
LDAP server.

• globalTruststore.secretRef.key – The key in the Kubernetes Secret that contains the truststore.
• globalTruststore.password.name – The name of the Kubernetes Secret containing the truststore

password.
• globalTruststore.password.key – The key in the Kubernetes Secret that contains the truststore password.

10. Install Cloudera Surveyor with helm install.

helm install cloudera-surveyor \
 --namespace [***NAMESPACE***] \
 --values [***VALUES FILE***] \
 --set image.registry=[***YOUR REGISTRY***] \
 --set 'image.imagePullSecrets=[***REGISTRY CREDENTIALS SECRET***]' \
 --set-file clouderaLicense.fileContent=[***PATH TO LICENSE FILE***] \
 oci://[***YOUR REGISTRY***]/cloudera-helm/csm-operator/surveyor \
 --version 1.6.0-b99

• The string cloudera-surveyor is the Helm release name of the chart installation. This is an arbitrary, user
defined name. Cloudera recommends that you use a unique and easily identifiable name.

• [***VALUES FILE***] is the values file you prepared in Step 9 on page 23.
• imagePullSecrets specifies what Secret is used to pull images from the specified registry. Ensure that you

replace [***REGISTRY CREDENTIALS SECRET***] with the name of the Secret you created in Step 4 on
page 22.

• clouderaLicense.fileContent is used to register your license. If this property is set, a Secret is generated
that contains the license you specify. Setting this property is mandatory. Cloudera Surveyor will not function
without a valid license. Ensure that you replace [***PATH TO LICENSE FILE***] with the full path to your
Cloudera license file.

• You can use --set to override properties that are defined in your values file, or add additional properties that
are not present in your values file.

11. Verify your installation.

This is done by listing the Deployments and Pods in your namespace. If installation is successful, a Cloudera
Surveyor Deployment and two Pods will be present in the cluster.

kubectl get deployments --namespace [***NAMESPACE***]

NAME READY UP-TO-DATE AVAILABLE AGE
#...
cloudera-surveyor 2/2 2 2 13m

kubectl get pods --namespace [***NAMESPACE***]

NAME READY STATUS RESTARTS AGE
#...
cloudera-surveyor-649f755f6d-689gx 1/1 Running 0
 13m

27

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

cloudera-surveyor-649f755f6d-xj2kp 1/1 Running 0
 13m

12. Access the Cloudera Surveyor UI.

The UI is accessible by connecting to the Ingress.

kubectl get ingress cloudera-surveyor-ingress --namespac
e [***NAMESPACE***]

NAME CLASS HOSTS ADDRESS
 PORTS
cloudera-surveyor-ingress nginx my-domain.example.com 10.14.91.1 80,
 443

Typically you will be able to access the UI through the host and port listed. However, the exact port that you have
to use might be infrastructure dependent. If you are unable to connect, check the configuration of your Ingress
controller. You can also try connecting directly to the Service of the Ingress.

Results
Cloudera Surveyor is installed. You can now manage and monitor your Kafka clusters using the UI.
Related Information
Registering Kafka clusters

Using Security with an LDAP Realm | Quarkus

Installing Cloudera Surveyor for evaluation
Complete these steps to install a basic deployment of Cloudera Surveyor that has no security configured. Use these
instructions if you want to install quickly in a development environment for proof of concept or evaluation purposes.

Before you begin

• Your Kubernetes environment meets requirements listed in System requirements.
• Your Kubernetes cluster requires internet connectivity to complete these steps. It must be able to reach the

Cloudera Docker registry.
• You have access to your Cloudera credentials (username and password). Credentials are required to access the

Cloudera Archive and Cloudera Docker registry where installation artifacts are hosted.
• You have access to a valid Cloudera license.
• Review the Helm chart reference before installation.

The Helm chart accepts various configuration properties that you can set during installation. Using these
properties you can customize your installation.

Procedure

1. Create a namespace in your Kubernetes cluster.

kubectl create namespace [***NAMESPACE***]

This is the namespace where you install Cloudera Surveyor. Use the namespace you create in all installation steps
that follow.

2. Log in to the Cloudera Docker registry with helm.

helm registry login container.repository.cloudera.com

Enter your Cloudera credentials when prompted.

28

https://docs.cloudera.com/csm-operator/1.6/surveyor-configure/topics/csm-op-surveyor-registering-kafka.html
https://quarkus.io/guides/security-ldap
https://docs.cloudera.com/csm-operator/1.6/release-notes/topics/csm-op-system-req.html
https://docs.cloudera.com/csm-operator/1.6/reference/topics/csm-op-surveyor-helm-reference.html

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

3. Create a Kubernetes Secret containing your Cloudera credentials.

kubectl create secret docker-registry [***REGISTRY CREDENTIALS SECRET***]
 \
 --namespace [***NAMESPACE***] \
 --docker-server container.repository.cloudera.com \
 --docker-username [***USERNAME***] \
 --docker-password "$(echo -n 'Enter your Cloudera password: ' >&2; read
 -s password; echo >&2; echo $password)"

• Take note of the name you specify as [***REGISTRY CREDENTIALS SECRET***]. You will need to specify
the name in a later step.

• Replace [***USERNAME***] with your Cloudera username.
• Enter your Cloudera password when prompted.

4. Prepare a custom values file (values.yaml).

The values file contains configuration for Cloudera Surveyor. This file specifies the Kafka clusters that Cloudera
Surveyor connects to as well as various other configuration properties.

clusterConfigs:
 clusters:
 - clusterName: [***CLUSTER NAME***]
 tags:
 - [***TAG1***]
 - [***TAG2***]
 bootstrapServers: [***BOOTSTRAP SERVERS***]
 adminOperationTimeout: PT1M
 authorization:
 enabled: false
 commonClientConfig:
 security.protocol: PLAINTEXT
surveyorConfig:
 surveyor:
 authentication:
 enabled: false
tlsConfigs:
 enabled: false

• clusterConfigs.clusters[*] – An array of Kafka clusters and their configuration. Each entry defines the
configuration for a single Kafka cluster.

• clusterConfigs.clusters[*].clustername – The name of the cluster. This name is displayed on the UI.
• clusterConfigs.clusters[*].bootstrapServers – A comma-separated list of the bootstrap servers for the Kafka

cluster that Cloudera Surveyor connects to. Specify multiple servers for highly available connections.
• clusterConfigs.clusters[*].commonClientConfig – Kafka client configuration properties applied to all clients

for this cluster. Must contain upstream Kafka client properties as a map. The exact properties that you specify
here depend on the security configuration of the Kafka cluster that you want to connect. This example
specifies a Kafka cluster that is unsecure. For more information, see Registering Kafka clusters.

• All security-related properties are set false to disable security. These properties must be explicitly set to false
as the default value for all of them is true.

5. Install Cloudera Surveyor with helm install.

helm install cloudera-surveyor \
 --namespace [***NAMESPACE***] \
 --values [***VALUES FILE***] \
 --set 'image.imagePullSecrets=[***REGISTRY CREDENTIALS SECRET***]' \
 --set-file clouderaLicense.fileContent=[***PATH TO LICENSE FILE***] \
 oci://container.repository.cloudera.com/cloudera-helm/csm-operator/surv
eyor \

29

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka with Helm

 --version 1.6.0-b99

• The string cloudera-surveyor is the Helm release name of the chart installation. This is an arbitrary, user
defined name. Cloudera recommends that you use a unique and easily identifiable name.

• [***VALUES FILE***] is the values file you prepared in Step 4 on page 29.
• imagePullSecrets specifies what secret is used to pull images from the Cloudera registry. Setting this property

is mandatory, otherwise, Helm cannot pull the necessary images from the Cloudera Docker registry. Ensure
that you replace [***REGISTRY CREDENTIALS SECRET***] with the name of the Secret you created in
Step 3 on page 29.

• clouderaLicense.fileContent is used to register your license. If this property is set, a Secret is generated
that contains the license you specify. Setting this property is mandatory. Cloudera Surveyor will not function
without a valid license. Ensure that you replace [***PATH TO LICENSE FILE***] with the full path to your
Cloudera license file.

• You can use --set to override properties that are defined in your values file, or add additional properties that
are not present in your values file.

6. Verify your installation.

This is done by listing the Deployments and Pods in your namespace. If installation is successful, a Cloudera
Surveyor Deployment and two Pods will be present in the cluster.

kubectl get deployments --namespace [***NAMESPACE***]

NAME READY UP-TO-DATE AVAILABLE AGE
#...
cloudera-surveyor 2/2 2 2 13m

kubectl get pods --namespace [***NAMESPACE***]

NAME READY STATUS RESTARTS AGE
#...
cloudera-surveyor-649f755f6d-689gx 1/1 Running 0
 13m
cloudera-surveyor-649f755f6d-xj2kp 1/1 Running 0
 13m

7. Access the Cloudera Surveyor UI.

Installation by default creates a NodePort type Service for Cloudera Surveyor. The UI is accessible from any
of the Kubernetes cluster nodes on the external port of the Service. List Services to get the external port.

kubectl get service cloudera-surveyor-service --namespac
e [***NAMESPACE***]

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT
(S) AGE
cloudera-surveyor-service NodePort 10.43.196.52 <none> 808
0:30525/TCP 16m

In this example, the external port is 30525.

Results
Cloudera Surveyor is installed. You can now manage and monitor your Kafka clusters using the UI.
Related Information
Registering Kafka clusters

30

https://docs.cloudera.com/csm-operator/1.6/surveyor-configure/topics/csm-op-surveyor-registering-kafka.html

Cloudera Streams Messaging Operator for Kubernetes Installing Schema Registry with Helm

Installing Schema Registry with Helm

Learn how to install Schema Registry in Cloudera Streams Messaging Operator for Kubernetes with Helm. Schema
Registry is a standalone application that allows you to efficiently store and manage schemas for your streaming data.

Schema Registry is installed in your Kubernetes cluster with the Schema Registry Helm chart using the helm ins
tall command. When you install the chart, Helm deploys an instance of Schema Registry, which provides you with
schema storage and management capabilities.

During installation, you configure Schema Registry using a custom values file (values.yaml) passed to the Helm chart
with the --values (-f) option. This file contains properties for configuring Schema Registry, including network access,
database connectivity, and security settings for TLS and OAuth authentication. Additionally, some properties are
configured with --set options.

Installation instructions are provided for the following scenarios.

• Installing in an internet environment – Follow these steps to install a fully secure instance of Schema Registry
in a Kubernetes cluster with internet access.

• Installing for evaluation – Follow these steps to install an unsecure instance of Schema Registry for development
or proof of concept purposes.

Installing Schema Registry in an internet environment
Complete these steps to install Schema Registry if your Kubernetes cluster has internet access. These steps install a
fully secure instance of Schema Registry that has authentication, authorization, and channel encryption configured,
leveraging a PostgreSQL database for persistent schema storage.

Before you begin

• General prerequisites:

• Your Kubernetes environment meets requirements listed in System requirements.
• Your Kubernetes cluster requires internet connectivity to complete these steps. It must be able to reach the

Cloudera Docker registry.
• You have access to your Cloudera credentials (username and password). Credentials are required to access the

Cloudera Archive and Cloudera Docker registry where installation artifacts are hosted.
• You have access to a valid Cloudera license.
• Review the Helm chart reference before installation.

The Helm chart accepts various configuration properties that you can set during installation. Using these
properties you can customize your installation.

• Prerequisites for channel encryption (TLS):

• An Ingress controller is installed in your Kubernetes cluster. These steps use the Ingress-Nginx controller.
• Optional: cert-manager is installed in your Kubernetes cluster.

31

https://docs.cloudera.com/csm-operator/1.6/release-notes/topics/csm-op-system-req.html
https://docs.cloudera.com/csm-operator/1.6/reference/topics/csm-op-schema-registry-helm-reference.html
https://kubernetes.github.io/ingress-nginx/

Cloudera Streams Messaging Operator for Kubernetes Installing Schema Registry with Helm

• Prerequisites for OAuth authentication:

• An OAuth server is available that has TLS enabled.
• The server is accessible from the Kubernetes cluster where Schema Registry is deployed.
• At least one client must be configured in your realm that supports Client Credentials flow (sometimes referred

to as Machine-to-Machine (M2M), Service Account, or Application Permissions).
• Identify if your OAuth server issues tokens that contain a value in the aud claim. If a value is present,

note it down as you will need to provide it in your configuration. Referred to as [***OAUTH EXPECTED
AUDIENCE***] in the following steps.

• Get the JWKS endpoint URL of your OAuth server. You will need to provide it in your configuration. Schema
Registry requires this endpoint to validate the signatures of incoming tokens. Referred to as [***OAUTH
JWKS URL***] in the following steps.

• Identify which JWT claim in your token contains the username to authorize. Schema Registry checks the sub
claim by default. If your provider uses a different field, note it down as you will need to provide it in your
configuration. Referred to as [***OAUTH PRINCIPAL CLAIM***] in the following steps.

• Collect the usernames that you want to set as admin and read-only users. You will provide these in your
configuration. Referred to as [***ADMIN USERS***] and [***READ-ONLY USERS***] in the following
steps.

• Database prerequisites for persistent storage:

• A PostgreSQL server with TLS is available.
• Get the JDBC URL for the PostgreSQL server. Referred to as [***POSTGRESQL JDBC URL***] in the

following steps.
• Get a username that Schema Registry can use to connect to the PostgreSQL server. Referred to as

[***POSTGRESQL USERNAME***].

Procedure

1. Create a namespace in your Kubernetes cluster.

kubectl create namespace [***NAMESPACE***]

This is the namespace where you install Schema Registry. Use the namespace you create in all installation steps
that follow.

2. Log in to the Cloudera Docker registry with helm.

helm registry login container.repository.cloudera.com

Enter your Cloudera credentials when prompted.

3. Create a Kubernetes Secret containing your Cloudera credentials.

kubectl create secret docker-registry [***REGISTRY CREDENTIALS SECRET***]
 \
 --namespace [***NAMESPACE***] \
 --docker-server container.repository.cloudera.com \
 --docker-username [***USERNAME***] \
 --docker-password "$(echo -n 'Enter your Cloudera password: ' >&2; read
 -s password; echo >&2; echo $password)"

• Take note of the name you specify as [***REGISTRY CREDENTIALS SECRET***]. You will need to specify
the name in a later step.

• Replace [***USERNAME***] with your Cloudera username.
• Enter your Cloudera password when prompted.

32

Cloudera Streams Messaging Operator for Kubernetes Installing Schema Registry with Helm

4. Prepare a keystore for Schema Registry.

• If you have cert-manager available, create a Certificate resource. Take note of the Secret name you
configure in spec.secretName of the Certificate resource, you will need to specify it in a later step.

• If you are managing keys manually, create a certificate and private key and save it to a Secret. The keystore
should be in PKCS12 format.

kubectl create secret generic [***KEYSTORE SECRET NAME***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***KEYSTORE SECRET KEY***]=[***PATH TO KEYSTORE.P12***] \
 --from-file=[***KEYSTORE PASSWORD SECRET KEY***]=[***PATH TO KEYSTORE
 PASSWORD FILE***]

Take note of the Secret name, you will need to specify it in a later step.

5. Prepare a certificate and private key for Ingress.

• If you have cert-manager available, the certificate and private key for Ingress are automatically requested
by the Ingress. You only need to ensure that you have a valid Issuer available in cert-manager. You
specify the name of the Issuer resource in a later step.

• If you are managing keys manually, create a certificate and private key and save it to a Secret. Take note of
the Secret name, you will need to specify it in a later step.

This Secret referred to as [***INGRESS TLS CERT SECRET***] in the following steps.

6. Set up resources for OAuth authentication and authorization.

a) Generate a Java truststore (PKCS12) containing the TLS certificate of the root Certificate Authority (CA) of
the OAuth certificate chain.

keytool -import -trustcacerts -file [***OAUTH ROOT CA***] \
 -keystore [***TRUSTSTORE NAME***] \
 -storepass [***TRUSTSTORE PASSWORD***] \
 -storetype PKCS12

b) Create a Secret containing the truststore and its password.

kubectl create secret generic [***OAUTH TRUSTSTORE SECRET NAME***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***OAUTH TRUSTSTORE SECRET KEY***]=[***TRUSTSTORE
 NAME***] \
 --from-file=[***OAUTH TRUSTSTORE PASSWORD SECRET KEY***]=[***PATH TO
 TRUSTSTORE PW FILE***]

Take note of [***OAUTH TRUSTSTORE SECRET NAME***], [***OAUTH TRUSTSTORE SECRET
KEY***], and [***OAUTH TRUSTSTORE PASSWORD SECRET KEY***].

7. Prepare Secrets for required PostgreSQL connection values.

Typically, you will need a Secret containing the PostgreSQL server password, but additional files (for example
a truststore) might be needed depending on your setup.

a) Create a Secret containing the PostgreSQL server password

kubectl create secret generic [***POSTGRESQL PASSWORD SECRET NAME***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***POSTGRESQL PASSWORD SECRET KEY***]=[***PATH TO
 DATABASE PASSWORD FILE***]

b) Create a Secret containing any additional files that you need to mount to the cluster to establish a
PostgreSQL connection.

For example you might need to provide a truststore. In a following step, the example will contain
[***POSTGRESQL TRUSTSTORE SECRET NAME***] which refers to a Secret containing a truststore.

33

Cloudera Streams Messaging Operator for Kubernetes Installing Schema Registry with Helm

8. Prepare a custom values file (values.yaml).

The following example configures a fully secure deployment with a PostgreSQL database for persistent schema
storage.

tls:
 enabled: true
 keystore:
 secretKeyRef:
 name: [***KEYSTORE SECRET NAME***]
 key: [***KEYSTORE SECRET KEY***]
 password:
 secretKeyRef:
 name: [***KEYSTORE SECRET NAME***]
 key: [***KEYSTORE PASSWORD SECRET KEY***]
 type: PKCS12

ingress:
 enabled: true
 className: "nginx"
 rules:
 path: "/"
 host: "my-domain.example.com"
 tls:
 enabled: true
 secretRef: [***INGRESS TLS CERT SECRET***]
 extraAnnotations:
 nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"

authentication:
 oauth:
 enabled: true
 jwt:
 principalClaimName: [***OAUTH PRINCIPAL CLAIM***]
 expectedAudience: [***OAUTH EXPECTED AUDIENCE***]
 jwks:
 url: [***OAUTH JWKS URL***]
 tls:
 truststore:
 secretKeyRef:
 name: [***OAUTH TRUSTSTORE SECRET NAME***]
 key: [***OAUTH TRUSTSTORE SECRET KEY***]
 password:
 secretKeyRef:
 name: [***OAUTH TRUSTSTORE SECRET NAME***]
 key: [***OAUTH TRUSTSTORE PASSWORD SECRET KEY***]
 type: PKCS12
authorization:
 simple:
 enabled: true
 adminUsers: [***ADMIN USERS***]
 readOnlyUsers: [***READ-ONLY USERS***]

database:
 type: postgresql
 jdbcUrl: [***POSTGRESQL JDBC URL***]
 username: [***POSTGRESQL USERNAME***]
 password:
 secretKeyRef:
 name: [***POSTGRESQL PASSWORD SECRET NAME***]
 key: [***POSTGRESQL PASSWORD SECRET KEY***]
 tls:

34

Cloudera Streams Messaging Operator for Kubernetes Installing Schema Registry with Helm

 secretRef: [***POSTGRESQL TRUSTSTORE SECRET NAME***]

For tls

• tls.enabled – Enables or disables TLS.
• tls.keystore.secretKeyRef.name – The name of the Secret containing the TLS keystore.
• tls.keystore.secretKeyRef.key – The key in the Secret specified by tls.keystore.secretKeyRef.name that

contains the TLS keystore.
• tls.keystore.password.secretKeyRef.name – The name of the Secret containing the TLS keystore

password.
• tls.keystore.password.secretKeyRef.key – The key in the Secret specified by tls.keystore.password.se

cretKeyRef.name that contains the TLS keystore password.

For ingress

• ingress.enabled – Enables or disables external access through Ingress.
• ingress.tls.enabled – Enables or disables TLS for Ingress.
• ingress.tls.secretRef – The name of the Secret containing Ingress TLS certificates.
• ingress.extraAnnotations.* – Extra annotations to apply to the Ingress.

Note: If you are using cert-manager, add the cert-manager.io/issuer: [**ISSUER NAME**]
annotation to the ingress.extraAnnotations property. If this annotation is set, a certificate is
requested automatically and saved to the Secret specified in ingress.tls.secretRef.

For authentication

• authentication.oauth.enabled – Enables OAuth authentication for the Schema Registry server.
• authentication.oauth.jwt.principalClaimName – The name of the claim in the JWT token that contains the

principal (username) used for authorization.
• authentication.oauth.jwt.expectedAudience – The expected audience value. If the JWT token contains an

aud claim, it must match this value, otherwise the token is considered invalid.
• authentication.oauth.jwks.url – The URL to the JWKS endpoint.
• authentication.oauth.jwks.tls.truststore.secretKeyRef.name – The name of the Secret that contains the

truststore for accessing the JWKS endpoint. Configure this property if the backend of your JWKS has self-
signed certificates.

• authentication.oauth.jwks.tls.truststore.secretKeyRef.key – The key in the Secret specified by authenti
cation.oauth.jwks.tls.truststore.secretKeyRef.name that contains the truststore for accessing the JWKS
endpoint.

• authentication.oauth.jwks.tls.truststore.password.secretKeyRef.name – The name of the Secret that
contains the truststore password for accessing the JWKS endpoint.

• authentication.oauth.jwks.tls.truststore.password.secretKeyRef.key – The key in the Secret specified by
authentication.oauth.jwks.tls.truststore.password.secretKeyRef.name that contains the truststore password
for accessing the JWKS endpoint.

For authorization

• authorization.simple.enabled – Enables or disables authorization.
• authorization.simple.adminUsers – A list of admin usernames. Admin users can perform any operation in

Schema Registry.
• authorization.simple.readOnlyUsers – A list of read-only usernames. Read-only users can only perform

read operations in Schema Registry.

For database

• database.jdbcUrl – The JDBC URL that points to your PostgreSQL database.
• database.username – The PostgreSQL username for Schema Registry database connections.

35

Cloudera Streams Messaging Operator for Kubernetes Installing Schema Registry with Helm

• database.password.secretKeyRef.name – The name of the Secret containing the PostgreSQL database
password.

• database.password.secretKeyRef.key – The key in the Secret specified by database.password.secret
KeyRef.name that contains the PostgreSQL database password.

• database.tls.secretRef – The name of a Secret containing TLS configuration for PostgreSQL connections
(certificates, truststores, and so on). All keys from the Secret are mounted to /etc/schema-registry/pos
tgres/tls. Reference mounted files in your JDBC URL (database.jdbcUrl) to configure SSL connections if
SSL is required for PostgreSQL.

9. Install Schema Registry with helm install.

helm install schema-registry \
 --namespace [***NAMESPACE***] \
 --values [***VALUES FILE***] \
 --set 'image.imagePullSecrets=[***REGISTRY CREDENTIALS SECRET***]' \
 oci://container.repository.cloudera.com/cloudera-helm/csm-operator/sch
ema-registry \
 --version 1.6.0-b99

• The string schema-registry is the Helm release name of the chart installation. This is an arbitrary, user defined
name. Cloudera recommends that you use a unique and easily identifiable name.

• [***VALUES FILE***] is the values file you prepared in Step 8 on page 34.
• imagePullSecrets specifies what Secret is used to pull images from the Cloudera registry. Setting this

property is mandatory, otherwise, Helm cannot pull the necessary images from the Cloudera Docker registry.
Ensure that you replace [***REGISTRY CREDENTIALS SECRET***] with the name of the Secret you
created in Step 3 on page 32.

• You can use --set to override properties that are defined in your values file, or add additional properties that
are not present in your values file.

10. Verify your installation.

This is done by listing the Deployments and Pods in your namespace. If installation is successful, a Schema
Registry Deployment and two Pods will be present in the cluster.

kubectl get deployments --namespace [***NAMESPACE***]

NAME READY UP-TO-DATE AVAILABLE AGE
#...
schema-registry 2/2 2 2 13m

kubectl get pods --namespace [***NAMESPACE***]

NAME READY STATUS RESTARTS AGE
#...
schema-registry-858f647cfc-82mkj 1/1 Running 0
 13m
schema-registry-858f647cfc-jl4nt 1/1 Running 0
 13m

What to do next
Configure clients to interact with Schema Registry or review and use the REST API.
Related Information
Schema Registry REST API reference

36

https://docs.cloudera.com/csm-operator/1.6/schema-rest-api-reference/index.html

Cloudera Streams Messaging Operator for Kubernetes Installing Schema Registry with Helm

Installing Schema Registry for evaluation
Complete these steps to install a basic deployment of Schema Registry that has no security configured and uses an
in-memory database. Use these instructions if you want to install quickly in a development environment for proof of
concept or evaluation purposes.

Before you begin

• Your Kubernetes environment meets requirements listed in System requirements.
• Your Kubernetes cluster requires internet connectivity to complete these steps. It must be able to reach the

Cloudera Docker registry.
• You have access to your Cloudera credentials (username and password). Credentials are required to access the

Cloudera Archive and Cloudera Docker registry where installation artifacts are hosted.
• You have access to a valid Cloudera license.
• Review the Helm chart reference before installation.

The Helm chart accepts various configuration properties that you can set during installation. Using these
properties you can customize your installation.

Procedure

1. Create a namespace in your Kubernetes cluster.

kubectl create namespace [***NAMESPACE***]

This is the namespace where you install Schema Registry. Use the namespace you create in all installation steps
that follow.

2. Log in to the Cloudera Docker registry with helm.

helm registry login container.repository.cloudera.com

Enter your Cloudera credentials when prompted.

3. Create a Kubernetes Secret containing your Cloudera credentials.

kubectl create secret docker-registry [***REGISTRY CREDENTIALS SECRET***]
 \
 --namespace [***NAMESPACE***] \
 --docker-server container.repository.cloudera.com \
 --docker-username [***USERNAME***] \
 --docker-password "$(echo -n 'Enter your Cloudera password: ' >&2; read
 -s password; echo >&2; echo $password)"

• Take note of the name you specify as [***REGISTRY CREDENTIALS SECRET***]. You will need to specify
the name in a later step.

• Replace [***USERNAME***] with your Cloudera username.
• Enter your Cloudera password when prompted.

4. Prepare a custom values file (values.yaml).

The following example configures an unsecure deployment with an in-memory database.

tls:
 enabled: false

authentication:
 oauth:
 enabled: false

37

https://docs.cloudera.com/csm-operator/1.6/release-notes/topics/csm-op-system-req.html
https://docs.cloudera.com/csm-operator/1.6/reference/topics/csm-op-schema-registry-helm-reference.html

Cloudera Streams Messaging Operator for Kubernetes Installing Schema Registry with Helm

authorization:
 simple:
 enabled: false
database:
 type: in-memory

service:
 type: NodePort

• All security-related properties are set false to disable security. These properties must be explicitly set to false
as the default value for all of them is true.

• database.type – The type of database to use. The in-memory option starts Schema Registry with an ephemeral
in-memory database that requires no additional configuration. However, in-memory mode is only suitable for
testing and evaluation as all schemas will be lost when Pods restart.

• service.type – The type of Kubernetes Service used for exposing the Schema Registry application. In this
example NodePort is used instead of the default ClusterIP, so that Schema Registry is made accessible
from outside the Kubernetes cluster.

5. Install Schema Registry with helm install.

helm install schema-registry \
 --namespace [***NAMESPACE***] \
 --values [***VALUES FILE***] \
 --set 'image.imagePullSecrets=[***REGISTRY CREDENTIALS SECRET***]' \
 oci://container.repository.cloudera.com/cloudera-helm/csm-operator/sch
ema-registry \
 --version 1.6.0-b99

• The string schema-registry is the Helm release name of the chart installation. This is an arbitrary, user defined
name. Cloudera recommends that you use a unique and easily identifiable name.

• [***VALUES FILE***] is the values file you prepared in Step 4 on page 37.
• imagePullSecrets specifies what Secret is used to pull images from the Cloudera registry. Setting this

property is mandatory, otherwise, Helm cannot pull the necessary images from the Cloudera Docker registry.
Ensure that you replace [***REGISTRY CREDENTIALS SECRET***] with the name of the Secret you
created in Step 3 on page 37.

• You can use --set to override properties that are defined in your values file, or add additional properties that
are not present in your values file.

6. Verify your installation.

This is done by listing the Deployments and Pods in your namespace. If installation is successful, a Schema
Registry Deployment and two Pods will be present in the cluster.

kubectl get deployments --namespace [***NAMESPACE***]

NAME READY UP-TO-DATE AVAILABLE AGE
#...
schema-registry 2/2 2 2 13m

kubectl get pods --namespace [***NAMESPACE***]

NAME READY STATUS RESTARTS AGE
#...
schema-registry-858f647cfc-82mkj 1/1 Running 0
 13m
schema-registry-858f647cfc-jl4nt 1/1 Running 0
13m

38

Cloudera Streams Messaging Operator for Kubernetes Installing Strimzi on Taikun CloudWorks [Technical Preview]

7. Access the Schema Registry UI.

Installing with service.type: NodePort deploys a NodePort type Service for Schema Registry making it
accessible from any of the Kubernetes cluster nodes on the external port of the Service. List Services to get
the external port.

kubectl get service schema-registry-service --namespace [***NAMESPACE***]

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT
(S) AGE
schema-registry-service NodePort 10.43.121.112 <none> 9090
:31578/TCP 13m

In this example, the external port is 31578.

What to do next
Configure clients to interact with Schema Registry or review and use the REST API.
Related Information
Schema Registry REST API reference

Installing Strimzi on Taikun CloudWorks [Technical
Preview]

Learn how to install Strimzi in Cloudera Streams Messaging Operator for Kubernetes on Taikun CloudWorks.
Installation involves importing the Cloudera Kafka Operator repository, adding Strimzi to a new or existing catalog,
and installing Strimzi using the Taikun CloudWorks UI.

Before you begin

Note: This feature is in Technical Preview and is not ready for production deployments. Cloudera
recommends trying this feature in test or development environments and encourages you to provide feedback
on your experiences.

• You have access to a project and Kubernetes cluster in Taikun CloudWorks.
• Your Kubernetes environment meets requirements listed in System requirements.
• The worker nodes in your cluster meet the minimum sizing requirements listed in Sizing and performance

considerations.
• Access to your cluster with kubectl is configured. For more information, see Accessing Cluster with Kubeconfig.
• Your Kubernetes cluster requires internet connectivity to complete these steps. It must be able to reach the

Cloudera Docker registry.
• You have access to your Cloudera credentials (username and password). Credentials are required to access the

Cloudera Archive and Cloudera Docker registry where installation artifacts are hosted.
• You have access to a valid Cloudera license.
• Review the Helm chart reference before installation.

The Helm chart accepts various configuration properties that you can set during installation. Using these
properties you can customize your installation.

• If you are planning to watch and manage more than 20 Kafka clusters with a single installation, you must increase
the memory and heap allocated to the Strimzi Cluster Operator. For more information, see Increasing Cluster
Operator memory.

39

https://docs.cloudera.com/csm-operator/1.6/schema-rest-api-reference/index.html
https://docs.cloudera.com/csm-operator/1.6/release-notes/topics/csm-op-system-req.html
https://docs.cloudera.com/csm-operator/1.6/overview/topics/csm-op-sizing-and-performance.html
https://docs.cloudera.com/csm-operator/1.6/overview/topics/csm-op-sizing-and-performance.html
https://docs.taikun.cloud/CloudWorks/Getting_Started/Accessing_Cluster_with_Kubeconfig/
https://docs.cloudera.com/csm-operator/1.6/reference/topics/csm-op-helm-reference.html
https://docs.cloudera.com/csm-operator/1.6/strimzi-configure/topics/csm-op-increasing-operator-memory.html
https://docs.cloudera.com/csm-operator/1.6/strimzi-configure/topics/csm-op-increasing-operator-memory.html

Cloudera Streams Messaging Operator for Kubernetes Installing Strimzi on Taikun CloudWorks [Technical Preview]

Importing the Cloudera Kafka Operator repository and adding Strimzi to a
catalog

Complete these steps to import the Cloudera Kafka Operator repository and to add Strimzi to a new or existing
catalog in Taikun CloudWorks.

Procedure

1. Import the Cloudera Kafka Operator repository.

a) In Taikun CloudWorks, go to Repositories and select the Private tab.
b)

Click Import Repository.
c) Enter the following in Import Repository:

• Enter a unique name in Name.
• Enter the following OCI repository URL in URL:

oci://container.repository.cloudera.com/cloudera-helm/csm-operator/s
trimzi-kafka-operator

• Enter your Cloudera credentials in Username and Password.
d) Click Import.

2. Add Strimzi to a catalog.

Tip: These instructions create a new catalog. You can also add your application to an existing catalog.

a)
Go to Catalogs and click Add Catalog.

b) Enter a catalog name and description in Create Catalog.
c) Click Save.
d)

Go to [***YOUR CATALOG***] and click Add Applications.
e) Select [***YOUR REPOSITORY***] from the Repository drop-down list and click Apply.
f)

Find the strimzi-kafka-operator application in the list of available applications and click .
g)

Click Add to the catalog.

3. Add catalog app parameters.

a) Click Add Parameters.
b) Find and add the following parameters:

• watchAnyNamespaces
• clouderaLicense.secretRef

c) Set the following default values for the parameters you added:

• watchAnyNamespaces=true
• clouderaLicense.secretRef=csm-op-license

d) Click Save.

Installing Strimzi
Complete these steps to install Strimzi on Taikun CloudWorks.

40

Cloudera Streams Messaging Operator for Kubernetes Installing Strimzi on Taikun CloudWorks [Technical Preview]

Procedure

1. Create a namespace in your Kubernetes cluster.

kubectl create namespace [***NAMESPACE***]

Use this namespace in all of the following installation steps.

2. Create a Kubernetes Secret containing your Cloudera license.

kubectl create secret generic csm-op-license \
 --namespace [***NAMESPACE***] \
 --from-file=license=[***PATH TO LICENSE FILE***]

3. Create a Kubernetes Secret containing your Cloudera credentials.

kubectl create secret docker-registry [***REGISTRY CREDENTIALS SECRET***]
 \
 --namespace [***NAMESPACE***] \
 --docker-server container.repository.cloudera.com \
 --docker-username [***USERNAME***] \
 --docker-password "$(echo -n 'Enter your Cloudera password: ' >&2; read
 -s password; echo >&2; echo $password)"

• Take note of the name you specify as [***REGISTRY CREDENTIALS SECRET***]. You will need to specify
the name in a later step.

• Replace [***USERNAME***] with your Cloudera username.
• Enter your Cloudera password when prompted.

4. Install Strimzi.

a) In Taikun CloudWorks, go to Projects [***YOUR PROJECT***] Applications .
b)

Click Install.
c) Search for strimzi-kafka-operator.
d) Find the strimzi-kafka-operator application in the list of available applications. Select the one that is in [***

YOUR CATALOG ***] and click .
e) Click Bind if you get a prompt to bind the catalog to your project.
f) Configure the following common settings in Application Instance:

• Enter a name in Application Instance Name.
• In Namespace, select the namespace you created in Step 1.
• Enable the Extra Values tab by clicking the Extra Values toggle.

g) Click Continue.
h) Configure the following parameters in Installation Params:

• Set the watchAnyNamespace toggle to enabled.
• Set clouderaLicense.secretRef to the name of the Secret you created in Step 2.

Tip: Required parameters might already use correct default values.

i) Click Continue.
j) Provide the following values in Extra Values:

image:
 imagePullSecrets:

41

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka on Taikun
CloudWorks [Technical Preview]

 - name: [***REGISTRY CREDENTIALS SECRET***]

Replace [***REGISTRY CREDENTIALS SECRET***] with the name of the Secret you created in Step 3.
k) Validate your extra values by clicking Check extra values.
l)

Click Run installation.

5. Go to Projects [***YOUR PROJECT***] LiveOps to verify your installation.

If installation is successful, a Strimzi Deployment and Pod will be present in the cluster in the installation
namespace. These resources use the name you specified in Application Instance Name.

What to do next

• Deploy a Kafka cluster, see Deploying Kafka.

Note: When deploying a Kafka cluster on Taikun CloudWorks, use ingress type listeners, set the Ingress
class to taikun, and ensure that bootstrap and broker hostnames resolve to your cluster.

Related Information
Project Creation | Taikun CloudWorks

Creating Kubernetes cluster | Taikun CloudWorks

Accessing Cluster with Kubeconfig | Taikun CloudWorks

Installing Applications | Taikun CloudWorks

LiveOps | Taikun CloudWorks

Installing Cloudera Surveyor for Apache Kafka on Taikun
CloudWorks [Technical Preview]

Learn how to install Cloudera Surveyor in Cloudera Streams Messaging Operator for Kubernetes on Taikun
CloudWorks. Installation involves importing the Cloudera Surveyor repository, adding Cloudera Surveyor to a new or
existing catalog, and installing Cloudera Surveyor using the Taikun CloudWorks UI.

Before you begin

Note: This feature is in Technical Preview and is not ready for production deployments. Cloudera
recommends trying this feature in test or development environments and encourages you to provide feedback
on your experiences.

• You have access to a project and Kubernetes cluster in Taikun CloudWorks.
• Your Kubernetes environment meets requirements listed in System requirements.
• The worker nodes in your cluster meet the minimum sizing requirements listed in Sizing and performance

considerations.
• Access to your cluster with kubectl is configured. For more information, see Accessing Cluster with Kubeconfig.
• Your Kubernetes cluster requires internet connectivity to complete these steps. It must be able to reach the

Cloudera Docker registry.
• You have access to your Cloudera credentials (username and password). Credentials are required to access the

Cloudera Archive and Cloudera Docker registry where installation artifacts are hosted.
• You have access to a valid Cloudera license.
• Review the Helm chart reference before installation.

The Helm chart accepts various configuration properties that you can set during installation. Using these
properties you can customize your installation.

42

https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-deploying-kafka.html
https://docs.taikun.cloud/CloudWorks/Getting_Started/Project_Creation/
https://docs.taikun.cloud/CloudWorks/Getting_Started/Creating_Kubernetes_cluster/
https://docs.taikun.cloud/CloudWorks/Getting_Started/Accessing_Cluster_with_Kubeconfig/
https://docs.taikun.cloud/CloudWorks/Managing_your_Projects/Installing_Applications/#private-repositories
https://docs.taikun.cloud/CloudWorks/Managing_your_Projects/LiveOps/
https://docs.cloudera.com/csm-operator/1.6/release-notes/topics/csm-op-system-req.html
https://docs.cloudera.com/csm-operator/1.6/overview/topics/csm-op-sizing-and-performance.html
https://docs.cloudera.com/csm-operator/1.6/overview/topics/csm-op-sizing-and-performance.html
https://docs.taikun.cloud/CloudWorks/Getting_Started/Accessing_Cluster_with_Kubeconfig/
https://docs.cloudera.com/csm-operator/1.6/reference/topics/csm-op-surveyor-helm-reference.html

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka on Taikun
CloudWorks [Technical Preview]

Importing the Cloudera Surveyor repository and adding Cloudera
Surveyor to a catalog

Complete these steps to import the Cloudera Surveyor repository and to add Cloudera Surveyor to a new or existing
catalog in Taikun CloudWorks.

Procedure

1. Import the Cloudera Surveyor repository.

a) In Taikun CloudWorks, go to Repositories and select the Private tab.
b)

Click Import Repository.
c) Enter the following in Import Repository:

• Enter a unique name in Name.
• Enter the following OCI repository URL in URL:

oci://container.repository.cloudera.com/cloudera-helm/csm-operator/s
urveyor

• Enter your Cloudera credentials in Username and Password.
d) Click Import.

2. Add Cloudera Surveyor to a catalog.

Tip: These instructions create a new catalog. You can also add your application to an existing catalog.

a)
Go to Catalogs and click Add Catalog.

b) Enter a catalog name and description in Create Catalog.
c) Click Save.
d)

Go to [***YOUR CATALOG***] and click Add Applications.
e) Select [***YOUR REPOSITORY***] from the Repository drop-down list and click Apply.
f)

Find the surveyor application in the list of available applications and click .
g)

Click Add to the catalog.

3. Add catalog app parameters.

a) Click Add Parameters.
b) Find and add the clouderaLicense.secretRef parameter.

c) Set the clouderaLicense.secretRef parameter to csm-op-license.
d) Click Save.

Installing Cloudera Surveyor
Complete these steps to install Cloudera Surveyor on Taikun CloudWorks.

About this task

These instructions walk you through installing an unsecure instance of Cloudera Surveyor on Taikun CloudWorks.
Use these instructions for quick installation in development environments for proof of concept and evaluation
purposes.

43

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka on Taikun
CloudWorks [Technical Preview]

While the security configuration of Cloudera Surveyor itself is not covered, the example configuration demonstrates
how to register a Kafka cluster that has TLS encryption enabled.

Procedure

1. Create a namespace in your Kubernetes cluster.

kubectl create namespace [***NAMESPACE***]

Use this namespace in all of the following installation steps.

2. Create a Kubernetes Secret containing your Cloudera license.

kubectl create secret generic csm-op-license \
 --namespace [***NAMESPACE***] \
 --from-file=license=[***PATH TO LICENSE FILE***]

3. Create a Kubernetes Secret containing your Cloudera credentials.

kubectl create secret docker-registry [***REGISTRY CREDENTIALS SECRET***]
 \
 --namespace [***NAMESPACE***] \
 --docker-server container.repository.cloudera.com \
 --docker-username [***USERNAME***] \
 --docker-password "$(echo -n 'Enter your Cloudera password: ' >&2; read
 -s password; echo >&2; echo $password)"

• Take note of the name you specify as [***REGISTRY CREDENTIALS SECRET***]. You will need to specify
the name in a later step.

• Replace [***USERNAME***] with your Cloudera username.
• Enter your Cloudera password when prompted.

4. Create Secrets for sensitive Kafka client configuration values.

Cloudera Surveyor connects to Kafka clusters as any other Kafka client and requires a client configuration. If the
Kafka cluster is secured, the client configuration will include sensitive property values. Cloudera recommends
that you store sensitive values in Secrets, mount the Secrets to the Cloudera Surveyor Container, and
reference the values in your configuration instead of hard-coding them.

Typically, you need to create two Secrets. One contains the Kafka cluster truststore and password, and the
other contains a JAAS configuration. The Kafka truststore must be in JKS or PKCS12 format.

kubectl create secret generic [***KAFKA TRUSTSTORE SECRET***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***KAFKA TRUSTSTORE KEY***]=[***PATH TO TRUSTSTORE***] \
 --from-file=[***KAFKA TRUSTSTORE PASSWORD KEY***]=[***PATH TO TRUSTSTORE
 PASSWORD FILE***]

kubectl create secret generic [***KAFKA SASL.JAAS.CONFIG SECRET***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***KAFKA SASL.JAAS.CONFIG KEY***]=[***PATH TO KAFKA
 SASL.JAAS.CONFIG FILE***]

• Take note of the Secret names as well as the key names you configure. You will need to specify them in a
later step.

• All key names like [***KAFKA TRUSTSTORE KEY***] or [***KAFKA SASL.JAAS.CONFIG KEY***] are
arbitrary.

44

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka on Taikun
CloudWorks [Technical Preview]

• [***PATH TO KAFKA SASL.JAAS.CONFIG FILE***] is a path to a file containing JAAS configuration
similar to the following example:

org.apache.kafka.common.security.plain.PlainLoginModule required usernam
e="MY-USER" password="MY-PASSWORD";

The contents of this file are set in a later step as the value of the sasl.jaas.config Kafka client property for
Cloudera Surveyor internal Kafka clients. Ensure that the format of the configuration is valid for the sasl.jaa
s.config property. That is, its a single line of configuration.

5. Install Cloudera Surveyor.

a) In Taikun CloudWorks, go to Projects [***YOUR PROJECT***] Applications .
b)

Click Install.
c) Search for surveyor.
d) Find the surveyor application in the list of available applications. Select the one that is in [*** YOUR

CATALOG ***] and click .
e) Click Bind if you get a prompt to bind the catalog to your project.
f) Configure the following common settings in Application Instance:

• Enter a name in Application Instance Name.
• In Namespace, select the namespace you created in Step 1.
• Enable the Extra Values tab by clicking the Extra Values toggle.

g) Click Continue.
h) In Installation Params, set clouderaLicense.secretRef to the name of the Secret you created in Step 2.

Tip: Required parameters might already use correct default values.

i) Click Continue.
j) Provide the following values in Extra Values:

image:
 imagePullSecrets: [***REGISTRY CREDENTIALS SECRET***]
clusterConfigs:
 clusters:
 - clusterName: [***CLUSTER NAME***]
 tags:
 - [***TAG1***]
 - [***TAG2***]
 bootstrapServers: [***BOOTSTRAP SERVERS***]
 commonClientConfig:
 security.protocol: "SSL"
 ssl.truststore.type: "pkcs12"
 ssl.truststore.location: "/opt/secrets/[***KAFKA TRUSTSTORE
 SECRET***]/[***KAFKA TRUSTSTORE FILE***]"
 ssl.truststore.password: "\\${dir:/opt/secrets/[***KAFKA
 TRUSTSTORE SECRET***]:[***KAFKA TRUSTSTORE PASSWORD FILE***]}"
 sasl.jaas.config: "\\${dir:/opt/secrets/[***KAFKA
 SASL.JAAS.CONFIG SECRET***]:[***KAFKA SASL.JAAS.CONFIG FILE***]}"
 adminOperationTimeout: PT1M
 authorization:
 enabled: false
secretsToMount:
 - create: false
 secretRef: [***KAFKA TRUSTSTORE SECRET***]
 items:
 - key: [***KAFKA TRUSTSTORE KEY***]
 path: [***KAFKA TRUSTSTORE FILE***]
 - key: [***KAFKA TRUSTSTORE PASSWORD KEY***]

45

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka on Taikun
CloudWorks [Technical Preview]

 path: [***KAFKA TRUSTSTORE PASSWORD FILE***]
 - create: false
 secretRef: [***KAFKA SASL.JAAS.CONFIG SECRET***]
 items:
 - key: [***KAFKA SASL.JAAS.CONFIG KEY***]
 path: [***KAFKA SASL.JAAS.CONFIG FILE***]
surveyorConfig:
 surveyor:
 authentication:
 enabled: false
tlsConfigs:
 enabled: false
ingress:
 enabled: true
 className: taikun
 extraAnnotations:
 nginx.ingress.kubernetes.io/backend-protocol: HTTP
 rules:
 host: "[***SUBDOMAIN***].[***DOMAIN NAME***]"
 port: 8080
 tls:
 enabled: false

For image
image contains all configuration settings for the container image. This can include the image
repository, tag version, pull policy, and any required authentication Secrets for accessing the
registry.

In this example, image.imagePullSecrets is set. This property specifies the Secret that contains
your Cloudera credentials. These credentials are used to access the Cloudera Docker registry to
pull required images. Replace [***REGISTRY CREDENTIALS SECRET***] with the name of the
Secret you created in Step 3.

For clusterConfigs

clusterConfigs specifies the Kafka clusters that Cloudera Surveyor connects to. Clusters specified here
are the ones that will be available on the UI for monitoring and management. For more information and
additional examples, see Registering Kafka clusters.

• clusterConfigs.clusters[*] – An array of Kafka clusters and their configuration. Each entry defines the
configuration for a single Kafka cluster.

• clusterConfigs.clusters[*].clustername – The name of the cluster. This name is displayed on the UI.
• clusterConfigs.clusters[*].bootstrapServers – A comma-separated list of the bootstrap servers for

the Kafka cluster that Cloudera Surveyor connects to. Specify multiple servers for highly available
connections.

• clusterConfigs.clusters[*].tags – User defined tags. Used for organization and filtering.
• clusterConfigs.clusters[*].commonClientConfig – Kafka client configuration properties applied to all

clients for this cluster. Must contain upstream Kafka client properties as a map. The exact properties
that you specify here depend on the security configuration of the Kafka cluster that you want to
connect. This example specifies a Kafka cluster that uses PLAIN authentication with TLS.

Sensitive property values are referenced from Secrets instead of being hardcoded. Secrets
containing sensitive properties are mounted using the secretsToMount property. References use Kafka
DirectoryConfigProvider syntax.

Note: References in the client configurations must be escaped because Cloudera Surveyor
itself uses the same syntax for references.

46

https://docs.cloudera.com/csm-operator/1.6/surveyor-configure/topics/csm-op-surveyor-registering-kafka.html

Cloudera Streams Messaging Operator for Kubernetes Installing Cloudera Surveyor for Apache Kafka on Taikun
CloudWorks [Technical Preview]

• clusterConfigs.clusters[*].authorization.enabled – Enables or disables authorization for this cluster.

For secretsToMount

secretsToMount specifies the Secrets to mount in the Cloudera Surveyor Container. You use secr
etsToMount to mount the sensitive values required for Kafka client configuration specified in clusterConfi
gs. For more information and additional examples, see Managing sensitive data in client configuration

• secretsToMount[*].create – Specifies whether to create the Secret. Set to false in this example as the
Secrets are assumed to already exist.

• secretsToMount[*].secretRef – The name of the Secret to mount.
• secretsToMount[*].items[*].key – The key in the Secret to mount.
• secretsToMount[*].items[*].path – The path where the item is mounted. The path is relative to /opt/

secrets/[***SECRET NAME***]/ in the Cloudera Surveyor Container.

For ingress

ingress enables the creation of an Ingress. The Ingress provides external access to the Cloudera
Surveyor UI.

• ingress.enabled – Enables or disables Ingress.
• ingress.className – The class name of the Ingress controller. This example configures the Ingress-

Nginx controller.
• ingress.rules.host – Specifies the DNS hostname that the Ingress controller should match for

incoming HTTP/HTTPS requests.

Configure this property as follows:

• [***SUBDOMAIN***] – Arbitrary and unique subdomain or service name that identifies the
application. For example: surveyor.

• [***DOMAIN NAME***] – A domain that resolves to the access IP of your Kubernetes cluster.

If you do not have DNS configured or do not know your domain, use a wildcard DNS service like ssli
p.io. If you use a wildcard DNS service, the value you enter must have the following format:

[***SUBDOMAIN***].[***ACCESS IP***].[***WILDCARD DNS SERVICE***]

For example:

surveyor.203.0.113.255.sslip.io

You can find the access IP of the cluster in Taikun CloudWorks by going to Projects [***YOUR
PROJECT***]

k) Validate your extra values by clicking Check extra values.
l)

Click Run installation.

6. Go to Projects [***YOUR PROJECT***] LiveOps to verify your installation.

If installation is successful, a Cloudera Surveyor Deployment and two Pods will be present in the cluster in the
installation namespace. These resources use the name you specified in Application Instance Name.

7. Access the Cloudera Surveyor UI.

You can access the UI through the host you configured in ingress.rules.host.

Results
Cloudera Surveyor is installed. You can now manage and monitor your Kafka clusters using the UI.
Related Information
Registering Kafka clusters

Managing sensitive data in client configurations

47

https://docs.cloudera.com/csm-operator/1.6/surveyor-configure/topics/csm-op-surveyor-registering-kafka.html#task_s5f_p1l_rfc
https://docs.cloudera.com/csm-operator/1.6/surveyor-configure/topics/csm-op-surveyor-registering-kafka.html
https://docs.cloudera.com/csm-operator/1.6/surveyor-configure/topics/csm-op-surveyor-registering-kafka.html#task_s5f_p1l_rfc

Cloudera Streams Messaging Operator for Kubernetes Installing from OperatorHub in OpenShift

Project Creation | Taikun CloudWorks

Creating Kubernetes cluster | Taikun CloudWorks

Accessing Cluster with Kubeconfig | Taikun CloudWorks

Installing Applications | Taikun CloudWorks

LiveOps | Taikun CloudWorks

Installing from OperatorHub in OpenShift

Learn how to install Cloudera Streams Messaging Operator for Kubernetes from OperatorHub in OpenShift.

About this task

Important: When installing from OperatorHub, Cloudera Streams Messaging Operator for Kubernetes is
installed using Operator Lifecycle Manager (OLM). Customizing your installation and setting the properties
of the Strimzi Cluster Operator is limited both during and following installation.

Installation from OperatorHub in Openshift involves creating two Secrets in your installation namespace. One
containing your Cloudera license, and one containing your Cloudera credentials (username and password). The
license is required for Cloudera Streams Messaging Operator for Kubernetes to function properly. The credentials
provide access to the Cloudera Docker registry (container.repository.cloudera.com) where installation artifacts are
pulled from.

After the Secrets are available in your cluster, you can continue with the standard process of installing operators
from OperatorHub.

Before you begin

• Ensure that you have access to your Cloudera credentials (username and password).
• You have access to a valid Cloudera license.
• These instructions use oc to create Secrets. However, you can also create both Secrets using the OpenShift

web console.

Procedure

1. Create a Secret containing your license.

The name of the Secret is fixed. It must be called csm-op-license.

oc create secret generic csm-op-license --from-file=license.txt=[***PATH
 TO LICENSE FILE***]

2. Create a Secret containing your Cloudera credentials.

The name of the Secret is fixed. It must be called cloudera-container-repository-credentials.

oc create secret docker-registry cloudera-container-repository-credentials
 \
 --docker-username=[***USERNAME***] \
 --docker-password=[***PASSWORD***] \
 --docker-server=container.repository.cloudera.com

Note: The Secret containing your Cloudera credentials must also be available in all namespaces where
you deploy Kafka or Kafka Connect clusters. Cloudera recommends that you create the Secret in all
required namespaces now if you know what namespaces you will be using to deploy Kafka or Kafka
Connect.

48

https://docs.taikun.cloud/CloudWorks/Getting_Started/Project_Creation/
https://docs.taikun.cloud/CloudWorks/Getting_Started/Creating_Kubernetes_cluster/
https://docs.taikun.cloud/CloudWorks/Getting_Started/Accessing_Cluster_with_Kubeconfig/
https://docs.taikun.cloud/CloudWorks/Managing_your_Projects/Installing_Applications/#private-repositories
https://docs.taikun.cloud/CloudWorks/Managing_your_Projects/LiveOps/

Cloudera Streams Messaging Operator for Kubernetes Installing from OperatorHub in OpenShift

3. Install Cloudera Streams Messaging Operator for Kubernetes from OperatorHub using the web console or the
CLI.

For detailed steps, see Adding Operators to a cluster in the OpenShift documentation.

What to do next

• Deploy a Kafka cluster, see Deploying Kafka.
• Set up Prometheus for monitoring, see Configuring Kafka for Prometheus monitoring and Monitoring with

Prometheus.

49

https://docs.openshift.com/container-platform/latest/operators/admin/olm-adding-operators-to-cluster.html
https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-deploying-kafka.html
https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-configuring-prometheus-monitoring-kafka.html
https://docs.cloudera.com/csm-operator/1.6/monitoring-diagnostics/topics/csm-op-prometheus-monitoring.html
https://docs.cloudera.com/csm-operator/1.6/monitoring-diagnostics/topics/csm-op-prometheus-monitoring.html

	Contents
	Installation overview
	Installing Strimzi with Helm
	Installing Strimzi in an internet environment
	Installing Strimzi in an air-gapped environment

	Installing Cloudera Surveyor for Apache Kafka with Helm
	Installing Cloudera Surveyor in an internet environment
	Installing Cloudera Surveyor in an air-gapped environment
	Installing Cloudera Surveyor for evaluation

	Installing Schema Registry with Helm
	Installing Schema Registry in an internet environment
	Installing Schema Registry for evaluation

	Installing Strimzi on Taikun CloudWorks [Technical Preview]
	Importing the Cloudera Kafka Operator repository and adding Strimzi to a catalog
	Installing Strimzi

	Installing Cloudera Surveyor for Apache Kafka on Taikun CloudWorks [Technical Preview]
	Importing the Cloudera Surveyor repository and adding Cloudera Surveyor to a catalog
	Installing Cloudera Surveyor

	Installing from OperatorHub in OpenShift

