
Cloudera Streams Messaging Operator for Kubernetes 1.6.0

Kafka Connect Deployment and Configuration
Date published: 2024-06-11
Date modified: 2026-01-27

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

This content is modified and adapted from Strimzi Documentation by Strimzi Authors, which is licensed under CC BY 4.0.

https://strimzi.io/documentation/
https://creativecommons.org/licenses/by/4.0/

Cloudera Streams Messaging Operator for Kubernetes | Contents | iii

Contents

Deploying Kafka Connect clusters..4

Configuring Kafka Connect clusters.. 5
Updating Kafka Connect configurations..5
Configurable Kafka Connect properties and exceptions..6
Configuring group IDs... 7
Configuring internal topics...7
Configuring worker replica count.. 8
Configuring the Kafka bootstrap..8
Enabling KafkaConnector resources.. 9
Configuration providers.. 9
Adding external configuration to Kafka Connect worker pods...11
Configuring connector configuration override policy..12
Configuring delayed rebalance...12

Installing Kafka Connect connector plugins..13
Building a new Kafka image automatically with Strimzi..14
Configuring the target registry... 16
Configuring connector plugins to add..17
Rebuilding a Kafka image..17

Exactly-once semantics...17
Enabling exactly-once semantics..18
Disabling exactly-once semantics.. 18
Source connector properties for exactly-once semantics... 19

Configuring Kafka Connect for Prometheus monitoring...................................19

Configuring the security context of Kafka Connect... 20

Cloudera Streams Messaging Operator for Kubernetes Deploying Kafka Connect clusters

Deploying Kafka Connect clusters

You can deploy a Kafka Connect cluster by creating a KafkaConnect resource. The Kafka Connect workers are
automatically configured to run in distributed mode. You can configure the number of workers. Each worker is a
separate pod.

Before you begin

• Ensure that the Strimzi Cluster Operator is installed and running. See Installation.
• Ensure that you have a working Kafka cluster. The Kafka cluster does not need to be managed by Strimzi, and it

does not need to run on Kubernetes.
• Ensure that a namespace is available where you can deploy your cluster. If not, create one.

kubectl create namespace [***NAMESPACE***]

• Ensure that the Secret containing credentials for the Docker registry where Cloudera Streams Messaging
Operator for Kubernetes artifacts are hosted is available in the namespace where you plan on deploying your
cluster. If the Secret is not available, create it.

kubectl create secret docker-registry [***REGISTRY CREDENTIALS SECRET***]
 \
 --namespace [***NAMESPACE***] \
 --docker-server [***YOUR REGISTRY***] \
 --docker-username [***USERNAME***] \
 --docker-password "$(echo -n 'Enter your password: ' >&2; read -s passw
ord; echo >&2; echo $password)"

• [***REGISTRY CREDENTIALS SECRET***] must be the same as the name of the Secret containing
registry credentials that you created during Strimzi installation.

• Replace [***YOUR REGISTRY***] with the server location of the Docker registry where Cloudera Streams
Messaging Operator for Kubernetes artifacts are hosted. If your Kubernetes cluster has internet access, use
container.repository.cloudera.com. Otherwise, enter the server location of your self-hosted registry.

• Replace [***USERNAME***] with a username that provides access to the registry, and enter the
corresponding password when prompted. If you are using container.repository.cloudera.com, enter your
Cloudera credentials. Otherwise, enter credentials providing access to your self-hosted registry.

• The following steps walk you through a basic cluster deployment example. If you want to deploy a Kafka Connect
cluster that has third-party connectors or other types of plugins installed, see Installing Kafka Connect connector
plugins.

Procedure

1. Create a YAML configuration that contains your KafkaConnect resource.

apiVersion: kafka.strimzi.io/v1
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 version: 4.1.1.1.6
 replicas: 3
 bootstrapServers: my-cluster-kafka-bootstrap.kafka:9092

• The spec.version property specifies the Kafka version to use. The property must specify a Cloudera Kafka
version supported by Cloudera Streams Messaging Operator for Kubernetes. For example, 4.1.1.1.6. Do not

4

https://docs.cloudera.com/csm-operator/1.6/installation/topics/csm-op-install-overview.html
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-deploy-configure/topics/csm-op-connect-installing-connectors.html
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-deploy-configure/topics/csm-op-connect-installing-connectors.html

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka Connect clusters

add Apache Kafka versions, they are not supported. You can find a list of supported Kafka versions in the
Release Notes.

• The bootstrapServers property specifies the Kafka brokers to which to connect. Cloudera recommends
providing multiple brokers to handle broker failures and enable connecting to another instance.

The my-cluster-kafka-bootstrap.kafka:9092 value is the bootstrap of a Kafka cluster that is deployed on
Kubernetes with Cloudera Streams Messaging Operator for Kubernetes. my-cluster is the name of the cluster
specified in metadata.name of the Kafka resource. The kafka-bootstrap string is fixed. The string kafka after
the dot is the namespace where the cluster is deployed.

Note: You can deploy multiple connect clusters, as long as their name, group ID, and internal topic
name is different. Strimzi provides a default group ID and internal topic name, but you can only use
those if you run a single Kafka Connect cluster.

2. Deploy the resource.

kubectl apply --filename [***YAML CONFIG***] --namespace [***NAMESPACE***]

The namespace where you deploy Kafka Connect must be watched by the Strimzi Cluster Operator.

3. Verify that the KafkaConnect resource is ready.

kubectl get kafkaconnect [***CONNECT CLUSTER NAME***] --names
pace [***NAMESPACE***] --watch

Results
If cluster deployment is successful, you should see an output similar to the following.

NAME DESIRED REPLICAS READY
my-connect-cluster 3 True

What to do next

• Learn more about configuring your Kafka Connect cluster. See Configuring Kafka Connect clusters.
• Install third-party connectors. See Installing Kafka Connect connector plugins.
• Deploy connectors. See Deploying connectors.

Related Information
Configuring group IDs

Configuring internal topics

Deploying Kafka Connect | Strimzi

KafkaConnect schema reference | Strimzi API Reference

Configuring Kafka Connect clusters

Learn how you can update Kafka Connect properties in your KafkaConnect resource.

Updating Kafka Connect configurations
You update Kafka Connect configuration by editing your KafkaConnect resources.

5

https://docs.cloudera.com/csm-operator/1.6/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-deploy-configure/topics/csm-op-connect-installing-connectors.html
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-operations/topics/csm-op-connect-managing-connectors.html#concept_bcb_4gg_jcc
https://strimzi.io/docs/operators/0.49.1/deploying#kafka-connect-str
https://strimzi.io/docs/operators/0.49.1/configuring#type-KafkaConnect-reference

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka Connect clusters

Procedure

1. Run the following command.

kubectl edit kafkaconnect [***CONNECT CLUSTER NAME***] --namespac
e [***NAMESPACE***]

Running kubectl edit opens the resource manifest in an editor.

2. Make your changes.

3. Save the file.
Once the changes are saved, a rolling update is triggered and the workers restart one after the other with the
applied changes.

Related Information
Kafka Connect Configs | Apache Kafka

KafkaConnectSpec schema properties | Strimzi

Configurable Kafka Connect properties and exceptions
Learn which Kafka Connect properties you can configure in the KafkaConnect resource and what default values some
properties have, as well as which properties are managed by Strimzi.

Kafka Connect properties are configured by adding as keys to config in your KafkaConnect resource. The values
can be on of the following JSON types:

• String
• Number
• Boolean

You can find a full reference of the available Kafka Connect properties in the Apache Kafka documentation. All
properties can be specified, however, some properties are automatically configured with a default value if they are not
specified in spec.config. Also, some properties are managed by Strimzi, and cannot be changed.

Properties with default values

The group ID, internal topic names, as well key and value converters get the following default values.

#...
kind: KafkaConnect
spec:
 groupId: connect-cluster
 configStorageTopic: connect-cluster-configs
 offsetStorageTopic: connect-cluster-offsets
 statusStorageTopic: connect-cluster-status
 config:
 key.converter: org.apache.kafka.connect.json.JsonConverter
 value.converter: org.apache.kafka.connect.json.JsonConverter

Note: The ID and topic names are configured in spec while converters are configured in spec.config.

Exceptions

Strimzi takes care of configuring and managing certain properties. The values of these properties cannot be changed.

The properties Strimzi takes care of are related to the following.

• Kafka cluster bootstrap address
• Security (encryption, authentication, and authorization)

6

https://kafka.apache.org/41/documentation.html#connectconfigs
https://strimzi.io/docs/operators/0.49.1/configuring#type-KafkaConnectSpec-schema-reference

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka Connect clusters

• Listener and REST interface configuration
• Plugin path configuration

This means that properties with the following prefixes cannot be set.

• bootstrap.servers
• consumer.interceptor.classes
• listeners.
• plugin.path
• producer.interceptor.classes
• rest.
• sasl.
• security.
• ssl.

If the config property contains an option that cannot be changed, it is disregarded, and a warning message is logged
in the Strimzi Cluster Operator log. All other supported properties are forwarded to Kafka, including the following
exceptions to the options configured by Strimzi:

• Any SSL configuration for supported TLS versions and cipher suites

Related Information
Supported TLS versions and cipher suites | Strimzi

Kafka Connect Configs | Apache Kafka

KafkaConnectSpec schema properties | Strimzi

Configuring group IDs
Kafka Connect workers use a group ID for coordinating the cluster. All Connect workers use the same group ID
inside a cluster.

About this task

Make sure to choose the group ID carefully, especially if you run multiple Kafka Connect clusters using the same
Kafka cluster, because the group IDs must not clash with each other.

Configure the group ID by setting the value of the spec.groupId property.

#...
kind: KafkaConnect
spec:
 groupId: my-connect-cluster

Configuring internal topics
Kafka Connect uses three internal Kafka topics to store connector and task configurations, offsets, and status.

About this task

Configure the internal Kafka topic names in spec. Additionally, configure topic properties in spec.config using the
appropriate prefixes.

#...
kind: KafkaConnect
spec:
 offsetStorageTopic: my-connect-cluster-offsets
 configStorageTopic: my-connect-cluster-configs

7

https://strimzi.io/docs/operators/latest/configuring#con-common-configuration-ssl-reference
https://kafka.apache.org/41/documentation.html#connectconfigs
https://strimzi.io/docs/operators/0.49.1/configuring#type-KafkaConnectSpec-schema-reference

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka Connect clusters

 statusStorageTopic: my-connect-cluster-status
 config:
 config.storage.replication.factor: 3
 offset.storage.replication.factor: 3
 status.storage.replication.factor: 3

Note:

Make sure to choose the internal topic names carefully, especially if you run multiple KafkaConnect
clusters using the same Kafka clusters, because their internal topic names must not clash with each other.

Cloudera recommends setting the replication factor to at least 3 in a production environment. If you set the
replication factor to -1, the default replication factor of the Kafka cluster will be used.

Configuring worker replica count
You can configure the number of worker pods created in the Kafka Connect cluster. Cloudera recommends having
more than one worker pod for high availability.

Configure the number of worker pods created by setting the value of the spec.replicas property.

#...
kind: KafkaConnect
spec:
 replicas: 3

Note: Changing the number of replicas in the Kafka Connect cluster is how you scale your cluster. Unlike
with Kafka brokers, no additional preparation, steps, or other configuration is needed for scaling. Simply
increasing or decreasing the replica count is sufficient.

Configuring the Kafka bootstrap
You can configure the bootstrap servers of a Kafka cluster. Cloudera recommends providing multiple brokers, as this
makes the connection between Kafka and Kafka Connect clusters highly available.

Configure the bootstrap servers of the Kafka cluster by setting the value of the spec.bootstrapServers property.

You can provide additional security configurations in spec.authentication and spec.tls.

#...
kind: KafkaConnect
spec:
 bootstrapServers: my-cluster-kafka-bootstrap.kafka:9092
 authentication:
 type: tls
 certificateAndKey:
 certificate: user.crt
 key: user.key
 secretName: connect-user
 tls:
 trustedCertificates:
 - certificate: ca.crt
 secretName: my-cluster-kafka-cluster-ca-cert

This example specifies a Kafka cluster that has TLS encryption and authentication.

8

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka Connect clusters

Enabling KafkaConnector resources
Kafka Connect connectors are managed either using KafkaConnector resources or with the Kafka Connect REST
API. If you want to manage connectors using KafkaConnector resources, you must enable them in the KafkaConnect
resource. Managing connectors with KafkaConnector resources is the method recommended by Cloudera.

You enable KafkaConnector resource by setting the strimzi.io/use-connector-resources annotation to true.

#...
kind: KafkaConnect
metadata:
 annotations:
 strimzi.io/use-connector-resources: "true"

Managing connectors with KafkaConnector resources or the Kafka Connect REST API are mutually exclusive
connector management methods.

• If you do not enable the use of KafkaConnector resources, you can only use the REST API to manage
connectors in this Kafka Connect cluster.

• If you enable the use of KafkaConnector resources, you can only manage connectors using
KafkaConnector resources. If you make any changes over the REST API, the changes are reverted by the
Strimzi Cluster Operator.

Cloudera recommends creating connectors using KafkaConnector resources, that is, enabling this annotation
for all your Kafka Connect clusters. Cloudera does not recommend exposing and using Kafka Connect REST API
externally, because the REST API is insecure.

Tip: Even if you enable KafkaConnector resources, you can still use some API endpoints to query
information about the connector.

Related Information
Using the Kafka Connect REST API

Configuration providers
Learn how to provide configuration that is not in plain text key-value pair format.

Connectors connect to external systems, requiring additional connection and security configurations. The connector
configurations only contain key-value pairs. For some use-cases and configurations, this is not viable. For example,
credentials like passwords, access keys, or any other sensitive information should not be added as plain text to the
configuration of a connector.

To support these use-cases, connectors can use ConfigProviders and configuration references.
ConfigProviders are responsible for pulling configurations from external configuration stores. Kafka Connect in
Cloudera Streams Messaging Operator for Kubernetes ships with various ConfigProviders that are available by
default. Cloudera recommends using the following ConfigProviders.

• KubernetesSecretConfigProvider - Loads configurations from Kubernetes secrets. You can use it to
store sensitive configurations securely.

• KubernetesConfigMapConfigProvider - Loads configurations from Kubernetes ConfigMaps. You
can use it to group and centralize reusable configurations across multiple connectors.

• FileConfigProvider - Loads configurations from a property file. You can use it to reference properties from
files available in the Kafka Connect worker file system.

ConfigProviders must be enabled in the KafkaConnect resource if you want to use them in your connector
configuration. You enable ConfigProviders in spec.config.

9

https://docs.cloudera.com/csm-operator/1.6/kafka-connect-operations/topics/csm-op-connect-using-rest-api.html

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka Connect clusters

This example enables the ConfigProviders recommended by Cloudera.

#...
kind: KafkaConnect
spec:
 config:
 config.providers: cfmap,secret,file
 config.providers.cfmap.class: io.strimzi.kafka.KubernetesConfigMapConfig
Provider
 config.providers.secret.class: io.strimzi.kafka.KubernetesSecretConfigP
rovider
 config.providers.file.class: org.apache.kafka.common.config.provider.Fil
eConfigProvider

Important: Configurations referenced through config providers do not get automatically updated when the
underlying configmap/secret is updated. Connectors referring to these resources need a manual restart to get
the configuration updates.

Example config provider usage of a secret, where the secret resource called connect-secrets is located in the connect-
ns namespace, and contains a sasl.jaas.config key:

#...
kind: KafkaConnector
spec:
 config:
 producer.override.sasl.jaas.config: ${secret:connect-ns/connect-secret
s:sasl.jaas.config}

Kubernetes*ConfigProviders

When using the Kubernetes*ConfigProviders, the Kafka Connect workers require permissions to access the
configuration maps and secrets in the Kubernetes cluster. Strimzi automatically creates a ServiceAccount for
the Kafka Connect worker pods. An additional Role and RoleBinding is required to make the configuration
providers work.

For example, assume you have a db-credentials Secret that contains credentials for a database to which that your
connector will connect. To establish access to this secret through a ConfigProvider you need to create the
following Role and Rolebinding.

For example, the following role grants access to the db-credentials secret in the database namespace:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: connector-configuration-role
 namespace: database
rules:
 - apiGroups: [""]
 resources: ["secrets"]
 resourceNames: ["db-credentials"]
 verbs: ["get"]

The following RoleBinding binds the new Role to the Connect ServiceAccount:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: connector-configuration-role-binding
subjects:
 - kind: ServiceAccount
 name: my-connect-connect

10

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka Connect clusters

 namespace: my-project
roleRef:
 kind: Role
 name: connector-configuration-role
 apiGroup: rbac.authorization.k8s.io

The service account name is always generated with the [***CLUSTER NAME***]-connect pattern.

Related Information
Loading configuration values from external sources | Strimzi

Adding external configuration to Kafka Connect worker pods
Depending on the connector plugins and the connection settings of the external system, you might need to configure
additional external configurations for the Kafka Connect workers that are stored in environment variables or in
additional volumes. Environment variables and volumes are specified in your KafkaConnect resource.

Adding environment variables

Environment variables are added using spec.externalConfiguration.env. For example, connectors
may need a topic prefix which is stored in an environment variable.

The alias for the configuration provider is used to define other configuration parameters. The
provider parameters use the alias from spec.config.providers, taking the form spec.config.provider
s.[***ALIAS***].class.

#...
kind: KafkaConnect
spec:
 config:
 config.providers: env
 config.providers.env.class: org.apache.kafka.common.config
.provider.EnvVarConfigProvider
 externalConfiguration:
 env:
 - name: TOPIC_PREFIX
 value: prefix-text

Mounting additional volumes

Additional volumes are mounted using pod and container templates (spec.template.*) properties.
For example, connectors might require an additional TLS truststore or keystore.

Specify additional volumes for Kafka Connect workers in the spec.template.pod.volumes property
of the KafkaConnect resource. Attach volumes to the Kafka Connect container with the spec.tem
plate.connectContainer.volumeMounts property.

The volumes you specify are mounted under the path you specified in mountPath. In the following
example, this is /mnt/dbkeystore/[***A FILE NAME FROM THE VOLUME***].

Important: All additional mounted paths must be located inside the /mnt path. If
you mount a volume outside of this path, the Kafka resource remains in a NotReady
state, the Kafka pods are not created, and a related warning is logged in the Strimzi
Cluster Operator log.

#...
kind: KafkaConnect
spec:
 template:
 pod:
 volumes:
 - name: dbkeystore

11

https://strimzi.io/docs/operators/0.49.1/deploying#assembly-loading-config-with-providers-str

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka Connect clusters

 secret:
 secretName: dbkeystore
 connectContainer:
 volumeMounts:
 - name: dbkeystore
 mountPath: /mnt/dbkeystore

Related Information
ExternalConfiguration schema reference | Strimzi

Additional Volumes | Strimzi

AdditionalVolume schema reference | Strimzi API reference

ContainerTemplate schmea properties | Strimzi API reference

VolumeMount v1 core | Kubernetes

Configuring connector configuration override policy
Learn how to configure the connector configuration override policy. The override policy controls what client
properties can be overridden by connectors.

The Kafka Connect framework manages Kafka clients (producers, consumers, and admin clients) used by connectors
and tasks. By default, these clients use worker-level properties. You can fine-tune worker-level properties with
connector configuration overrides. Properties specified with configuration overrides take priority over worker-level
properties. Additionally, they can be applied on a per connector basis.

What configuration properties can be overridden is controlled by a configuration override policy. The policy is
specified for Kafka Connect workers (KafkaConnect resource).

Kafka Connect includes the following policies by default.

• All - Allow overrides for all client properties (default).
• None - Do not allow any overrides.
• Principal - Only allow overriding JAAS configurations.

To configure the policy, set connector.client.config.override.policy in spec.config of your KafkaConnect resource.
You can set the value of this property to the fully qualified name or the standard service name (for example, None) of
the chosen policy.

#...
kind: KafkaConnect
spec:
 config:
 connector.client.config.override.policy: None

Tip: Policies use the plugin framework of Kafka Connect and can be extended. You can create a custom
policy by developing your own implementation of ConnectorClientConfigOverridePolicy. You
can install your custom policy plugin the same way you install connector plugins.

Related Information
Configuring client overrides in connectors

Installing Kafka Connect connector plugins

client.config.override.policy | Kafka

Configuring delayed rebalance
Learn how to disable or configure the delayed rebalance of Kafka Connect workers.

By default, Kafka Connect workers operate with a delayed rebalance. This means that if a worker stops for any
reason, its resources (tasks and connectors) are not immediately reassigned to a different worker.

12

https://strimzi.io/docs/operators/0.49.1/configuring#type-ExternalConfiguration-reference
https://strimzi.io/docs/operators/0.49.1/overview#additional_volumes
https://strimzi.io/docs/operators/0.49.1/configuring.html#type-AdditionalVolume-reference
https://strimzi.io/docs/operators/0.49.1/configuring.html#type-ContainerTemplate-schema-reference
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.31/#volumemount-v1-core
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-operations/topics/csm-op-connect-configuring-connectors.html#task_r3q_khg_jcc
https://kafka.apache.org/41/documentation.html#connectconfigs_connector.client.config.override.policy

Cloudera Streams Messaging Operator for Kubernetes Installing Kafka Connect connector plugins

Instead, by default, a five minute grace period is in effect. During this time, the resource assigned to the stopped
worker remains unassigned. This allows the worker to restart and rejoin its group. Worker resources are only
reassigned to a different worker after the five minute period is up.

This is useful if the tasks and connectors are heavy operations and you do not want them to be rescheduled
immediately. However, this also means that in case of a stoppage, some worker resources might be in an idle state
of up to five minutes, which leads to a temporary service outage. This is true even if the stopped worker restarts and
rejoins its group before the five minutes is up.

You can configure the delay to be shorter, or disable it altogether. To do this, configure the scheduled.rebalance.max.
delay.ms Kafka Connect property in your KafkaConnect resource.

#...
kind: KafkaConnect
spec:
 config:
 scheduled.rebalance.max.delay.ms: 0

Note: When the Connect group leader is restarted, an immediate rebalance is triggered. This cancels the
delayed rebalance.

Related Information
scheduled.rebalance.max.delay.ms | Kafka

Installing Kafka Connect connector plugins

Learn how to install third-party connectors in Kafka Connect. Third-party connectors are installed by building a new
Kafka image that includes the connector artifacts. In Cloudera Streams Messaging Operator for Kubernetes, you build
new images with Strimzi by configuring the KafkaConnect resource.

Note: In addition to connector plugins, Kafka Connect supports various other types of plugins, like data
converters and transforms. While the following instructions are focused on connectors, you can follow them
to install any other type of third-party plugin. The installation process is exactly the same.

By default the Strimzi Cluster Operator deploys a Kafka Connect cluster using the Kafka image shipped in Cloudera
Streams Messaging Operator for Kubernetes. The Kafka image contains the connector plugins that are included by
default in Apache Kafka.

Additional, third-party connectors are not included. If you want to deploy and use a third-party connector, you must
build a new Kafka image that includes the connector plugins that you want to use. Your new image will be based on
the default Kafka image that is shipped in Cloudera Streams Messaging Operator for Kubernetes. If the connector
plugins are included in the image, you will be able to deploy instances of these connectors using KafkaConnector
resources.

To build a new image, you add various properties to your KafkaConnect resource. These properties specify what
connector plugin artifacts to include in the image as well the target registry where the image is pushed.

If valid configuration is included in the resource, Strimzi automatically builds a new Kafka image that includes the
specified connector plugins. The image is built when you deploy your KafkaConnect resource. Specifically,
Strimzi downloads the artifacts, builds the image, uploads it to the specified container registry, and then deploys
Kafka Connect cluster.

The images built by Strimzi must be pushed to a container registry. Otherwise, they cannot be used to deploy Kafka
Connect. You can use a public registry like quay.io or Docker Hub. Alternatively, you can push to your self-hosted
registry. What registry you use will depend on your operational requirements and best practices.

If you are deploying multiple Kafka Connect clusters, Cloudera recommends using a unique image (different tag) for
each of your clusters. Images behind tags can change and a change in an image should not affect more than a single
cluster.

13

https://kafka.apache.org/41/documentation.html#connectconfigs_scheduled.rebalance.max.delay.ms

Cloudera Streams Messaging Operator for Kubernetes Installing Kafka Connect connector plugins

Building a new Kafka image automatically with Strimzi
You can configure your KafkaConnect resource so that Strimzi automatically builds a new container image that
includes your third-party connector plugins. Configuration is done in spec.build.

About this task

When you specify spec.build.plugins properties in your KafkaConnect resource, Strimzi automatically builds
a new Kafka image that contains the specified connector plugins. The image is pushed to the container registry
specified in spec.build.output. The newly built image is automatically used in the Kafka Connect cluster that is
deployed by the resource.

Before you begin

Important: Ensure that the JDK version of your platform is compatible with the Java version that the
connector was compiled with. Mismatched versions prevent connectors from loading properly.

• Ensure that the Strimzi Cluster Operator is installed and running. See Installation.
• A container registry is available where you can upload the container image.
• These steps demonstrate a basic configuration and deployment example. You can find additional information

regarding spec.build.output and spec.build.plugin in Configuring the target registry and Configuring connectors to
add. Alternatively, see Build schema reference in the Strimzi API documentation.

Procedure

1. Create a Docker configuration JSON file named docker_secret.json which contains your credentials to both the
Cloudera container repository and your own repository where the images will be pushed.

{
 "auths": {
 "container.repository.cloudera.com": {
 "username": "[***CLOUDERA USERNAME***]",
 "password": "[***CLOUDERA PASSWORD***]"
 },
 "[***YOUR REGISTRY***]": {
 "username": "[***USERNAME***]",
 "password": "[***PASSWORD***]"
 }
 }
}

Note: If you installed Cloudera Streams Messaging Operator for Kubernetes from a self-hosted
registry (air-gapped installation), replace container.repository.cloudera.com with the location of your
self-hosted registry. Additionally, replace [***CLOUDERA USERNAME***] and [***CLOUDERA
PASSWORD***] with credentials for your self-hosted registry.

2. In the namespace where the KafkaConnect resource will be created, create a secret with the Docker
credentials.

kubectl create secret docker-registry [***SECRET NAME***] --from-file=.do
ckerconfigjson=docker_secret.json

14

https://docs.cloudera.com/csm-operator/1.6/installation/topics/csm-op-install-overview.html
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-deploy-configure/topics/csm-op-connect-installing-connectors.html#task_u3k_j2g_jcc
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-deploy-configure/topics/csm-op-connect-installing-connectors.html#task_pvg_l2g_jcc
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-deploy-configure/topics/csm-op-connect-installing-connectors.html#task_pvg_l2g_jcc
https://strimzi.io/docs/operators/0.49.1/configuring#type-Build-reference

Cloudera Streams Messaging Operator for Kubernetes Installing Kafka Connect connector plugins

3. Configure your KafkaConnect resource.

The resource configuration has to specify a container registry in spec.build.output. Third-party connector plugins
are added to spec.build.plugins

The following example adds the Kafka FileStreamSource and FileStreamSink example connectors and
uploads the newly built image to a secured registry of your choosing.

apiVersion: kafka.strimzi.io/v1
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 version: 4.1.1.1.6
 replicas: 3
 bootstrapServers: my-cluster-kafka-bootstrap.kafka:9092
 groupId: my-connect-cluster
 offsetStorageTopic: my-connect-cluster-offsets
 configStorageTopic: my-connect-cluster-configs
 statusStorageTopic: my-connect-cluster-status
 build:
 output:
 type: docker
 image: [***YOUR REGISTRY***]/[***IMAGE***]:[***TAG***]
 pushSecret: [***SECRET NAME***]
 plugins:
 - name: kafka-connect-file
 artifacts:
 - type: maven
 group: org.apache.kafka
 artifact: connect-file
 version: 3.7.0

4. Deploy the resource.

kubectl apply --filename [***YAML CONFIG***] --namespace [***NAMESPACE***]

5. Wait until images are built and pushed. The Kafka Connect cluster is automatically deployed afterwards.

During this time you can monitor the deployment process with kubectl get and kubectl logs.

kubectl get pods --namespace [***NAMESPACE***]

The output lists a pod called [***CONNECT CLUSTER NAME***]-connect-build. This is the pod responsible for
building and pushing your image.

NAME READY STATUS RESTARTS

#...
my-connect-cluster-connect-build 1/1 Running 0

You can get additional information by checking the log of this pod.

kubectl logs [***CONNECT CLUSTER NAME***]-connect-build --namespa
ce [***NAMESPACE***]

You should see various INFO entries related to building and pushing the image.

Once the image is successfully built and pushed, the pod that built the image is deleted.

Afterwards, your Kafka Connect cluster is deployed.

15

Cloudera Streams Messaging Operator for Kubernetes Installing Kafka Connect connector plugins

6. Verify that the cluster is deployed.

kubectl get kafkaconnect [***CONNECT CLUSTER NAME***] --names
pace [***NAMESPACE***]

If cluster deployment is successful, you should see an output similar to the following.

NAME DESIRED REPLICAS READY
#...
my-connect-cluster 3 True

7. Verify that connector plugins are available.

You can do this by listing the contents of /opt/kafka/plugins in any Kafka Connect pod.

kubectl exec -it \
 --namespace [***NAMESPACE***] \
 [***CONNECT CLUSTER NAME***]-connect-[***ID***] \
 --container [***CONNECT CLUSTER NAME***]-connect \
 -- /bin/bash -c "ls /opt/kafka/plugins"

Tip: You can list available connectors with the GET /connector-plugins endpoint of the Kafka Connect
API as well.

Results
Kafka Connect is deployed with an image that contains third-party connectors. Deploying the third-party connectors
you added is now possible with KafkaConnector resources.

What to do next
Deploy a connector using a KafkaConnector resource. See, Deploying connectors.
Related Information
Using the Kafka Connect REST API

Configuring the target registry
The Kafka image built by Strimzi is uploaded to a container registry of your choosing. The target registry where the
image is uploaded is configured in your KafkaConnect resource with spec.build.output.

#...
kind: KafkaConnect
spec:
 build:
 output:
 type: docker
 image: [***YOUR REGISTRY***]/[***IMAGE***]:[***TAG***]
 pushSecret: [***SECRET NAME***]

• type - specifies the type of image Strimzi outputs. The value you specify is decided by the type of your target
registry. The property accepts docker or imagestream as valid values.

• image - specifies the full name of the image. The name includes the registry, image name, as well as tags.
• pushSecret - specifies the name of the secret that contains the credentials required to connect to the registry

specified in image. This property is optional and required only if the registry requires credentials for access.

Related Information
output | Strimzi API reference

16

https://docs.cloudera.com/csm-operator/1.6/kafka-connect-operations/topics/csm-op-connect-managing-connectors.html#task_iy3_wgg_jcc
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-operations/topics/csm-op-connect-using-rest-api.html
https://strimzi.io/docs/operators/0.49.1/configuring#output

Cloudera Streams Messaging Operator for Kubernetes Exactly-once semantics

Configuring connector plugins to add
The Kafka image built by Strimzi includes the connector plugins that you reference in the spec.build.plugin property
of your KafkaConnect resource.

Each connector plugin is specified as an array.

#...
spec:
 build:
 plugins:
 - name: kafka-connect-file
 artifacts:
 - type: maven
 group: org.apache.kafka
 artifact: connect-file
 version: 3.7.0

Each connector plugin must have a name and a type. The name must be unique in the Kafka Connect deployment.

Various artifact types are supported including jar, tgz, zip, maven, and other.

The type of the artifact defines what required and optional properties are supported. At minimum, for all types, you
must specify a location where the artifact is downloaded from. For example, with maven type artifacts, you specify
the Maven group and artifact. For jar type artifacts you specify a URL.

You can specify artifacts for other types of plugins, like data converters or transforms, not just connectors.

Note: For maven type artifacts, you can configure the repository property, which specifies the Maven
repository where the artifact is downloaded from. If the repository property is omitted,the artifact is
downloaded from Maven Central.

Related Information
Maven Central | Maven

plugins | Strimzi API reference

Rebuilding a Kafka image
It is possible that the base image or the plugin behind the URL changed over time. You can trigger Strimzi to rebuild
the image by applying the strimzi.io/force-rebuild=true annotation on the Kafka Connect StrimziPodSet resource.

kubectl annotate strimzipodsets.core.strimzi.io --namesp
ace [***NAMESPACE***] \
 [***CONNECT CLUSTER NAME***]-connect \
 strimzi.io/force-rebuild=true

Exactly-once semantics

Exactly-once semantics (EOS) is a feature that enables Kafka and Kafka applications to guarantee that each message
is delivered precisely once without it being duplicated or lost. EOS can be enabled for Kafka Connect and Kafka
Connect source connectors.

Source connectors progress is tracked by periodically committing the offsets of the processed messages. If the
connector fails, uncommitted messages are reprocessed after the connector starts running again.

Using EOS, source connectors are able to handle offset commits and message produces in a single transaction. This
either results in a successful operation where messages are produced to the target topic along with offset commits, or

17

https://repo1.maven.org/maven2/
https://strimzi.io/docs/operators/0.49.1/configuring#plugins

Cloudera Streams Messaging Operator for Kubernetes Exactly-once semantics

a rollback of the whole operation. EOS is enabled in the KafkaConnect resource. Additionally you can fine-tune
EOS related properties in the configuration of connector instances.

Note: Consumers consuming the target topic should have isolation.level set to read_committed to avoid
reading uncommitted data.

Enabling exactly-once semantics
You enable EOS for source connectors by configuring exactly.once.source.support in the KafkaConnect resource.

Configuration differs for newly deployed resources and existing resources.

For New resources

Set exactly.once.source.support to enabled.

#...
kind: KafkaConnect
spec:
 config:
 exactly.once.source.support: enabled

For Existing resources

1. Set exactly.once.source.support to preparing.

#...
kind: KafkaConnect
spec:
 config:
 exactly.once.source.support: preparing

2. Wait until configuration changes are applied. This happens in the next reconciliation loop.
3. Set exactly.once.source.support to enabled.

Disabling exactly-once semantics
You disable EOS for source connectors by configuring exactly.once.source.support in the KafkaConnect resource.

Procedure

1. Set exactly.once.source.support to preparing.

#...
kind: KafkaConnect
spec:
 config:
 exactly.once.source.support: preparing

2. Wait until configuration changes are applied.

This happens in the next reconciliation loop.

3. Set exactly.once.source.support to disabled.

18

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka Connect for Prometheus monitoring

Source connector properties for exactly-once semantics
After enabling EOS for source connectors in the KafkaConnect resource, you can fine-tune EOS by configuring your
connector instances (KafkaConnector resources).

Use the following source connector properties to configure EOS. Cloudera recommends that you use the default
values.

Name Default value Description

exactly.once.support requested Permitted values are requested and required. If set to required,
forces a preflight check for the connector to ensure that it can
provide exactly-once delivery with the given configuration.
Some connectors may be capable of providing exactly-once
delivery but not signal to Kafka Connect that they support
this. In this case, review the documentation for the connector
before connector deployment and set this property to requ
ested. Additionally, if the value is set to required but the
worker that performs preflight validation does not have
exactly-once support enabled for source connectors, requests
to create or validate the connector will fail.

transaction.boundary poll Permitted values are poll, connector, and interval. If set to
poll, a new producer transaction is started and committed
for every batch of records that each task from this connector
provides to Kafka Connect. If set to connector, relies on
connector-defined transaction boundaries; note that not all
connectors are capable of defining their own transaction
boundaries, and in that case, attempts to create them with this
property set to connector will fail. If set to interval, commits
transactions only after a user-defined time interval has passed.

offsets.storage.topic null The name of a separate offsets topic to use for this connector.
If left empty or not specified, the worker’s global offsets topic
name is used. If specified, the offsets topic is created if it
does not already exist on the Kafka cluster targeted by this
connector (which may be different from the one used for the
worker's global offsets topic if the bootstrap.servers property
of the connector's producer has been overridden from the
worker's).

transaction.boundary.interval.ms null If transaction.boundary is set to interval, determines the
interval for producer transaction commits by connector tasks.
If unset, defaults to the value of the worker-level offset.flush
.interval.ms property.

Configuring Kafka Connect for Prometheus monitoring

To monitor Kafka Connect with Prometheus, you must configure your Kafka Connect cluster to expose the necessary
metric endpoints that integrate with your Prometheus deployment. This is done by configuring the metricsConfig
property in your KafkaConnect resource.

About this task

By default a Kafka Connect cluster you deploy with a KafkaConnect resource does not expose metrics that
Prometheus can scrape. In order to use Prometheus to monitor your Kafka Connect cluster, you must enable and
expose these metrics. This is done by adding a metricsConfig property to the spec of your KafkaConnect resource.

Specifying metricsConfig in the KafkaConnect resource enables the Prometheus JMX Exporter which exposes
metrics through a HTTP endpoint. The metrics are exposed on port 9094. The metricsConfig property can reference
a ConfigMap that holds your JMX metrics configuration or will include the metrics configurations in-line. The
following steps demonstrate the configuration by referencing a ConfigMap.

19

Cloudera Streams Messaging Operator for Kubernetes Configuring the security context of Kafka Connect

Before you begin
A Prometheus deployment that can connect to the metric endpoints of the Kafka connect cluster running in the
Kubernetes environment is required. Any properly configured Prometheus deployment can be used to monitor Kafka
Connect. You can find additional information and examples on Prometheus setup in the Strimzi documentation.

Procedure

1. Create a ConfigMap with JMX metrics configuration for Kafka Connect.

kind: ConfigMap
apiVersion: v1
metadata:
 name: connect-metrics
 labels:
 app: strimzi
data:
 metrics-config.yml: |
 [***KAFKA-CONNECT-METRICS-CONFIGURATION***]

Replace [***KAFKA-CONNECT-METRICS-CONFIGURATION***] with your JMX Prometheus metrics
configuration.

2. Update your KafkaConnect resource with a metricsConfig property. The property needs to reference the
ConfigMap you created in 1 on page 20.

#...
kind: KafkaConnect
spec:
 metricsConfig:
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: connect-metrics
 key: metrics-config.yml

What to do next

• Configure Prometheus and specify alert rules to start scraping metrics from the Kafka Connect pods. You can find
an example rules file (prometheus-rules.yaml) as well as various other configuration examples on the Cloudera
Archive. Examples related to Prometheus are located in the /csm-operator/1.2/examples/metrics directory.

• Review Cloudera recommendations on what alerts and metrics to configure. See Monitoring with Prometheus.

Related Information
Cloudera Archive

Prometheus JMX Exporter | GitHub

Configuring the security context of Kafka Connect

Learn how to configure the security context of Kafka Connect pods

The Kafka Connect resource allows users to specify the security context at the pod and/or the container level with
template properties.

#...
kind: KafkaConnect
spec:
 template:
 pod:

20

https://strimzi.io/docs/operators/0.49.1/deploying#assembly-metrics-prometheus-str
https://docs.cloudera.com/csm-operator/1.6/monitoring-diagnostics/topics/csm-op-prometheus-monitoring.html
https://archive.cloudera.com/p/csm-operator/1.6/
https://github.com/prometheus/jmx_exporter

Cloudera Streams Messaging Operator for Kubernetes Configuring the security context of Kafka Connect

 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault

21

	Contents
	Deploying Kafka Connect clusters
	Configuring Kafka Connect clusters
	Updating Kafka Connect configurations
	Configurable Kafka Connect properties and exceptions
	Configuring group IDs
	Configuring internal topics
	Configuring worker replica count
	Configuring the Kafka bootstrap
	Enabling KafkaConnector resources
	Configuration providers
	Adding external configuration to Kafka Connect worker pods
	Configuring connector configuration override policy
	Configuring delayed rebalance

	Installing Kafka Connect connector plugins
	Building a new Kafka image automatically with Strimzi
	Configuring the target registry
	Configuring connector plugins to add
	Rebuilding a Kafka image

	Exactly-once semantics
	Enabling exactly-once semantics
	Disabling exactly-once semantics
	Source connector properties for exactly-once semantics

	Configuring Kafka Connect for Prometheus monitoring
	Configuring the security context of Kafka Connect

