Cloudera Streams Messaging Operator for Kubernetes 1.6.0

Kafka Deployment and Configuration

Date published: 2024-06-11
Date modified: 2026-01-27

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

This content is modified and adapted from Strimzi Documentation by Strimzi Authors, which islicensed under CC BY 4.0.

https://strimzi.io/documentation/
https://creativecommons.org/licenses/by/4.0/

Cloudera Streams Messaging Operator for Kubernetes | Contents | iii

D= o] 10V aTo TN = = TS 5
DEPIOYiNG 8 KafKB CIUSIEN......c.oivitiieeeiieeestes ettt b et eb e s b e e b sa bbbt b e e be e nbenea 5
Deploying a Kafka cluster in combined MOUE..........c.cirieiriiiriirie e e 8
Validating @ KafKa CIUSEN ..ot bbbt et 12

Deploying Cruise CONLIol.........coiceeiiiiieecie st 13

Deploying and configuring the Strimzi Entity Operator.........ccccvveveveesieenneenne 14
Deploying and configuring the Strimzi TOPIC OPEraLON.cc.eiveriereeieeeeeeeieres ettt e e e 15
Deploying and configuring the Strimzi USer OPEIator...........co.ereeieeriirieerenie sttt sae e 16

Configuring Kafka Drokers..........cooeiiiin e 17
Updating Broker CONFIQUIBLION.coiiiiieieiete ettt sttt ne b 17
Configurable broker properties and EXCEPLIONS..........ccviiririeireerieer e bbb 18

Storage CoONFIQUI ALTON.........eciie ettt e re e e e e reeenne s 19
00 = 0= = S (= o R 20
o B I =L 0] 0 L= 20
8T I (o] o L= P 21
StOrage rECOMMENUALIONS.cciiieiiieseeses e ste e et e e e s s estestesresrestestesee e esse e e s eseesesseesesseseesaenteseeseensenseneensnnens 22

PO SCNEAUIING. ..o e 22
DEfAUIT LOIEIAIIONS.eeeveeeeeieeie ettt b et bRt b et b e se b s e b e bt et r et r et n e 22
Pod scheduling reCOMMENTALTONS.........ccoiiiiirere ettt b et e bbb s sae b b e 23

RACK AWAI BNESS.......oociieciicciie ettt e e e reesneeenns 25
Configuring rack information on KUDEMELES NOUES.........cceeriireriiririereee et s eb e ere e 25
Configuring rack awareness for Kafka DroKErS...........ccuiiiiinince et 26
Configuring fOHOWES FEICNING.......c.iieieiieieee bbbt 28
Default affinity rules fOr raCk BWEBIENESS.........coiriiirieireee ettt b e es 29

Configuring Kafka broker Node IDS.........cccoveeiiieiie i 29

Configuring Kafka for Prometheus monitoring..........cccovvvvcenneeniennenscee s 30

Configuring logging for Kafka cluster components.........cccccevvvvceeneescieesenseenn 31

Listener CONfigUIatioN.........cceeieieiieiie et st e e nree s 32

[N [0T0 (<1 o T S 37

Configuring NOAEPOIT TISEENMEIS.......couiiiiiieiterie ettt et bbb e e e e ae b e nae e 38

ROULEL....c et b e e bt b e bt h e e R e s R e s bR R e e b 39
CoNfiQUING FOULE [ISEENEIS... ettt ettt b s b e et sbesbesbeseesbesbeseen 40

L0BA DBIANCEYccuictiect bbb r et r e 42
Configuring [0ad DalanCer TISEENEIS..........cii ittt e e eneas 42

1076 1= TSP SRR UPTURRUPTOR 44
ConfiguIiNg INQPESS [ISIENEIS. ...t ettt a e bbbt b b e st beseeseenean 45
Accessing the Cruise Control REST AP ... 48
Configuring CruiSe CONIOl USE'S.......ceuiriereriererieiirieeereeiestesessee st ese e b e b e sesbese s esessesesaese b e e eb e s ebesbebenseneneenes 49

CoNfigQUING EXLEINEl BOCESS......c.eiuiuertiietireeteriet sttt ettt e bt b ae b st st se b et b e e e b e e e b et e bt b e st st et st e e st et b 50

Cloudera Streams Messaging Operator for Kubernetes Deploying Kafka

Y ou deploy a Kafka cluster by creating a Kafka resource and one or more KafkaNodePool resourcesin the
Kubernetes cluster. After cluster deployment you can validate your cluster with the console producer and consumer
tools shipped with Kafka.

The Kaf ka resource describes a Kafka cluster instance. This resource specifies the following about Kafka:

» Kafkaconfiguration that is common for the whole Kafka cluster (Kafka version, cluster name, and so on)
» Cruise Control configuration
» Entity Operator configuration

A Kaf kaNodePool resource refersto adistinct group of Kafka nodes within a Kafka cluster. Using node pools
enables you to specify different configurations for each node within the same Kafka cluster. Configuration options not
specified in the node pool are inherited from the Kafka configuration.

Y ou can deploy a Kafka cluster with one or more node pools. The number of node pools you create depends on
how many groups of Kafka nodes you want to have that have differing configurations. The node pool configuration
includes mandatory and optional settings. Configuration for replicas, roles, and storage is mandatory.

When you deploy a Kafka cluster, you assign roles to each node in the Kafka cluster. Roles are assigned in the
Kaf kaNodePool resource. There are two roles, broker and controller.

» Broker # These nodes manage Kafka records stored in topic partitions. Nodes with the broker role are your Kafka
brokers.

« Controller # These nodes manage cluster metadata and the state of the cluster using a Raft-based consensus
protocol. Controller nodes are the Kafka Raft (KRaft) equivalent of ZooK eeper nodes. Nodes with thisrole are
also referred to as KRaft controllers.

A single Kafka node can have a single role or both roles. If you assign both roles to the node, it performs both broker
and controller tasks. Depending on role assignments, your cluster will be running in one of the following modes.

» Standard # In this mode, each Kafka node is either a broker or controller. Recommended for production clusters.

e Combined mode # In this mode, some or al nodes in the cluster have both controller and broker roles assigned to
them.

Combined mode is not recommended or supported for production environments. Use combined mode in development
environments. Cloudera recommends that you always fully separate controller and broker nodes to avoid resource
contention between roles.

Deploy a Kafka cluster by deploying a Kafka resource and at least two KafkaNodePool resources. One
KafkaNodepool describes your brokers, the other describes KRaft controllers. The Kafka resource must include the
strimzi.io/kraft="enabled" annotation.

« Ensurethat the Strimzi Cluster Operator isinstalled and running. See Installation.
» Ensure that a namespace is available where you can deploy your cluster. If not, create one.

kubect| create nanespace [*** NAMESPACE***]

https://docs.cloudera.com/csm-operator/1.6/installation/topics/csm-op-install-overview.html

Cloudera Streams Messaging Operator for Kubernetes Deploying Kafka

» Ensurethat the Secr et containing credentials for the Docker registry where Cloudera Streams Messaging
Operator for Kubernetes artifacts are hosted is available in the namespace where you plan on deploying your
cluster. If the Secr et isnot available, createit.

kubect| create secret docker-registry [***REG STRY CREDENTI ALS SECRET* * *]
\

--nanespace [***NAMESPACE***] \

--docker-server [***YOUR REQ STRY***] \

--docker - user name [***USERNAME***] \

--docker - password "$(echo -n 'Enter your password: ' >&2; read -s passw
ord; echo >&2; echo $password)"

o [***REGISTRY CREDENTIALS SECRET***] must be the same as the name of the Secr et containing
registry credentials that you created during Strimzi installation.

* Replace [***YOUR REGISTRY***] with the server location of the Docker registry where Cloudera Streams
Messaging Operator for Kubernetes artifacts are hosted. If your Kubernetes cluster has internet access, use
container.repository.cloudera.com. Otherwise, enter the server location of your self-hosted registry.

e Replace [***USERNAME***] with a username that provides access to the registry, and enter the
corresponding password when prompted. If you are using container.repository.cloudera.com, enter your
Cloudera credentials. Otherwise, enter credentials providing access to your self-hosted registry.

» Scaling node pools that include KRaft controllers (controller roles) is not possible.
* Thefollowing steps contain Kaf ka and Kaf kaNodePool resource examples. Y ou can find additional examples
on the Cloudera Archive.

1. Createa YAML configuration containing your Kaf ka resource manifest.

api Version: kafka.strinei.iolvl
ki nd: Kaf ka
nmet adat a:
nane: my-cl uster
annot at i ons:
strinzi.i o/ node-pool s: enabl ed
strinei.io/kraft: enabl ed

spec:
kaf ka:
version: 4.1.1.1.6
|'i steners:

- nane: plain
port: 9092
type: interna
tls: false

- nane: tls
port: 9093
type: interna
tls: true

config:

of fsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.mn.isr: 2
default.replication.factor: 3
m n.insync.replicas: 2
entityQperator:
topi cOperator: {}
user Operator: {}

« strimzi.io/node-pools: enabled - Enables Kafka node pools. Node pools are required.
o strimzi.io/kraft: enabled - Enables KRaft mode for the cluster.

Cloudera Streams Messaging Operator for Kubernetes Deploying Kafka

» gpec.kafkaversion - Specifies the Kafka version to use. Must specify a Cloudera Kafka version supported
by Cloudera Streams Messaging Operator for Kubernetes. For example, 4.1.1.1.6. Do not add Apache Kafka
versions, they are not supported. Y ou can find alist of supported Kafka versionsin the Release Notes.

2. CreateaYAML configuration containing your Kaf kaNodePool resource manifest for brokers.

api Versi on: kafka.stringi.iolvl
ki nd: Kaf kaNodePoo
met adat a:
nane: broker
| abel s:
strinei.iolcluster: my-cluster
spec:
replicas: 3
rol es:
- broker
st orage:
type: jbod
vol unes:
- id: 0
type: persistent-claim
size: 10G
kraft Met adat a: shared
del eted aim false

« gpec.roles - Specifies the roles of the nodesin this pool. The value broker means that the replicas in this node
pool are all brokers.

» spec.storage.volumes.kraftM etadata - Specifies whether a volume should be used for storing KRaft metadata.
Used to specify which volume should be used to store metadata. In this example, volume 0 is specified for
storage. This property is optional.

3. CreateaYAML configuration containing your Kaf kaNodePool resource manifest for KRaft controllers.

api Versi on: kafka.stringi.iolvl
ki nd: Kaf kaNodePoo
nmet adat a:
nanme: controller
| abel s:
strinei.iolcluster: my-cluster
spec:
replicas: 3
rol es:
- controller
st orage:
type: jbod
vol unes:
- id: 0
type: persistent-claim
size: 10G
kraft Met adat a: shared
del eted aim false

» gpec.roles - Specifies the roles of the nodesin this pool. The value controller means that the replicasin this
node pool are all KRaft controllers.

« gpec.storage.volumes.kraftM etadata - Specifies whether a volume should be used for storing KRaft metadata.
Used to specify which volume should be used to store metadata. In this example, volume 0 is specified for
storage. This property is optional.

4. Deploy the cluster.

kubect| apply \

Cloudera Streams Messaging Operator for Kubernetes

Deploying Kafka

--filename [***KAFKA YAML***] [***BROKER NCDE POOL

YAML***] | [*** CONTROLLER NODE POOL YAML***] \
--nanespace [*** NAMESPACE***]

5. Verify that pods are created.

kubect| get pods --nanmespace [*** NAMESPACE***]

If cluster deployment is successful, you should see an output similar to the following.

NAVE READY
my-cl ust er-broker-0 1/1
my-cl ust er-broker-1 1/1
my- cl ust er - br oker - 2 1/1
my-cl uster-control ler-3 1/1
my-cl uster-controller-4 1/1
my-cl uster-controller-5 1/1

my-cl uster-entity-operator-858b7649df-v8jth 2/ 2

strinzi-cl uster-operat or-589f 9f d659- 4bqnp 1/1

STATUS
Runni ng
Runni ng
Runni ng
Runni ng
Runni ng
Runni ng
Runni ng

Runni ng

RESTARTS

O O O o o o o o

The READY column shows the number of ready and total containers inside the pod, while the STATUS column

showsif the pod is running or not.

In this example there are atotal of six nodes (each node is a pod). Three are dedicated brokers, the other three are

dedicated controllers.

Validate your cluster. Complete Validating a Kafka cluster.

Broker Configs | Apache Kafka

Deploying a Kafka cluster in KRaft mode | Strimzi

Kafka schemareference | Strimzi APl Reference
KafkaNodePool schemareference | Strimzi APl Reference

Deploy a Kafka cluster combined mode by deploying a Kafka resource and one or more KafkaNodePool resources.
Typically you create two node pools, one describing nodes with both roles, and one that describes nodes that have
the broker role only. Alternatively, you can create clusters where all nodes have both roles. In this case, a single node
pool is sufficient. The Kafka resource must include the strimzi.io/kraft="enabled" annotation.

i Important: Cloudera does not recommend that you use combined mode in production environments.

« Ensurethat the Strimzi Cluster Operator isinstalled and running. See Installation.

https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-deploying-kafka.html#task_xxf_bwz_gbc
https://kafka.apache.org/41/documentation.html#brokerconfigs
https://strimzi.io/docs/operators/0.49.1/deploying#deploying-kafka-cluster-kraft-str
https://strimzi.io/docs/operators/0.49.1/configuring#type-Kafka-reference
https://strimzi.io/docs/operators/0.49.1/configuring#type-KafkaNodePool-reference
https://docs.cloudera.com/csm-operator/1.6/installation/topics/csm-op-install-overview.html

Cloudera Streams Messaging Operator for Kubernetes Deploying Kafka

» Ensurethat a namespace is available where you can deploy your cluster. If not, create one.

kubect| create nanespace [*** NAVESPACE***]

« Ensurethat the Secr et containing credentials for the Docker registry where Cloudera Streams Messaging
Operator for Kubernetes artifacts are hosted is available in the namespace where you plan on deploying your
cluster. If the Secr et isnot available, createit.

kubect| create secret docker-registry [***REGQ STRY CREDENTI ALS SECRET***]
\

--nanespace [***NAMESPACE***] \

- -docker-server [***YOUR REG STRY***] \

--docker - user name [***USERNAME***] \

- -docker - password "$(echo -n 'Enter your password: ' >&2; read -s passw
ord; echo >&2; echo $password)"

e [***REGISTRY CREDENTIALS SECRET***] must be the same as the name of the Secr et containing
registry credentials that you created during Strimzi installation.

¢ Replace [*** YOUR REGISTRY***] with the server location of the Docker registry where Cloudera Streams
Messaging Operator for Kubernetes artifacts are hosted. If your Kubernetes cluster has internet access, use
container.repository.cloudera.com. Otherwise, enter the server location of your self-hosted registry.

* Replace [***USERNAME***] with a username that provides access to the registry, and enter the
corresponding password when prompted. If you are using container.repository.cloudera.com, enter your
Cloudera credentials. Otherwise, enter credential s providing access to your self-hosted registry.

« Scaling node pools that include KRaft controllers (controller roles) is not possible.

Because of thislimitation, you can only scale clusters running in combined mode if the cluster includes a node
pool that has broker nodes only. The examples in these steps set up a broker-only node pool.

« Ranger authorization does not work with combined mode.

« Thefollowing steps contain Kaf ka and Kaf kaNodePool resource examples. Y ou can find additional examples
on the Cloudera Archive.

1. CreateaYAML configuration containing your Kaf ka resource manifest.

api Versi on: kafka.stringi.iolvl
ki nd: Kaf ka
nmet adat a:
nane: mny-cl uster
annot at i ons:
strinei.iol/ node-pool s: enabl ed
strinei.io/kraft: enabl ed

spec:
kaf ka:
version: 4.1.1.1.6
|isteners:

- name: plain
port: 9092
type: interna
tls: fal se

- nanme: tls
port: 9093
type: interna
tls: true

config:

of fsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.mn.isr: 2
default.replication.factor: 3

Cloudera Streams Messaging Operator for Kubernetes Deploying Kafka

nmn.insync.replicas: 2
entityQperator:
topi cOperator: {}
user Qperator: {}

» strimzi.io/node-pools: enabled - Enables Kafka node pools. Node pools are required.

« strimzi.io/kraft: enabled - Enables KRaft mode for the cluster.

» gpec.kafkaversion - Specifies the Kafka version to use. Must specify a Cloudera Kafka version supported
by Cloudera Streams Messaging Operator for Kubernetes. For example, 4.1.1.1.6. Do not add Apache Kafka
versions, they are not supported. You can find alist of supported Kafka versionsin the Release Notes.

2. CreateaYAML configuration containing your Kaf kaNodePool resource manifests.

The configuration and number of Kaf kaNodePool s you create depends on the deployment architecture that
you want.

The following example creates two Kaf kaNodePool s. One node pool specifies both the broker and controller
roles. These nodes will run in combined mode. Additionally, a second node pool is created that includes broker
nodes only.

The second node pool is added because node pools that include controller nodes cannot be scaled. Creating a
separate node pool for brokers when you first deploy the cluster makes it easier to scale the cluster in the future.

Note: You can deploy a cluster with asingle Kaf kaNodePool that has combined roles. However, in
B this case, if you want to scale the cluster, you must create a new Kaf kaNodePool that includes broker
nodes only.

api Versi on: kafka.strinei.iolvl
ki nd: Kaf kaNodePool

net adat a:
nane: conbi ned
| abel s:
strinei.iol/cluster: my-cluster
spec:
replicas: 3
rol es:
- controller
- broker
st or age:
type: jbod
vol unes:
- id: O
type: persistent-claim
size: 10G

kraft Met adat a: shared
del eteCl aim false
api Versi on: kafka.stringi.iolvl
ki nd: Kaf kaNodePool

nmet adat a:
name: broker-only
| abel s:
strinei.iolcluster: my-cluster
spec:
replicas: 3
rol es:
- broker
st orage:
type: jbod
vol unes:
- id: 0
type: persistent-claim
size: 10G

kraf t Met adat a: shared

10

Cloudera Streams Messaging Operator for Kubernetes

Deploying Kafka

deleteC aim false

» gpec.roles - Specifies the roles of the nodesin the pool. The combined node pool has both the controller
and broker roles specified. Therefore, the three Kafka nodes described in the combined node pool operate
in combined mode. On the other hand, the broker-only node pool has broker specified as the role. The three

Kafka nodes described by the broker-only pool operate as brokers.

« gpec.storage.volumes.kraftM etadata - Specifies whether a volume should be used for storing KRaft metadata.
Used to specify which volume should be used to store metadata. In this example, volume 0 is specified for

storage. This property is optional.
3. Deploy the cluster.

kubect| apply \

--filename [***KAFKA YAML***] [***NCDE POOL YAML***] \

--nanespace [*** NAMESPACE***]

4. Verify that pods are created.

kubect| get pods --nanmespace [*** NAMESPACE***]

If cluster deployment is successful, you should see an output similar to the following.

NAME READY
my-cl ust er - broker-onl y-0 1/1
my-cl ust er-broker-only-1 1/1
my-cl ust er - br oker - onl y- 2 1/1
my- cl ust er - conbi ned- 3 1/1
my- cl ust er - conbi ned- 4 1/1
my- cl ust er - conbi ned- 5 1/1

my-cl uster-entity-operator-74c95d6667-r st kf 2/ 2

strinzi-cl uster-operat or-589f 9f d659- 4bqgnp 1/1

STATUS

Runni
Runni
Runni
Runni
Runni
Runni
Runni

Runni

ng
ng
ng
ng
ng
ng
ng
ng

RESTARTS

O O O o o o o o

The READY column shows the number of ready and total containersinside the pod, while the STATUS column

showsif the pod is running or not.

In this example, there are atotal of six nodes (each node is a pod). Nodes 0, 1, and 2 are brokers, while nodes 3, 4,
and 5 are both brokers and controllers. This means the cluster has atotal of six brokers and three controllers.

Validate your cluster. Complete Validating a Kafka cluster.

Broker Configs | Apache Kafka

Deploying a Kafka cluster in KRaft mode | Strimzi

Kafka schemareference | Strimzi APl Reference
KafkaNodePool schemareference | Strimzi APl Reference

11

https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-deploying-kafka.html#task_xxf_bwz_gbc
https://kafka.apache.org/41/documentation.html#brokerconfigs
https://strimzi.io/docs/operators/0.49.1/deploying#deploying-kafka-cluster-kraft-str
https://strimzi.io/docs/operators/0.49.1/configuring#type-Kafka-reference
https://strimzi.io/docs/operators/0.49.1/configuring#type-KafkaNodePool-reference

Cloudera Streams Messaging Operator for Kubernetes Deploying Kafka

After the Kafka broker pods are successfully started, you can use the Kafka console producer and consumer to
validate the cluster. The following steps use the exact same docker images that were used to deploy the Kafka
cluster by the Strimzi Cluster Operator. The images contain all the Kafka built-in tools and you can start a custom
Kubernetes pod, starting the Kafka tools in the containers.

The following example commands assume that the cluster is configured with PLAINTEXT authentication and
credentials do not need to be provided. If your cluster is secured, you will need to pass the corresponding security
parameters in the command line as well.

1. Createatopic.

| MAGE=$(kubect| get pod [***BROKER POD***] --nanmespace [***NAVESPACE***]
--out put jsonpath='{.spec.containers[0].image}")

kubect!| run kafka-admn -it \

--nanespace [***NAMESPACE***] \

- -i mage=%$I MAGE \

--rnrtrue \

--restart=Never \

--command -- /opt/kafka/ bi n/ kaf ka-topi cs. sh \
--boot strap-server [***CLUSTER NAME***] - kaf ka- boot st rap: 9092 \
--create \
--topic ny-topic

2. Produce message to the topic using the Kafka console producer.

kubect!| run kafka-producer -it \
--nanespace [***NAMESPACE***] \
- -i mage=%$I MAGE \

--rmetrue \
--restart=Never \
--command -- /opt/kafka/ bi n/ kaf ka- consol e- producer. sh \

--boot strap-server [***CLUSTER NAME***] - kaf ka- boot st rap: 9092 \
--topic ny-topic

Start typing to produce messages.

>hel |l o
>csm
>oper at or
SAC

3. Consume the messages using the Kafka Console consumer.

kubect| run kaf ka-consuner -it \
--nanespace [***NAMESPACE***] \
- -1 mage=$l MAGE \

--rmetrue \
--restart=Never \
--conmand -- /opt/kaf ka/ bi n/ kaf ka- consol e- consuner. sh \

--boot strap-server [***CLUSTER NAME***] - kaf ka- boot st rap: 9092 \
--topic ny-topic \

12

Cloudera Streams Messaging Operator for Kubernetes Deploying Cruise Control

- -from begi nni ng
If successful, the messages you produced are printed on the output.

>hel | o
>csm
>oper at or

Learn how to deploy Cruise Control alongside your Kafka Cluster using cruiseControl propertiesin the Kafka
resource. Deploying Cruise Control is optional but strongly recommended as it automates the partition rebalancing in
the cluster.

Y ou can deploy Cruise Control alongside a Kafka cluster by adding cruiseControl properties to your Kaf ka resource.
Deploying Cruise Control creates a Cruise Control deployment that contains a Cruise Control pod.

If you specify an empty object (cruiseControl: {}), Cruise Control is deployed with the upstream recommended
default configuration. Y ou can customize the configuration of Cruise Control by specifying the required options in the
cruiseControl property.

Cruise Control requires at least two Kafka brokers. If you try to add Cruise Control while thereis only asingle Kafka
broker in the cluster, the deployment fails. Increase your broker replica count if necessary.

1. Add acruiseControl property to your Kaf ka resource.
#. ..
ki nd: Kaf ka
spec:
crui seControl: {}

2. Create or update your resource.

kubect!| apply --filenane [***YAML CONFI G***] --nanespace [***NAMESPACE***]

3. Verify the status of the deployment.
kubect| get depl oynents --nanespace [*** NAMESPACE***]
If deployment is successful, you should see a Cruise Control deployment in the outpuit.

NANVE READY UP- TO- DATE AVAI LABLE AGE
my-cl ust er-crui se-control 1/1 1 1 5nmils

The READY column shows the number of replicas that are ready/expected. The deployment is successful when
the AVAILABLE output shows 1.

After Cruise Control is deployed, you can use Kaf kaRebal ance resourcesto rebalance your cluster. Typically you
initiate a rebalance process when scaling your cluster, but rebalances can be carried out at any time.

13

Cloudera Streams Messaging Operator for Kubernetes Deploying and configuring the Strimzi Entity Operator

Scaling brokers

CruiseControl Spec schema reference | Strimzi APl Reference
KafkaRebalance schema reference | Strimzi APl Reference
Rebalancing clusters using Cruise Control | Strimzi

Learn how to deploy and configure the Strimzi Entity Operator in your cluster by configuring your Kafka resource.
Deploying the Entity Operator isrequired if you want to use custom resources to manage Kafka topics and usersin
your cluster.

The Entity Operator is responsible for managing Kafka users (clients) and Kafka topics in your Kafka cluster. The
Entity Operator comprises the following two operators.

» Strimzi Topic Operator — An operator application that creates and manages Kafka topicsin your Kafka cluster
with Kaf kaTopi ¢ resources.

» Strimzi User Operator — An operator application that creates and manages Kafka usersin your Kafka cluster with
Kaf kaUser resources.

To deploy and configure the Entity Operator you configure your Kaf ka resource to include the entityOperator
property. The entityOperator property can include topicOperator and userOperator properties.

These properties specify which of the two operators are deployed with the Entity Operator. Y ou can choose to deploy
either the Topic or User Operator, or deploy both at once.

The following example deploys both the Topic and User Operator with default configurations.

#. ..
ki nd: Kaf ka
spec:
entityQperator:
topi cOperator: {}
user Operator: {}

Note: Your configuration must include either the topicOperator or userOperator property. If neither are
E included, the Entity Operator is not deployed.

Y ou can further configure al three operators by including additional supported properties in the configuration. The
entityOperator property can include the template property that specifies configuration related to pod and deployment
templates. The topicOperator and userOperator support various sub-properties that allow you to configure watched
namespaces, reconciliation intervals, and others.

The Entity, Topic, and User Operator are deployed by the Strimzi Cluster Operator. On successful deployment, the
Cluster Operator creates an Entity Operator deployment and pod. The Topic and User Operator run within the pod in
their own containers.

Deploying the Topic or User Operator as standalone components is not supported in Cloudera Streams M essaging
Operator for Kubernetes.

EntityOperatorSpec schema reference | Strimzi APl Reference

14

https://docs.cloudera.com/csm-operator/1.6/kafka-operations/topics/csm-op-scaling-brokers.html
https://strimzi.io/docs/operators/0.49.1/configuring#type-CruiseControlSpec-reference
https://strimzi.io/docs/operators/0.49.1/configuring#type-KafkaRebalance-reference
https://strimzi.io/docs/operators/0.49.1/deploying#cruise-control-concepts-str
https://strimzi.io/docs/operators/0.49.1/configuring#type-EntityOperatorSpec-reference

Cloudera Streams Messaging Operator for Kubernetes Deploying and configuring the Strimzi Entity Operator

Y ou deploy and configure the Strimzi Topic Operator by configuring the entityOperator property in your Kafka
resource to include topicOperator properties. Deploying the Topic Operator is required if you want to manage Kafka
topics with KafkaT opic resources instead of the KafkaAdmin API.

The Topic Operator enables you to manage Kafka topics using Kaf kaTopi ¢ resources. In Cloudera Streams
Messaging Operator for Kubernetes, you deploy the Topic Operator through the Strimzi Entity Operator. The Entity
and Topic Operator are both deployed by the Strimzi Cluster Operator.

To deploy the Topic Operator, you configure the entityOperator property in your Kafka resource to include topi
cOperator properties. Y ou configure the Topic Operator by specifying additional sub-properties in the topicOperator

property.

By default, the Topic Operator watches Kaf kaTopi ¢ resources in the namespace of the Kafka cluster deployed by
the Cluster Operator. Y ou can also specify a namespace to watch using the watchedNamespace property.

A single Topic Operator can watch a single namespace. One namespace should be watched by only one Topic
Operator. If you are deploying multiple Kafka clustersinto the same namespace, enable the Topic Operator for
only one Kafka cluster or use the watchedNamespace property to configure the Topic Operators to watch other
namespaces

e Strimzi must be installed in your cluster. The Strimzi Cluster Operator must be running. See Installation.

» For afull list of supported properties, see the Entity TopicOperatorSpec schema reference in the Strimzi API
Reference.

1. Edit the entityOperator property in your Kafka resource to include topicOperator properties.

The following example configures the Topic Operator to watch a specified namespace. Additionally, it configures
the reconciliation interval as well as various resource properties.

#. ..
ki nd: Kaf ka
spec:
entityQperator:
t opi cOper at or:
wat chedNanmespace: [***TOPI C NAMESPACE ***]
reconciliationlnterval Ms: 60000
resour ces:
requests:
cpu: "1"
menory: 500M
limts:
cpu: "1"
menory: 500M

If you want to deploy the Topic Operator with default configuration, add an empty object ({}).

#. ..
ki nd: Kaf ka
spec:
entityQperator:
topi cOperator: {}

15

https://docs.cloudera.com/csm-operator/1.6/installation/topics/csm-op-install-overview.html
https://strimzi.io/docs/operators/0.49.1/configuring#type-EntityTopicOperatorSpec-reference

Cloudera Streams Messaging Operator for Kubernetes Deploying and configuring the Strimzi Entity Operator

2. Create or update your Kafka resource.

kubect! apply --filename [***YAML CONFI G***] --namespace [***NAMESPACE***]

3. Verify the status of the deployment.
kubect| get pods --namespace [*** NAMESPACE***]

If deployment is successful, you should see an Entity Operator pod in the output.

NAVE READY STATUS RESTARTS
#. ..
my-cl uster-entity-operator-67947ff779- k5sbv 2/ 2 Runni ng 0

The READY column shows the number of replicas that are ready/expected. Deployment is successful when the
STATUS displays as Running.

Ij Note: The Topic Operator is running in a container within the Entity Operator pod.
Create and manage Kafka topics with Kaf kaTopi ¢ resources. See Managing topics.

Y ou deploy and configure the Strimzi User Operator by configuring the entityOperator property in your Kafka
resource to include userOperator properties. Deploying the User Operator isrequired if you want to manage Kafka
users with KafkaUser resourcesinstead of the KafkaAdmin API.

The User Operator enables you to manage Kafka users (clients) with Kaf kaUser resources. In Cloudera Streams
Messaging Operator for Kubernetes you deploy the User Operator through the Strimzi Entity Operator. The Entity
and User Operator are both deployed by the Strimzi Cluster Operator.

To deploy the User Operator, you configure the entityOperator property in your Kaf ka resource to include userOper
ator properties. Y ou configure the User Operator by specifying additional sub-properties in the userOperator property.

By default, the User Operator watches Kaf kaUser resources in the namespace of the Kafka cluster deployed by the
Cluster Operator. Y ou can aso specify a namespace to watch using the watchedNamespace property. A single User
Operator can watch a single namespace. One namespace should be watched by only one User Operator.

e Strimzi must beinstalled in your cluster. The Strimzi Cluster Operator must be running. See Installation.

« For afull list of supported properties, see the EntityUserOperatorSpec schema reference in the Strimzi AP
Reference.

1. Edit the entityOperator property in your Kafka resource to include userOperator properties.

The following example configures the User Operator to watch a specified namespace. Additionally, it configures
the reconciliation interval aswell as various resource properties.

#. ..

ki nd: Kaf ka

spec:
entityQperator:

16

https://docs.cloudera.com/csm-operator/1.6/kafka-operations/topics/csm-op-managing-topics.html
https://docs.cloudera.com/csm-operator/1.6/installation/topics/csm-op-install-overview.html
https://strimzi.io/docs/operators/0.49.1/configuring#type-EntityUserOperatorSpec-reference

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka brokers

user Oper at or:
wat chedNanmespace: [***USER NAMESPACE* **]
reconci liationlnterval Ms: 60000
resour ces:
requests:
cpu: "1"
menory: 500M
limts:
cpu: "1"
menory: 500M

If you want to deploy the User Operator with default configuration, add an empty object ({}).
#. ..
ki nd: Kaf ka
spec:

entityQperator:
user Operator: {}

2. Create or update your Kafka resource.

kubect! apply --filename [***YAML CONFI G***] --namespace [***NAMESPACE***]

3. Verify the status of the deployment.
kubect| get pods --namespace [*** NAMESPACE***]

If deployment is successful, you should see an Entity Operator pod in the output.

NAVE READY STATUS RESTARTS
#. ..
my-cl uster-entity-operator-67947ff779- k5sbv 2/ 2 Runni ng 0

The READY column shows the number of replicas that are ready/expected. Deployment is successful when the
STATUS displays as Running.

Ij Note: The User Operator is running in a container within the Entity Operator pod.

Create and manage Kafka users with Kaf kaUser resources. See User management.

Learn how you can update Kafka broker propertiesin your Kafka resource. Additionally, learn which broker
properties are configurable and which are managed by Strimzi.

Broker Configs | Apache Kafka

Y ou update broker configuration by editing your Kafka and KafkaNodePool resources.

Y ou can update your Kaf ka and Kaf kaNodePool resource with kubectl edit. Which resource you update depends
on what exact broker configurations you want to change.

17

https://docs.cloudera.com/csm-operator/1.6/kafka-security/topics/csm-op-user-management.html
https://kafka.apache.org/41/documentation.html#brokerconfigs

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka brokers

Most broker configuration properties are specified in your Kaf ka resource. For example, properties like the default
replication factor (default.replication.factor), minimum in sync replicas (min.insync.replicas), as well as many others.
The Kaf kaNodePool resource contains configuration related to replicas, roles, and storage. Additionally, it can
contain configuration related to CPU and memory resources, VM options, as well as templates.

1. Edit your resource.
kubect| edit [***RESOURCE***] --nanmespace [*** NAMESPACE***]

Running kubectl edit opens the resource manifest in an editor.
2. Make your changes.
3. Savethefile.

Once the changes are saved, arolling update is triggered and the brokers restart one after the other with the applied
changes.

Note: The Strimzi Cluster Operator supports dynamic updates for broker configuration properties. Properties
B that support dynamic updates are updated without restarting the brokers

Learn which Kafka broker properties you can configure in the Kafka resource and which are managed by Strimzi.

Kafka broker properties are configured by adding them to spec.kafka.config in your Kaf ka resource. The values can
be on of the following JSON types:

e String
¢ Number
* Boolean

You can find full reference of the available broker properties in the Apache Kafka documentation. While all
properties can be specified, some properties are managed by Strimzi. Broker properties managed by Strimzi generally
cannot be configured, however, there are afew exceptions.

If spec.kafka.config contains a broker property that cannot be changed, it is disregarded, and a warning message is
logged to the Strimzi Cluster Operator log. All other supported properties are forwarded to Kafka.

Strimzi takes care of configuring and managing options related to the following.

« Security (encryption, authentication, and authorization)
» Listener configuration

« Broker ID configuration

» Configuration of log data directories

* Inter-broker communication

This means that the properties with the following prefixes cannot be set.

+ controller
 cruise.control.metrics.reporter.bootstrap.
* cruise.control.metrics.topic

* host.name

* inter.broker.listener.name

18

Cloudera Streams Messaging Operator for Kubernetes

Storage configuration

listener.
listeners.
log.dir
password.
port
process.roles
sadl.

security.
servers,node.id
ssl.
super.user

There are afew exceptions within the list of broker properties managed by Strimzi. These properties are forwarded to

Kafkarather than being disregarded. The properties are as follows:

KafkaClusterSpec schemareference | Strimzi APl Reference
KafkaNodePool schmeareference | Strimzi APl Reference
Supported TLS versions and cipher suites | Strimzi

Any ssl configuration for supported TLS versions and cipher suites
The following Cruise Control metrics properties:

e cruise.control.metrics.topic.num.partitions
 cruise.control.metrics.topic.replication.factor
 cruise.control.metrics.topic.retention.ms

e cruise.control.metrics.topic.auto.create.retries

e cruise.control.metrics.topic.auto.create.timeout.ms
 cruise.control.metrics.topic.min.insync.replicas

The following controller properties:

 controller.quorum.election.backoff.max.ms
« controller.quorum.election.timeout.ms
« controller.quorum.fetch.timeout.ms

Learn about storage configuration, available storage types, and storage configuration recommendations for Kafkain

Cloudera Streams Messaging Operator for Kubernetes.
f Warning: You cannot change the storage type following cluster deployment.

Kafkastorageis configured in the Kaf kaNodePool resource using the spec.storage property. The following

configuration snippet defines a 100 GB persistent storage with the default storage class for Kafkain a

Kaf kaNodePool resource. The deleteClaim property specifiesif the persistent volume claim has to be deleted
when the cluster is un-deployed.

#. ..
ki nd: Kaf kaNodePool
spec:

st or age:

19

https://strimzi.io/docs/operators/0.49.1/configuring#type-KafkaClusterSpec-reference
https://strimzi.io/docs/operators/0.49.1/configuring#type-KafkaNodePool-reference
https://strimzi.io/docs/operators/0.49.1/configuring.html#con-common-configuration-ssl-reference

Cloudera Streams Messaging Operator for Kubernetes Storage configuration

type: persistent-claim
size: 100G
deleted aim true

Cloudera Streams Messaging Operator for Kubernetes supports multiple types of storage depending on the platform.
The supported storage types are as follows:

e Ephemera
e Persistent
e JBOD (Just a Bunch of Disks)

The storage type is configured with storage.type. The property accepts three values, ephemeral, persistent-claim, and
jbod. Each value corresponds to its respective storage type.

The following sections provide a more in-depth look at each storage type, and collect Cloudera recommendations on
storage.

Ephemeral storage is retained only for the lifetime of a pod and islost when the pod is deleted. It is not suitable for
production and should only be used for development or test clusters.

To use ephemeral storage, set storage.type to ephemeral.

#. ..
ki nd: Kaf kaNodePool
spec:
st or age:
type: epheneral

The available configuration options are listed in the Strimzi documentation.

Ephemeral Storage schema reference | Strimzi API reference

Persistent storage preserves data across system disruptions. Cloudera recommends that you use persistent storage for
production environments. When using this configuration, a single persistent storage volume is defined.

To use persistent storage, set storage.type to persistent-claim.

Note: Persistent volumes used by Kafka may have an effect on the scheduling of their podsif their node
affinity is set.

#. ..
ki nd: Kaf kaNodePool
spec:
st or age:
type: persistent-claim

Storage classes define storage profiles and dynamically provision persistent volumes based on that profile. If thereis
no default storage class, or you would not like to use the default, you can specify your storage class by setting storage.
class.

20

https://strimzi.io/docs/operators/0.49.1/configuring#type-EphemeralStorage-reference

Cloudera Streams Messaging Operator for Kubernetes Storage configuration

Tip: For Kafka brokers, Clouderarecommends a St or ageCl ass that has volume expansion enabled (allo
wvolumeexpansion set to true).

The following example configures a custom storage class for the pods in the cluster which it is configured for.

#. ..
ki nd: Kaf kaNodePoo
spec:
st or age:
type: persistent-claim
cl ass: custom st orage-cl ass

If you want to configure storage classes on a per-broker basis, deploy multiple Kaf kaNodePool resourceswith a
different storage class each.

Pod scheduling

PersistentStorage schema reference | Strimzi API reference
Storage Classes | Kubernetes

Node Affinity | Kubernetes

Just a bunch of disks (JBOD) refers to a system configuration where disks are used independently rather than
organizing them into redundant arrays. JBOD storage allows you to configure your Kafka cluster to use multiple
volumes. This approach provides increased data storage capacity for Kafka nodes, and can lead to performance
improvements. A JBOD configuration is defined by one or more volumes, each of which can be either ephemeral or
persistent.

To use JBOD storage, set the storage.type to jbod and specify the volumes.

The following example uses a jbod storage type with two attached persistent volumes. The volumes must all be
identified by aunique ID.

#. ..
ki nd: Kaf kaNodePool
spec:
st or age:
type: jbod
vol unes:
- id: O
type: persistent-claim
si ze: 100G
del eteCl aim false
- idr 1
type: persistent-claim
size: 100G
del eteC aim false

Y ou can aways increase or decrease the number of disks or increase the volume size by modifying the
Kaf kaNodePool resource and reapplying the changes. However, you cannot change the 1Ds once volumes are
created.

The available configuration options are listed in the Strimzi documentation.

JbodStorage schemareference | Strimzi API reference

21

https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-pod-scheduling.html
https://strimzi.io/docs/operators/0.49.1/configuring#type-PersistentClaimStorage-reference
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#node-affinity
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#node-affinity
https://strimzi.io/docs/operators/0.49.1/configuring#type-JbodStorage-reference

Cloudera Streams Messaging Operator for Kubernetes Pod scheduling

Cloudera recommends using persistent storage to store Kafka data. Ephemeral storageis only suitable for short-lived
test clusters. Use adynamic provisioner storage class with block storage (ReadWriteOnce access) and prefer SSD or
NVMedisks.

Consider the following when using persistent storage.

Using local storage makes the deployment similar to a bare-metal deployment in terms of scheduling and availahility.
It provides good throughput as storage operations have less overhead when replication and network hops are not
necessary.

However, the Kafka pods become bound to the node where the backing volume is located. This means that the pods
cannot be scheduled to a different node, which impacts availability

Using distributed storage with synchronous replication allows leveraging the flexibility of Kubernetes pod
scheduling. Kafka pods can be migrated across nodes due to the availability of the same storage on different nodes.
Thisimproves the availability of the Kafka cluster. Node failures do not bring down Kafka brokers permanently.

However, distributed storage reduces throughput in the Kafka cluster. The synchronous replication of storage adds
extra overhead to disk writes. Additionally, if the backing storage class does not support data locality, reads and
writes require extra network hops.

Learn about the default affinity rules and tolerations that Strimzi sets for pod scheduling. Additionaly, learn what
affinity rules Cloudera recommends for making pod scheduling stricter.

The scheduling of Kafka broker, and KRaft controller pods can be customized in the Kaf ka and Kaf kaNodePool
resources through various configurations such as storage configurations, affinity rules, and tolerations. Strimzi by
default only sets afew of the pod scheduling configurations. It is your responsibility to ensure that pod scheduling
configurations are customized correctly for your environment and use case.

Both storage and rack awareness configuration might have an impact on pod scheduling. For storage, depending on
the configuration, it is possible that a pod is bound to a node or a group of nodes and cannot be scheduled el sewhere.

If rack awarenessis configured, your pods by default get preferred and required affinity rules, which influence pod
scheduling.

Storage recommendations
Rack awareness

The Strimzi Cluster Operator does not set any tolerations on the Kafka broker and KRaft controller pods by default.
The pods get a default toleration from the Kubernetes platform.

The default tolerations are as follows.

#. ..
ki nd: Kaf ka
spec:

22

https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-configuring-storage.html#concept_xnw_x3w_jbc
https://docs.cloudera.com/csm-operator/1.6/kafka-deploy-configure/topics/csm-op-rack-awareness.html

Cloudera Streams Messaging Operator for Kubernetes Pod scheduling

kaf ka:
tenpl at e:
pod:
tol erations:

- effect: NoExecute
key: node. kuber net es. i o/ not - ready
operator: Exists
tol erati onSeconds: 300

- effect: NoExecute
key: node. kuber net es. i o/ unr eachabl e
operator: Exists
tol erati onSeconds: 300

This means that whenever the Kubernetes node running the pod is tainted as unreachable or not-ready, the pod
should be terminated after five minutes. This means that even if you lose an entire Kubernetes node, the pod will be
terminated and rescheduled only after five minutes.

Depending on your platform and the type of failure of a Kubernetes worker node, it is possible that the pods will
not be rescheduled from a dead worker node and the pod will stay in terminating state forever. In this case manual
intervention is needed to move forward.

Taints and Tolerations | Kubernetes
Node Shutdowns | Kubernetes

Learn about the pod scheduling configurations recommended by Cloudera.

Instead of using the default tolerations with 300 seconds, you can consider setting tolerations with smaller timeouts if
afive minute downtime of Kafka brokers or KRaft controller nodes is not acceptable for you.

For Kafka brokersit is possible to set tolerations globally using spec.kafka.template.pod.tolerations in the Kaf ka
resource. Alternatively, you can set tolerations for a group of broker nodes only using spec.template.pod.tolerationsin
the Kaf kaNodePool resource.

For KRaft controllers, configuration of the tolerations is the same as for Kafka brokers. Y ou can set tolerations
globally using spec.kafka.template.pod.tolerations in the Kaf ka resource. Alternatively, you can set tolerations for a
group of controller nodes only using spec.template.pod.tolerations in the Kaf kaNodePool resource.

Y ou can use required and preferred rules to fine tune scheduling according to your needs.

If you use required rules, it is your platform’s responsibility to always have enough resources (for example, enough
nodes) to satisfy the rules. Otherwise, the scheduler will not be able to schedule pods and they will be in a pending
state.

If you use preferred rules with any weight, ensure that the rule weight is correctly set. The scheduler will consider the
rules with higher weight more important than others with lower weight.

B Note: Kuberneteswill still run the pod even if it hasto break a preferred rule.

For Kafka brokersit is possible to set affinity rules globally using spec.kafka.template.pod.affinity in the Kaf ka
resource. Alternatively, you can set affinity rulesfor agroup of broker nodes only using spec.template.pod.affinity in
the Kaf kaNodePool resource.

23

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/cluster-administration/node-shutdown/

Cloudera Streams Messaging Operator for Kubernetes Pod scheduling

For KRaft controllers, configuration of affinity rulesisthe same as for Kafka brokers. Y ou can set affinity rules
globally using spec.kafka.template.pod.affinity in the Kaf ka resource. Alternatively, you can set affinity rulesfor a
group of controller nodes only using spec.template.pod.affinity in the Kaf kaNodePool resource.

The following collects examples of required rules for typical use cases.

Run each Kafka broker pod on different nodes

#. ..
ki nd: Kaf kaNodePool
spec:
tenpl at e:
pod:
affinity:
podAnti Affinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecuti on:
- | abel Sel ector:
mat chExpr essi ons:
- key: strinei.iolcluster
operator: In
val ues:
- [***CLUSTER NANE***]
- key: strinezi.iolbroker-role
operator: In
val ues:
"true"
t opol ogyKey: kuber net es. i o/ host nane

Run each KRaft controller pod on different nodes

#. ..
ki nd: Kaf kaNodePool
spec:
tenpl at e:
pod:
affinity:
podAnti Affinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecuti on:
- | abel Sel ector:
mat chExpr essi ons:
- key: strinzi.iol/cluster
operator: In
val ues:
- [***CLUSTER NAME***]
- key: strinzi.io/controller-role
operator: In
val ues:
"true"
t opol ogyKey: kubernetes. i o/ host name

Run KRaft controller and Kafka broker pods on different nodes

#. ..
ki nd: Kaf ka
spec:
kaf ka:
tenpl at e:
pod:
affinity:
podAnti Affinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:
- | abel Sel ect or:
mat chExpr essi ons:

24

Cloudera Streams Messaging Operator for Kubernetes

Rack awareness

key:

strinei.iolcl

operator: In
val ues:

- [***CLUSTER NAME***]
t opol ogyKey: kubernetes. i o/ host name

ust er

Racks provide information about the physical location of abroker or aclient. A Kafka cluster can be made rack aware
by configuring rack awareness for the Kafka brokers and consumers. Enabling rack awareness can help in hardening
your cluster, it provides durability guarantees, and significantly decreases the chances of dataloss.

To enable rack awareness for a Kafka cluster running in Kubernetes with Cloudera Streams Messaging Operator for
Kubernetes you complete the following tasks.

1. Configure rack information for your Kubernetes nodes using labels.
2. Configure rack awareness Kafka clusters.
3. Configure follower fetching for both Kafka brokers and consumers.

Note: Although the feature is called rack awareness, the term rack does not necessarily mean an actual
E physical server rack. Instead, arack from Kafka's perspective represents any physical location or independent
physical infrastructure like data centers, regions, zones, and so on.

Before you can enable rack awareness for Kafka, you must ensure that alabel is configured in your Kubernetes
cluster that holds rack information. Y ou configure labels with kubect! 1abel.

Kubernetes nodes can hold their respective rack information in labels. Y ou can set any labels to store your rack
information, however, Cloudera recommends using the topology.kubernetes.io/zone label. Thisisbecauseitisa
well-known Kubernetes label and cloud providers typically set thislabel for you automatically. If your (cloud)
environment provider does not automatically set thislabel in your environment, you have to set it manually. Thisis

done with kubectl 1abel.

1. Setyour chosen label with kubectl |abel.

kubect! | abel
RAG(***]

node [***NODE NAME***] topol ogy. kuber net es. i o/ zone=[*** ZONE/

Repeat this step for each of your nodes. For example, assuming you have six nodes, three different racks, and two
nodes per rack, you would run commands similar to the following.

kubect!| | abel
kubect| | abel
kubect!| | abel
kubect!| | abel
kubect! | abel
kubect!| | abel

node
node
node
node
node
node

kuber net es- nD2
kuber net es- n03
kuber net es- n04
kuber net es- nD5
kuber net es- nD6
kuber net es- D7

t opol ogy.
t opol ogy.
t opol ogy.
t opol ogy.
t opol ogy.
t opol ogy.

kuber net es.
kuber net es.
kuber net es.
kuber net es.
kuber net es.
kuber net es.

i o/ zone=eu- zone- 1
i o/ zone=eu- zone-1
i o/ zone=eu- zone- 2
i o/ zone=eu- zone- 2
i o/ zone=eu- zone- 3
i o/ zone=eu- zone- 3

25

Cloudera Streams Messaging Operator for Kubernetes Rack awareness

2. Verify your configuration.

kubect| get node -o=custom col unms=NOCDE: . net adat a. nanme, ZONE: . net adat a. | a
bel s. "t opol ogy\ . kubernet es\.i o/ zone" | sort -k2

The output lists your nodes and their rack information (zone). Output will be similar to the following example.

NODE ZONE
kuber net es- nD1 <none>
kuber net es- n0D2 eu-zone-1
kuber net es- n03 eu-zone-1
kuber net es- n04 eu- zone- 2
kuber net es- nD5 eu- zone- 2
kuber net es- nD6 eu- zone- 3
kuber net es- nD7 eu- zone- 3

Note: Rack information for the control-plane node (kubernetess-m01) is not set in this example, because it
should not function as a workload node.

toplogy.kubernetes.io/zone | Kubernetes

Rack awareness for Kafkais configured in your Kafka resource by specifying the Kubernetes node |abel that holds
rack information. Optionally, you can configure nodeAffinity rulesin the KafkaNodePool resource for stricter broker
placement.

Kafka brokers are made rack-aware by configuring the broker.rack property. When broker racks are configured,
Kafkaintentionally places replicas of the same partition (whenever atopic is created, modified, and so on) into
different racks to protect the data from rack failures.

In Cloudera Streams Messaging Operator for Kubernetes, you do not set broker.rack directly in your Kaf ka resource
to configure rack awareness. Instead, you specify which node label to use as rack information by configuring the kafk
arack.topologyKey property in the Kaf ka resource.

If kafka.rack.topologyKey is set, the broker.rack property of each broker is automatically set based on the node label
value that the broker pod is scheduled to. Additionally, the broker pods automatically get an affinity and anti-affinity
rule. These rules guarantee best effort spreading of brokers between racks, but do not force having the same broker
alwaysin the same rack.

Because the default rules only guarantee best effort spreading, Cloudera recommends that you override these rules
with stricter rules explicitly configuring which group of nodes should be placed in which racks.

The following steps demonstrate how to configure kafka.rack.topologyK ey and demonstrate what rules you have to
setinthe Kaf kaNodePool resourceif you want to ensure that a group of nodes are always placed in the same
rack.

Note: By default, KRaft controllers also get the same affinity rules as Kafka brokers. Rules are applied
E if kafka.rack.topologyKey is set in the Kaf ka resource. The broker.rack property is not used by KRaft
controllers, because all controllers hold the same data.

« Ensurethat you chose and configured alabel that holds rack information. See Configuring rack information on
Kubernetes nodes on page 25.
« The default affinity rules are documented in Default affinity rules for rack awareness on page 29.

26

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

Cloudera Streams Messaging Operator for Kubernetes Rack awareness

1. Configure kafka.rack.topologyKey in your Kaf ka resource.

#. ..
ki nd: Kaf ka
spec:

kaf ka:

rack:
t opol ogyKey: topol ogy. kubernetes. i o/ zone

2. Explicitly configure which group of nodes are placed in which rack.

This can be done by adding a required nodeAffinity rule in your Kaf kaNodePool resources. Thisstepis
marked as optional but is recommended by Cloudera. The following examples demonstrate a configuration where
there are two node pools. The nodes in each pool are assigned to separate racks (zones).

api Version: kafka.strinzi.io/lvl
ki nd: Kaf kaNodePoo
nmet adat a
nane: first-poo
| abel s:
strinei.iol/cluster: my-cluster
spec:
tenpl at e:
pod:
affinity:
nodeAffinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:
nodeSel ect or Ter ns:
- mat chExpr essi ons:
- key: topol ogy. kubernnetes.i o/ zone
operator: In
val ues:
- eu-zone-1

api Version: kafka.strinezi.io/lvl
ki nd: Kaf kaNodePoo

nmet adat a
nane: second- poo
| abel s:
strinei.iol/cluster: my-cluster
spec:
tenpl at e:
pod:
affinity:

nodeAffinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecut i on:
nodeSel ect or Ter ns:
- mat chExpr essi ons:
- key: topol ogy. kubernnetes.i o/ zone
operator: In
val ues:
- eu-zone-2

After the changes are applied, arolling restart is initiated.

27

Cloudera Streams Messaging Operator for Kubernetes Rack awareness

After the cluster is restarted, check the broker.rack values of each broker. Y ou can get the broker.rack values of
multiple brokers that are in the same pool with the following command.

for broker in [***CLUSTER NAME***]-[***POOL NAME***]-[***| D RANGE***]; do
kubect| exec -nanmespace [***NAMESPACE***] -it \
$br oker --container kafka \
-- /bin/bash -c "cat /tnp/stringi.properties” \
| grep -E "broker.id|broker.rack” && echo "\n"
done

e [***CLUSTER NAME***] isthe name of your cluster.
e [***POOL NAME***] isthe name of the node pool.
e [***|D RANGE***] isarange of broker IDs enclosed in curly braces ({}). For example, {1..3}.

This command will output the broker IDs and the rack information set for each broker. For example:

br oker . i d=0
br oker . rack=eu-zone- 1

br oker.id=1
br oker . rack=eu-zone-1

br oker.i d=2
br oker . rack=eu-zone-1

Y ou enable follower fetching by configuring your Kafka resource and specifying rack information in your Kafka
clients.

If rack awareness is enabled for Kafka brokers, consumers by default continue to consume messages from partition
leaders. This behavior remains the same even if the consumer and the partition leader are located in different racks.

It is possible (especialy in cloud environments) that a consumer application isin a different region than the partition
leader, but there is a partition follower in the same region as the consumer application. In this caseit is better to
consume from the partition follower instead. This way you can avoid unnecessary traffic across data centers, reducing
costs and application latency. Thisis called follower fetching.

Follower fetching is enabled by configuring the replica selector implementation in your Kafka resource to be rack-
aware. Additionally, you need to configure the client.rack property of your clients.

1. Update your Kaf ka resource.
To enable follower fetching, set the replica.selector.class broker property to the RackAwareReplicaSelector.

#. ..
ki nd: Kaf ka
spec:
kaf ka:
rack:
t opol ogyKey: topol ogy. kubernetes.i o/ zone
config:

28

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka broker node IDs

replica. sel ector.class: org.apache. kaf ka. conmon. repl i ca. RackAwar e
Repl i caSel ect or

2. Wait until the rolling restart finishes.
Use the following command to monitor cluster state.

kubect| get pods --nanmespace [***NAMESPACE***] --output wi de --watch

3. Configure your consumers.
client.rack=[***RACK | D***]

The [***RACK ID***] isone of the rack I1Ds (zones) that you configured in the topol ogy.kubernetes.io/zone
label. The client reads from afollower replicaif afollower replica host broker has a broker.rack value that is
identical with the value of client.rack on the client side. If thereisn't one, the client fetches data from the leader.

Kafka broker pods automatically get the following affinity and anti-affinity rules when rack awareness is enabled.

Thisisarequired rule, the scheduler will only schedule a broker pod to a node, if the node has the configured |abel
Set.

tenpl at e:
pod:
affinity:
nodeAffinity:
requi r edDur i ngSchedul i ngl gnor edDur i ngExecuti on:
nodeSel ect or Ter ns:
- mat chExpr essi ons:
- key: topol ogy. kubernetes.i o/ zone
operator: Exists

Thisisapreferred rule, it spreads Kafka brokers evenly across racks in a best-effort manner.

tenpl at e:
pod:
affinity:
podAnti Affinity:
pr ef erredDuri ngSchedul i ngl gnor edDur i ngExecut i on:
- podAffinityTerm
| abel Sel ect or:
mat chLabel s:
strinei.iol/cluster: [***CLUSTER NAME***]
strinei.io/name: [***CLUSTER NAME***] - kaf ka
t opol ogyKey: topol ogy. kubernetes.i o/ zone
wei ght: 100

Learn how you can configure Kafka brokers to get I Ds from a specified range.

29

Cloudera Streams Messaging Operator for Kubernetes Configuring Kafka for Prometheus monitoring

It might be important to specify the ID range of the Kafka brokers to avoid confusion before creating the cluster. This
can be configured on the level of the Kafka node pools. Y our chosen range is configured using an annotation in the
Kaf kaNodePool resource.

#. ..
ki nd: Kaf kaNodePool
nmet adat a:
nane: pool -a
| abel s:
strinei.iol/cluster: my-cluster
annot at i ons:
strinei.iolnext-node-ids: "[0-99]"

In this example, arange from 0 to 99 is configured. The desired range can be provided by ranges, individual humbers,
and so on. The range can aso be provided in areversed order, in that case the IDs are assigned in reversed order if
possible.

To monitor your Kafka cluster with Prometheus, you must configure your Kafka cluster to expose the necessary
metric endpoints that integrate with your Prometheus deployment. Thisis done by configuring metricsConfig
properties for componentsin your Kafka resource.

By default cluster components deployed with your Kaf ka resource do not expose metrics that Prometheus can
scrape. In order to use Prometheus to monitor your Kafka cluster, you must enable and expose these metrics. Thisis
done by adding a metricsConfig property to the spec of each cluster component in your Kafka resource.

Specifying metricsConfig in the Kafka resource enabl es the Prometheus IM X Exporter which exposes metrics
through a HT TP endpoint. The metrics are exposed on port 9094. The metricsConfig property can reference a
ConfigMap that holds your IMX metrics configuration or will include the metrics configurations in-line. The
following steps demonstrate the configuration by referencing a ConfigMap.

A Prometheus deployment that can connect to the metric endpoints of the Kafka cluster running in the Kubernetes
environment is required. Any properly configured Prometheus deployment can be used to monitor Kafka. Y ou can
find additional information and examples on Prometheus setup in the Strimzi documentation.

1. Create a ConfigMap with IMX metrics configuration for Kafka.

ki nd: Confi gvap
api Version: vl

net adat a:
nane: kafka-netrics
| abel s:
app: strinzi
dat a:

kaf ka-metri cs-config.ym : |
[*** KAFKA METRI CS CONFI GURATI ON***]

Replace [*** KAFKA METRICS CONFIGURATION***] with your IMX Prometheus metrics configurations.

30

https://strimzi.io/docs/operators/0.49.1/deploying#assembly-metrics-prometheus-str

Cloudera Streams Messaging Operator for Kubernetes Configuring logging for Kafka cluster components

2. Update your Kaf ka resource with metricsConfig property.
Add metricsConfig to the spec Kafka. The property needs to reference the ConfigMap you created in Step 1.

#. ..
ki nd: Kaf ka
spec:

kaf ka:

nmetri csConfi g:
type: jnmxPronet heusExporter
val ueFrom
conf i gvapKeyRef :
nane: kafka-netrics
key: kafka-netrics-config.ynl

« Configure Prometheus and specify aert rules to start scraping metrics from the Kafka pods. Y ou can find an
example rulesfile (prometheus-rules.yaml) as well as various other configuration examples on the Cloudera
Archive. Examples related to Prometheus are located in the /csm-operator/1.6/examples/metrics directory.

* Review Cloudera recommendations on what alerts and metrics to configure. See Monitoring with Prometheus.

Cloudera Archive
Prometheus IM X Exporter | GitHub

Learn how to configure logging for Kafka cluster components. Y ou can configure logging for these components
directly in the Kafka resource, or by referencing a ConfigMap.

The logging properties of Kafka cluster components like Kafka brokers, Cruise Control, and all other components
deployed and managed through the Kaf ka resource are configured in the Kaf ka resource.

Logging properties are specified in spec.[*** COMPONENT***] .logging. Logging properties can be added directly
to this property, or can be defined in an external ConfigMap that is referenced in the Kaf ka resource using configMa
pKeyRef property.

Y ou choose the configuration method by setting the logging.type property to either inline or external.

Inline

Inline configuration means that you directly specify the logging propertiesin the Kaf ka resource at
the spec of each component.

#. ..
ki nd: Kaf ka
spec:
#...
| oggi ng:
type: inline
| oggers:
kaf ka. root . | ogger. | evel : | NFO

External

External configuration means that you reference your own ConfigMap that holds the logging
properties.

#. ..

31

https://docs.cloudera.com/csm-operator/1.6/monitoring-diagnostics/topics/csm-op-prometheus-monitoring.html
https://archive.cloudera.com/p/csm-operator/1.6/
https://github.com/prometheus/jmx_exporter

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

ki nd: Kaf ka
spec:
#. ..
| oggi ng:

type: external
val ueFrom
confi gvapKeyRef :
name: my-config-map
key: ny-config- map-key

A ConfigMap is generated for each Kafka cluster component after pod creation. These ConfigMaps contain the actual
logging configuration. Do not edit the generated ConfigMaps directly, as direct changes are ignored.

Depending on the changes made, they are either applied dynamically, or arolling restart is triggered.

The following Kafka cluster components use logdj configuration:

» Kafka3.9 and lower

The following Kafka cluster components use log4j2 configuration:

« Kafka4.0 and higher
* CruiseControl

e UserOperator

» EntityOperator

Logging options for Kafka components and operators | Strimzi

Client access to your cluster is set up in Cloudera Streams Messaging Operator for Kubernetes by configuring
listenersin your Kafka resource. Listeners can be used to expose your brokers, allowing clients to access them.

Each listener is configured as an array in your Kaf ka resource. For example:

#. ..
ki nd: Kaf ka
spec:

kaf ka:

version: 4.1.1.1.6
replicas: 3

|isteners:
- nane: plain
port: 9092

type: internal
tls: false

Y ou can configure any number of listeners aslong as their names and ports are unique. Their configuration is aso
highly customizable. For an exhaustive list of accepted properties, seethe Gener i cKaf kalLi st ener aswell as
other listener schemareferencesin the Strimzi API reference.

There are two categories of listeners, internal and external. Internal listeners are used to expose Kafkato clients that
areinternal to the Kubernetes cluster. External listeners provide a way to expose Kafkato the outside world.

Listeners are further categorized by their type. The different listener types expose Kafka with different connection
mechanisms. The types of listeners available are as follows.

32

https://strimzi.io/docs/operators/0.49.1/deploying#logging_options_for_kafka_components_and_operators

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

Internal listener types

interna

Aninternal type listener uses a Kubernetes headless Service that gives each broker pod a stable
hosthame. These hostnames are set as advertised listeners for Kafka. In addition, a Clusterlp
Kubernetes Service is set up that acts as the Kafka bootstrap. Theinitial connection is done
using the bootstrap, subsequent connections are opened using the hostnames given to the pods
by the headless Kubernetes Service.

cluster-ip

With a cluster-ip type listener, individual ClusterlP type Kubernetes services are set up for each
broker. The hostnames of the Clusterl P services are configured as the advertised listeners for
Kafka. In addition, another ClusterlP is provisioned that acts as the Kafka bootstrap. The initial
connection is done using the bootstrap, subsequent connections are opened using the Cluster| P
Services corresponding to each broker.

All Kafkaresources that you create in Cloudera Streams Messaging Operator for Kubernetes most
likely contain an internal listener by default. This means that you can test your cluster and connect
your client as soon as the cluster is up and running. To connect aclient, direct it to the address

of the bootstrap service that was set up by the listener. From there Kubernetes and the Strimzi
Cluster Operator handle everything else ensuring that connection requests are sent to the appropriate
brokers.

External listener types

33

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

* nodeport

Kubernetes Cluster

Node Ports Bootstrap Service
type: NodePort

-6 —E)—

Per-broker Services
type: NodePort Broker Pods

—>

Client

A nodeport type listener sets up NodePort type Kubernetes Services to provide external accessto
Kafka

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

e route
Kubernetes Cluster

Bootstrap Service
Routes type: ClusterIP

,@, @_
Per-broker Services
o type: ClusterIP Broker Pods
—_—
Client
@

—>

A route type listener uses Openshift routes and the default HAProxy router to provide external
access to Kafka.

35

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

* loadbalancer

Kubernetes Cluster

Load Bootstrap Service
Balancers type: LoadBalancer

Per-broker Services
type: LoadBalancer Broker Pods

O _

Client

A loadbalancer type listener sets up LoadBalancer type Kubernetes Services and cloud provider
or infrastructure managed load balancers to provide external accessto Kafka.

36

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

* ingress

Kubernetes Cluster

Bootstrap Service
type: ClusterIP

[
[

Load Balancer

(or Node Port) Ingress Service Ingress Controller

Per-broker Services

o R type: ClusterIP Broker Pods
@ k]
Ll Ll

o
-0
—8--0

Aningresstype listener uses Kubernetes Ingress and the Ingress-NGINX controller to provide
external access to Kafka.

Note: When deploying a Kafka cluster on Taikun CloudWorks, use ingress type
IE listeners, set the Ingress class to taikun, and ensure that bootstrap and broker
hostnames resolve to your cluster.

Which of the available external listener types you choose will depend on your requirements and
infrastructure. Each external listener type is further documented in their dedicated section. See these
sections for more information on how they work as well as instructions on how to set them up.

When configuring listeners for Kafka clients, you can use ports from 9092 and above. There are two default listeners
configured in each cluster that can not be configured and accessed by external clients. These are as follows.

e Control plane listener (9090) - This port is used for controller communication
» Replication listener (9091) - This port is used by replica fetchers for replicating topic partitions

Strimzi APl Reference

Learn about Kubernetes NodePorts and how NodePorts are used to provide Kafka clients access to your cluster.

NodePort is a Kubernetes Service type that allocates a port, referred to as a node port, on every node of the
Kubernetes cluster. NodePort ensures that all traffic routed to the node port gets to a specific pod.

To set up externa cluster access with NodePorts, you add nodeport type listeners to your Kafka resource (listener.typ
e:nodeport).

Note: By default the node port numbers are assigned by Kubernetes from a configurable default range.
Unless you choose to configure specific port numbers, new ports might be assigned when you redeploy the
Kaf ka resource.

Once configuration is done, the Strimzi Cluster Operator deploys multiple NodePort Services. Specifically, you will
have the following:

37

https://strimzi.io/docs/operators/0.49.1/configuring

Cloudera Streams Messaging Operator for Kubernetes

» One NodePort that serves as an external bootstrap. Thisis used by clients for the initial connection and to receive
metadata (advertised listeners) from the Kafka cluster.
» A NodePort for each Kafka broker. These are used by clients to directly access the individual brokers.

The addresses of the nodes and the node ports are collected by the Strimzi Cluster Operator and configured as the
advertised listeners of the brokers. So brokers are automatically configured to advertise the right address and ports.
Asaresult, once listener setup is complete, you can connect your clients running outside of the Kubernetes network
by directing them to the NodePort Service that acts as the external bootstrap. Kubernetes handles everything else and
ensures that client requests are routed to the correct brokers.

Complete the following steps to set up and configure a nodeport type listener in your Kafka resource. The following
steps also include an example on how to connect a Kafka console client to the cluster.

These steps demonstrate basic listener configuration with typical customizations. In addition to the configuration
shown here, you can further customize your listener and enable or disable TL S encryption using the tls property,
specify a client authentication mechanism with the authentication property, as well as add various additional
configurations using the configuration property. For a comprehensive list of available properties, see the
GenericKafkaListener schema reference in the Strimzi API reference.

1. Configure your Kafkaresource.

Add an external listener that has its type property set to nodeport. In addition, Cloudera recommends that you
customize your listeners and specify exact port numbers with the nodePort property. This way, you do not need to
reconfigure your clients every time you redeploy Kafka.

However, note that no validation is done, so you must ensure that the configured ports are not used by any other
service and are within the range assigned for node ports. If port numbers are not specified, the Strimzi Cluster
Operator chooses available ports from the range assigned to node ports.

The following snippet shows a configuration where listener.type is set to nodeport and exact port numbers are also
specified.

#. ..
ki nd: Kaf ka
spec:
kaf ka:
|l i steners:
- nhane: externa
port: 9094
type: nodeport
tls: true
aut henti cati on:
type: tls
configuration:
boot st r ap:
nodePort: 32000
br okers:
- broker: O
nodePort: 32001
- broker: 1
nodePort: 32002
- broker: 2
nodePort: 32003

38

Listener configuration

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

2. Verify that NodePort Services are created and running.
kubect| get services --nanespace [***NAVESPACE***]

The output will be similar to the following example.

NANMVE TYPE CLUSTER- | P EXTERN
AL-1P

#. ..

my- cl ust er - kaf ka- ext er nal - boot st rap NodePor t 10. 43. 137. 124 <none>
my-cl ust er - kaf ka- 0 NodePor t 10. 43. 78. 187 <none>
my-cl ust er - kaf ka- 1 NodePor t 10. 43. 5. 207 <none>
my- cl ust er - kaf ka- 2 NodePor t 10.43. 75.51 <none>

Notice that there is a NodePort Service deployed for each Kafka broker. Additionally you have a separate external
bootstrap NodePort called [*** CLUSTER NAME* **] -kafka-external bootstrap. Clients connecting to the
Kafka cluster should be directed to the external bootstrap.

3. Get the node port of the external bootstrap service.

kubect| get service [***CLUSTER NAME***] - kaf ka- ext er nal - boot strap \
--nanespace [***NAMESPACE***] \
- - out put =j sonpat h="{. spec. ports[0] . nodePort}{"\n"}'

4. Get the address (hostname or |P) of any node.

kubect| get node [***NODE NAME***] \
- - out put =j sonpat h=' {range. st at us. addresses[*] }{.type}{"\t"}{. address}{"
\n"}'
5. Configure and run your client.
The following example shows a Kafka console producer.

kaf ka- consol e- producer. sh \
--boot strap-server [***NODE ADDRESS***]:[***NODE PORT***] \
--topic [***TOPI Cr**]

A nodeport type listener is configured. External Kafka clients can now access your Kafka cluster through the
NodePort Services.

Service | Kubernetes
Accessing Kafka: Part 2 — Node ports | Strimzi blog
GenericKafkalL istener schema reference | Strimzi API reference

Routes is an OpenShift concept and solution that allows you to expose Kubernetes Services at a public URL so that
external clients can reach your applications running in the Kubernetes cluster.

To set up external cluster access using Openshift routes, you add a route type listener to your Kaf ka resource (list
ener.typerroute).

39

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/04/23/accessing-kafka-part-2/
https://strimzi.io/docs/operators/0.49.1/configuring#type-GenericKafkaListener-reference

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

Once configuration is done, the Strimzi Cluster Operator deploys multiple routes as well as multiple Clusterl P type
Kubernetes Services. This means that you will have the following:

* A route and a corresponding Clusterl P that serves as an external bootstrap. Thisis used by clients for the initial
connection and to receive metadata (advertised listeners) from the Kafka cluster.

e A unique route and a Cluserl P for each Kafka Broker. The routes and the corresponding Cluster| Ps are used to
access the brokers directly and to distinguish the traffic for different brokers.

Kafka clients connect to the bootstrap route, which routes the request through the bootstrap Cluster| P to one of the
brokers. From this broker, the client receives metadata that contains the hostnames of the per-broker routes. The
client uses these addresses to connect to the routes dedicated to the specific broker. Afterward, the route directs traffic
through its corresponding Clusterl P to its corresponding broker.

The Strimzi Cluster Operator uses the HAProxy router and sets up routes with passthrough termination. This results
in the following:

« Traffic going through aroute is always secured and uses TL S encryption.
« Encrypted traffic is sent to the Clusterl P Service without data being decrypted in the process.

« The port that the routes listen on is fixed and is always 443. This is because HAProxy uses port 443 by default for
HTTPS requests.

The Strimzi Cluster Operator collects the hostnames assigned to the routes and uses the addresses to configure the
advertised listenersin the Kafka brokers. So brokers are automatically configured to advertise the right address and
ports. As aresult, once setup is complete, you can connect your clients running outside of the Kubernetes network by
directing them to the bootstrap route. Kubernetes and OpenShift handle everything else and ensure that client requests
are routed to the correct brokers.

Complete the following steps to set up and configure aroute type listener in your Kafka resource. The following steps
also include an example on how to connect a Kafka console client to the cluster.

These steps demonstrate basic listener configuration with typical customizations. In addition to the configuration
shown here, you can further customize your listener and specify a client authentication mechanism with the authenti
cation property and add various additional configurations using the configuration property. For a comprehensive list
of available properties, see GenericKafkaListener schema reference in the Strimzi API reference.

1. Configure your Kafkaresource.

Add an external listener that has its type property set to route. Additionally, you must ensure that tlsis set to true
as TLS/SSL encryption is mandatory when using routes.

Optionally, you can further customize the listener. For example, the following configuration snippet shows an
example where the hostnames of routes are specified with the host property.

#. ..
ki nd: Kaf ka
spec:
kaf ka:
|l i steners:
- nane: external
port: 9094
type: route
tls: true
aut henti cati on:
type: tls
configuration:
boot st r ap:

40

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

host: kaf ka-boot strap.router.com

br okers:
- broker: O
host: kaf ka-0.router.com
- broker: 1
host: kafka-1.router.com
- broker: 2

host: kafka-2.router.com

Note: Hosts are automatically assigned by OpenShift if you do not assign them. If you choose to override
hostnames, ensure that they are available for use and match the configuration of the router as the Strimzi
Cluster Operator does not perform any validation.

2. Verify that the configured services are created and ready.

oc get svc

3. Get the host of the bootstrap route.

oc get routes [***CLUSTER NAME***] - kaf ka- boot strap \
--out put =j sonpat h="{.status.ingress[0].host}{"\n"}'

4. Extract the TLS certificate from your broker and import it into a Java truststore file.

Extracting the TL S certificate is required because TL S encryption is mandatory when using routes. Because
of this, you must run your clients with avalid certificate. Y ou can use the OpenShift CLI (oc) to extract the
certificate and the keytool utility to import the certificate into a Javatruststore file. For example:

oc extract secret/[***CLUSTER NAME***] -cl uster-ca-cert \
--keys=ca.crt --to=- > ca.crt

keytool -inport -trustcacerts -alias [***ALI AS***] \
-file ca.crt \
-keystore truststore.jks \
-storepass [***PASSWORD***] \

- nopr onpt
5. Ensure that the resulting truststore is available on the machine where you run your client and that the client has
access to thefile.
6. Configure and run your client.
The following example shows a Kafka console producer.

kaf ka- consol e- producer. sh \
--boot strap-server [***BOOTSTRAP ROUTE HOST***]: 443 \
--producer-property security.protocol =SSL \
--producer-property ssl.truststore. password=[*** PASSWORD***] \
--producer-property ssl.truststore.location=[***TRUSTSTORE LOCATI ON***]
\
--topic [***TOPI C***]

Tip: Instead of passing TLS/SSL properties directly using the --producer-property option, you can also
O create a configuration file containing the properties and pass the file with --producer.config option.

Service | Kubernetes
Accessing Kafka: Part 3 — OpenShift Routes | Strimzi blog
GenericKafkal istener schema reference | Strimzi API reference

41

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/04/30/accessing-kafka-part-3/
https://strimzi.io/docs/operators/0.49.1/configuring#type-GenericKafkaListener-reference

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

L oad balancers automatically and efficiently distribute network traffic between multiple backend servers. A load
balancer setup can be used to expose your Kafka brokers to the outside world.

There are many load balancer implementations available and all cloud providers provide their own solutions.
Different implementations handle load balancing on different levels of the network, most commonly you have
layer 4 (transport) and layer 7 (application) load balancing. Strimzi in Cloudera Streams M essaging Operator for
Kubernetes uses layer 4 load balancing. Thisis because common load balancer implementations do not support the
Kafka protocal.

To set up external cluster access using load balancers, you add a loadbalancer type listener to your Kafka resource
(listeners.type:loadbal ancer).

Once configuration is done, the Strimzi Cluster Operator sets up multiple load balancers as well as multiple
L oadBalancer type Kubernetes Services. This means that you will have the following:

« A load balancer and a corresponding LoadBalancer Service that serves as an external bootstrap. Thisis used by
clientsfor the initial connection and to receive metadata (advertised listeners) from the Kafka cluster.

* A unique load balancer and a L oadBalancer Service for each Kafka Broker.

Note: Do not confuse the LoadBalancer type Service with the actual load balancers. The LoadBalancer
Services are managed by Kubernetes. The load balancers are separate entities and are managed by the
infrastructure or cloud provider.

The Strimzi Cluster Operator creates the LoadBalancer type Services first. Following the creation of the Services, the
load balancers are automatically created. Typically your infrastructure provider assigns the load balancer a hostname
and |P address. These are automatically added to the status section of the Kaf ka resource. The Strimzi Cluster
Operator collects both hostname and 1P address and uses them to configure the advertised listeners of your Kafka
brokers.

The Strimzi Cluster Operator uses hostnames instead of |P addresses by default. Thisis because load balancer IP
addresses might change, the hostnames, however, are fixed and remain the same as long as the load balancer is
running. By default, the Strimzi Cluster Operator uses the | P address if there is no hostname assigned to the load
balancer. In case you want to use | P addresses, you can do so by manually configuring them during setup.

Once the listener is configured, you can connect your clients running outside of the Kubernetes network by directing
them to the bootstrap load balancer. The load balancers, Kubernetes, and Kafka handle everything else and ensure
that client requests are routed to the correct brokers.

Complete the following steps to set up and configure aloadbalancer listener in your Kafka resource. The following
steps also include an example on how to connect a Kafka console client to the cluster.

These steps demonstrate basic listener configuration with typical customizations. In addition to the configuration
shown here, you can further customize your listener and enable and disable TL S encryption using the tls property,
specify aclient authentication mechanism with the authentication property, as well as add various additional
configurations using the configuration property. For a comprehensive list of available properties, see the
GenericKafkaListener schema reference in the Strimzi API reference.

42

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

1. Configure your Kafkaresource.
Add anew externa listener that has its type set to |oadbal ancer.

Optionally, you can further customize the listener. For example, the following configuration snippet shows
an example where the advertised hostnames and ports are specified using advertisedHost and advertisedPort
properties.

#. ..
ki nd: Kaf ka
spec:
kaf ka:
|isteners:
- name: externa
port: 9094
type: | oadbal ancer
tls: true
aut henti cati on:
type: tls
configuration:
br okers:
- broker: O
adverti sedHost: mny-broker-0.cl oudera. com
adverti sedPort: 12340
- broker: 1
adverti sedHost: nmny-broker-1.cl oudera.com
advertisedPort: 12341
- broker: 2
adverti sedHost: mny-broker-2.cl oudera. com
adverti sedPort: 12342

O Tip: The advertisedHost property also accepts |P addresses. Specify |P addressesinstead if DNS

resolution does not work for the Kafka clients. Configuring exact hostnames or ports does not change the
hostname or port of the load balancer, instead it changes the address advertised by Kafka.

2. Verify that LoadBalancer type services as well as |oad balancers are running
kubect| get services --nanespace [***NAVESPACE***]

The output will be similar to the following example.

NAME TYPE CLUSTER- | P EXTER
NAL- | P

#. ..

my- cl ust er - kaf ka- ext er nal - boot st rap LoadBal ancer 10. 43. 18. 136 10. 65
.0.5

my- cl ust er - kaf ka- ext ernal -0 LoadBal ancer 10.43.1.63 10.
65.0.6

my- cl ust er - kaf ka- ext ernal -1 LoadBal ancer 10.43.46.74 10.
65.0.7

my- cl ust er - kaf ka- ext er nal - 2 LoadBal ancer 10. 43.113. 194 10.
65.0.8

Notice that there is a LoadBalancer Service deployed for each Kafka broker. Additionally you have a separate
external bootstrap LoadBalancer called [*** CLUSTER NAME* **] -kafka-external -bootstrap.

Clients connecting to the Kafka cluster should be directed to the external bootstrap. The addresses in the EXTE
RNAL-IP column are the hostnames or | Ps of the load balancers. Having this column popul ated with values
indicates that the load balancers are created.

43

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

3. Extract the TLS certificate form your broker and import it into a Javatruststore file.
Doing the following is only required if you have TLS/SSL encryption enabled for the load balancer listener.

kubect| get secret [***CLUSTER NAME***]-cl uster-ca-cert \
--nanespace [***NAMESPACE***] --output jsonpath='{.data.ca\.crt}"' \
| base64 -d > ca.crt

keytool -inmport -trustcacerts -alias [***ALI AS***] \
-file ca.crt \
-keystore truststore.jks \
-storepass [***PASSWORD***] \

- nopr onpt

4. Ensurethat the resulting truststore is available on the machine where you run your client and that the client has
access to thefile.

5. Get the address of the bootstrap load balancer.

kubect| get kafka [***CLUSTER NAME***] \
--nanespace [***NAMESPACE***] \
--out put =j sonpat h="{.status.|isteners[?(@nanme=="[***L| STENER
NAME***]")] . boot strapServers}{"\n"}"'

Clients that you want to connect to the cluster should be directed to this address.
6. Configure and run your client.

The following example shows a Kafka console producer. Configuring TLS/SSL related propertiesis only required
if TLS/SSL is enabled for the load balancer listener.

kaf ka- consol e- producer. sh \
--boot strap-server [***BOOTSTRAP LOAD BALANCER HOST***]:9094 \
-- producer-property security. protocol =SSL \
--producer-property ssl.truststore. password=[*** PASSWORD***] \
--producer-property ssl.truststore.|location=[***TRUSTSTORE LOCATI ON***]
\
--topic [***TOPI C***]

Tip: Instead of passing TLS/SSL properties directly using the --producer-property option, you can also
O create a configuration file containing the properties and pass the file with --producer.config option.

Service | Kubernetes
Accessing Kafka: Part 4 — Load Balancers | Strimzi blog
GenericKafkal istener schema reference | Strimzi API reference

Y ou can use Ingress to route HTTRP/HTTPS traffic from outside the cluster to services within the cluster.

Important: If you are on OpenShift, use OpenShift routes (route type listeners) to configure external access
to the cluster instead of Ingress.

Ingress has two main components. Y ou have Ingress resources, which define the traffic routing rulesto your services
and pods. In addition, you have Ingress controllers, which route incoming requests based on the rules defined by
Ingress resources.

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/05/13/accessing-kafka-part-4/
https://strimzi.io/docs/operators/0.49.1/configuring#type-GenericKafkaListener-reference

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

The Ingress API isanative part of Kubernetes, Ingress controllers are not. This means that while creating Ingress
resources is possible by default on any Kubernetes cluster, the Ingress controller must be installed separately,
otherwise, Ingress cannot function.

While there are numerous controller implementations available for Kubernetes, Strimzi only supports Ingress-Nginx
controllers running in TL S passthrough mode.

To set up external cluster access with Ingress, you add an ingress type listener to your Kafka resource (listener.typeiin
gress) and specify the hostnames for each broker and a bootstrap using the configuration property. In addition, TLS
must be enabled for the listener, and, depending on your environment, specifying the Ingress class might be required.

Once configuration is done, the Strimzi Cluster Operator deploys multiple Ingress resources as well as multiple
ClusterlP Services. This means that you will have the following:

» AnIngress and acorresponding Clusterl P that serves as an external bootstrap. Thisis used by clients for the initial
connection and to receive metadata (advertised listeners) from the Kafka cluster.

* A unique Ingress and a Clusterl P for each Kafka Broker. These are used to access the brokers directly and to
distinguish the traffic for different brokers.

Kafka clients connect to the bootstrap Ingress, which routes the request through the corresponding bootstrap service
to one of the brokers. Connections to the individual brokers are then established using advertised listeners received
from the broker. Traffic is then routed from the client to the broker through the broker-specific Ingresses and services.

Once the listener is configured, you can connect your clients running outside of the Kubernetes network by directing
them to the bootstrap Ingress. Kubernetes, Ingress, and Kafka handle everything else and ensure that client requests
arerouted to the correct brokers.

Ingress-Nginx Controller | Kubernetes Github.io

Complete the following stepsto set up and configure an ingress listener in your Kafka resource. The following steps
also include an example on how to connect a Kafka console client to the cluster.

These steps demonstrate basic listener configuration. In addition to the configuration shown here, you can further
customize your listener and specify a client authentication mechanism with the authentication property and add
various additional configurations using the configuration property. For a comprehensive list of available properties,
see GenericKafkaListener schema reference in the Strimzi API reference.

» Ensurethat an Ingress-Nginx controller is deployed in your Kubernetes cluster.
» Ensurethat the Ingress-Nginx controller has TL S Passthrough enabled.

45

https://kubernetes.github.io/ingress-nginx/
https://kubernetes.github.io/ingress-nginx/
https://kubernetes.github.io/ingress-nginx/user-guide/tls/#ssl-passthrough

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

1. Configureyour Kaf ka resource.
To set up an ingress type listener, you need to configure multiple propertiesin your Kafka resource.

a) Add an external listener that has its type property set to ingress.

b) Specify Ingress hosts used for the different brokers as well as the bootstrap.
Thisis done with the configuration property. Add the hostnames to the bootstrap and broker-[*** INDEX***]
prefixes that identify the bootstrap and brokers.

¢) Ensurethat tlsis set to true.

d) Specify the Ingress class with the class property.
If you are on Taikun CloudWorks, the Ingress class must be set to taikun.

Once configuration is done, your Kaf ka resource should look similar to the following examples.

#. ..
ki nd: Kaf ka
spec:
kaf ka:
i steners:
- nane: externa
port: 9094
type: ingress
tls: true
aut henti cati on:
type: tls
configuration
boot strap
host: my-boot strap. cl oudera. com
br okers:
- broker: 0
host: nmny-broker-0. cl oudera. com
- broker: 1
host: my-broker- 1. cl oudera. com
- broker: 2
host: my-broker-2. cl oudera. com
cl ass: ngi nx

#. ..
ki nd: Kaf ka
spec:
kaf ka:
i steners:
- nane: externa
port: 9094
type: ingress
tls: true
configuration
boot st rap
host: [***BOOTSTRAP SUBDOVAI N***] . [***DOMAI N NANVE* **]
br okers:
- broker: O
host: [***BROKER 1 SUBDOMAI N***].[***DOVAI N
NANE***]
- broker: 1
host: [***BROKER 2 SUBDOMAI N***] . [***DOMAI N
NANE***]

46

Cloudera Streams Messaging Operator for Kubernetes Listener configuration

- broker: 2
host: [***BROKER 3 SUBDOVAI N***] . [***DOVAI N
NA'VE***]
cl ass: taikun

class—Must be set to taikun in Taikun CloudWorks clusters.

bootstrap.host and brokerg*].host — Ensure that these hosts resolve to the access I P of your
Kubernetes cluster.

Configure these properties as follows:

o [***SUBDOMAIN***] — Arbitrary and unique subdomain or service name that identifies the
your bootstrap and brokers.

e [***DOMAIN NAME***] — A domain that resolves to the access | P of your Kubernetes
cluster.

If you do not have DNS configured or do not know your domain, use awildcard DNS service
like sdlip.io. If you use awildcard DNS service, the value you enter must have the following
format:

[*** SUBDOMAI N***] . [*** ACCESS | P***] . [***W LDCARD DNS
SERVI CE* * *]

For example:
boot st rap. 203. 0. 113. 255.sslip.io

Y ou can find the access IP of the cluster in Taikun CloudWorks by going to Projects
[***YOUR PROJECT***]

2. Verify that both Ingress resources and Cluster| P Services are created and running.
Use kubectl get ingressto list ingresses.

kubect |

get ingress --nanespace [***NAVESPACE***]

The output will be similar to the following example.

NAME

CLASS HOSTS ADDRESS

PORTS

#

rri/: 6I ust er - kaf ka- boot strap ngi nx my- boot strap. cl oudera. com 10.14.9
1.1 80, 443

my- cl ust er - kaf ka- 0 ngi nx my- br oker - 0. cl oudera.com 10.14.9
1.1 80, 443
my- cl ust er - kaf ka- 1 ngi nx my- br oker-1. cl oudera.com 10.14.9
1.1 80, 443
my- cl ust er - kaf ka- 2 ngi nx my- br oker - 2. cl oudera.com 10.14.9

1.1 80, 443

Use kubectl get servicesto list Kubernetes Services.

kubect |

get services --nanespace [***NAMESPACE***]

The output will be similar to the following example.

NAME

AL-I P

#

TYPE CLUSTER- I P EXTERN

rri/: cl ust er - kaf ka- ext er nal - boot st r ap CusterlP 10.43.16.137 <none>
my-cl ust er - kaf ka- 0 ClusterlP 10.43.67.184 <none>

47

Cloudera Streams Messaging Operator for Kubernetes Accessing the Cruise Control REST API

my-cl ust er - kaf ka- 1 Clusterl P 10.43.189.61 <none>
my- cl ust er - kaf ka- 2 ClusterlP 10.43.177.221 <none>

3. Extract the TLS certificate from your broker and import it into a Javatruststore file.

Extracting the TLS certificate is required because TL S encryption is mandatory when using Ingress. Because of
this, you must run your clients with avalid certificate. Y ou can use the kubectl get to extract the certificate and the
keytool utility to import the certificate into a Java truststore file. For example:

kubect| get secret [***CLUSTER NAME***]-cl uster-ca-cert \
--nanespace [***NAMESPACE***] \
--output jsonpath="{.data.ca\.crt}' \
| base64 -d > ca.crt

keytool -inmport -trustcacerts -alias [***ALI AS***] \
-file ca.crt \
-keystore truststore.jks \
-storepass [***PASSWORD***] \

- nopr onpt
4. Ensurethat the resulting truststore is available on the machine where you will run your client and that the client
has access to thefile.
5. Configure your client.
The following example shows a Kafka console producer. The port used by Ingressistypicaly 443.

kaf ka- consol e- producer. sh \
--boot strap-server [***BOOTSTRAP | NGRESS HOST***]: 443 \
--producer-property security.protocol =SSL \
--producer-property ssl.truststore. password=[*** PASSWORD***] \
--producer-property ssl.truststore.location=[***TRUSTSTORE LOCATI ON***]
\
--topic [***TOPI Cr**]

Tip: Instead of passing TLS/SSL properties directly using the --producer-property option, you can also
O create a configuration file containing the properties and pass the file with --producer.config option.

Service | Kubernetes
Accessing Kafka: Part 5—Ingress | Strimzi blog
GenericKafkal istener schema reference | Strimzi API reference

Learn how you set up access to the Cruise Control REST API.

The Cruise Control REST API supports a number of GET requests, which can be used for read-only operations.
These operations do not perform any Kafka changes and do not change the state or configuration of Cruise Control.
Having access to these endpoints enables you to carry out operations such as the following.

¢ Query detailed Cruise Control specific statistics and datain a secure way. For example you can get access to
information surrounding cluster and partition load as well as user tasks.
* Monitor Kafka cluster with the Cruise Control user interface.
» Debug Cruise Control securely.
Important: Using REST API endpoints that have a method different from GET (for example, POST, PUT,

DELETE, and so on) interfere with the Strimzi Cluster Operator’ s management of Cruise Control leading to
unexpected behavior. The use of these endpoints is hot recommended or supported by Cloudera.

48

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://strimzi.io/blog/2019/05/23/accessing-kafka-part-5/
https://strimzi.io/docs/operators/0.49.1/configuring#type-GenericKafkaListener-reference

Cloudera Streams Messaging Operator for Kubernetes Accessing the Cruise Control REST API

Y ou configure access control to the Cruise Control REST API endpoints using asingle Kubernetes Secr et . The
Secr et containsthelist of all users who are granted access to the endpoints and their role.

Strimzi uses roles to grant users or third-party applications different levels of access to the Cruise Control REST API.
Each user is configured with a static password for basic HT TP authentication.

By default Cruise Control defines the following threeroles.

* VIEWER - has access to the most lightweight kaf ka_cl ust er _st at e, user _t asks andr evi ew_boar d
endpoints.

* USER-hasaccessto al GET endpoints except boot st rap andtrai n.

« ADMIN —has accessto all endpaints.

Strimzi supports the USER and VIEWER roles only. This restriction isin place so that REST API calls made by users
and third-party applications do not interfere with the calls, for example, the write operations, made by the Strimzi
Cluster Operator and potentially cause damage to the Kafka cluster managed by Strimzi.

Learn how to configure REST API usersfor Cruise Control. Users you configure are granted access to the Cruise
Control REST API.

Y ou specify the users you want to grant access to the Cruise Control REST APl inaSecr et . The Secr et must be
referenced in spec.cruiseControl.apiusers of the Kaf ka resource.

1. Create API usersin Jetty’ s HashLoginService file format (cruise-control-auth.txt).
Add your users, their passwords, as well astheroles.

[***USER 1***]: [***PASSWORD 1***], VI EVER
[***USER 2%**]: [***PASSWORD 2***], USER

Important: Ensure that there are no ADMIN role users defined in the file that you create. ADMIN role
users are not supported. If you specify ADMIN role users, Cruise Control will fail to start.

2. CreateaSecr et using thefile you created in the previous step.

kubect| create secret generic cruise-control-api-users-secret \
--fromfile=cruise-control -auth.txt=crui se-control -auth.txt

3. Referencethe Secr et in spec.cruiseControl.apiUsers of the Kaf ka resource.

#. ..
ki nd: Kaf ka
spec:
crui seContr ol
config:
webserver.security. enable: true
webserver. ssl . enabl e: true
api Users:
type: hashLogi nService
val ueFrom
secr et KeyRef :
nane: crui se-control-api-users-secret

49

Cloudera Streams Messaging Operator for Kubernetes Accessing the Cruise Control REST API

key: cruise-control -auth. txt

» webserver.security.enable — Enables HTTP Basic authentication for the Cruise Control REST API and
enforces the policies defined in spec.cruiseControl .apiUsers.

* webserver.ssl.enable — Enables TLS encryption for the Cruise Control REST API.

e apiUsers— Configures the Cruise Control REST API users by referencing aSecr et .

Note: Both webserver.security.enable and webserver.ssl.enable are set to true by default. Explicitly
E configuring them is not required.

Cruise Control REST API reference
APl users| Strimzi API reference
Security | Cruise Control

Learn how to enable external access for the Cruise Control REST API. Configuring external access makesit possible
for Cruise Control users to access the REST API from outside the Kubernetes cluster.

The Cruise Control REST API can be secured with authentication, authorization and encryption. Asaresult, it is
considered safe to allow access from outside the Kubernetes cluster as well. Cloudera recommends that access control
is aways used when enabling external accessto Cruise Control.

By default, the Strimzi Cluster Operator generates a strict network policy that blocks external connectionsto Cruise
Control. Additionally, the TLS certificates for Cruise Control are automatically generated and cannot be modified. As
aresult, to set up external accessto Cruise Control you require the following.

« Have or create aresource, like an NGINX-based Ingress, to route and manage traffic coming from outside the
cluster. Any type of resource can be used that can route outside traffic.

» Create anew network policy that enables access to Cruise Control.

* Usethe Cruise Control certificatesinternally.

When TLSisenabled for Cruise Control the service certificates are generated by Strimzi and cannot be modified.
Thisis because most of the ssl. configurations are restricted and managed by the Strimzi Cluster Operator.
Because of this, the resource (for example, an Ingress) providing access to the Kubernetes cluster must use the
generated TL S credentials to communicate with Cruise Control. External connections can be configured with user
generated and managed certificates.

The following steps demonstrate how you can configure NGINX-based Ingress to access Cruise Control. Thisisjust a
specific example and any other type of Ingress can be used.

1. Create aNet wor kPol i cy that allows the connection from the Ingress pod.

api Versi on: networking. k8s.io/vl
ki nd: Networ kPol i cy
nmet adat a:
name: [***NEW CRU SE CONTROL NETWORK PCLI CY NAME***]
nanespace: [***CRU SE CONTROL NAMESPACE***]
spec:
podSel ect or:
mat chLabel s:
strinei.io/cluster: [***KAFKA CLUSTER NAME***]
strinei.iol/kind: Kafka
strinei.iol/nanme: [***KAFKA CLUSTER NAME***]-crui se-contr ol

50

https://docs.cloudera.com/csm-operator/1.6/cctrl-rest-api-reference/index.html
https://strimzi.io/docs/operators/0.49.1/configuring.html#property-cruise-control-capacity-api-users-reference
https://github.com/linkedin/cruise-control/wiki/Security

Cloudera Streams Messaging Operator for Kubernetes Accessing the Cruise Control REST API

pol i cyTypes:
- I ngress

i ngress:

- from

- nanespaceSel ector: {}
podSel ect or:
mat chLabel s:
app. kuber netes. i o/i nstance: ingress-ngi nx

ports:
- protocol: TCP
port: 9090

2. Get the generated Cruise Control certificate and key.

kubect| get secret [***KAFKA CLUSTER NAME***]-crui se-control -certs \
--nanespace [***KAFKA NAMESPACE***] \
--out put "jsonpath={.data.cruise-control\.crt}" \

| base64 -d > cert.crt

kubect| get secret [***KAFKA CLUSTER NAME***]-cruise-control -certs \
--nanespace [*** KAFKA NAMESPACE***] \
--out put "jsonpath={.data.cruise-control\.key}" \

| base64 -d > cert. key

3. CreateaSecr et with the specific format of your Ingress using the files created in the previous step.
These needed to be updated manually if the Cruise Control Secr et was regenerated.

kubect| create secret tls [***CRU SE CONTROL | NGRESS SECRET NAME***] \
--key ./cert.key \
--cert ./cert.crt \
--nanespace [***KAFKA NAMESPACE* **]

4, CreatetheIngressrule.

api Versi on: networking. k8s.io/vl
ki nd: | ngress
net adat a:
nane: crui se-control-ingress-service
nanespace: [***KAFKA NAVESPACE***]
annot at i ons:
ngi nx. i ngress. kuber net es. i o/ use-regex: 'true'
ngi nx. i ngr ess. kuber net es. i o/ backend-protocol : ' HTTPS
ngi nx. i ngress. kubernetes. i o/ proxy-ssl-secret: '[***KAFKA NAVESPACE* * *]
/[***CRU SE CONTROL | NGRESS SECRET NAME***]
spec:
i ngressCl assNanme: ngi nx
tls:
- hosts:
- [***'_m‘r NA,VE***]
secret Nanme: [***| NGRESS SECRET NANME***]

rul es:
- host: [***HOST NAME***]
htt p:
pat hs:
- path: /
pat hType: Prefix
backend:
servi ce:
nane: [***KAFKA CLUSTER NAME***]-crui se-contro
port:

51

Cloudera Streams Messaging Operator for Kubernetes Accessing the Cruise Control REST API

nunmber: 9090

* nginx.ingress.kubernetes.io/backend-protocol— Instructs the Ingress to use encrypted communication between
the Ingress and the Cruise Control pod.

* nginx.ingress.kubernetes.io/proxy-ssl-secret — Specifiesthe Secr et which contains the Cruise Control
certificate in the required format of the Ingress solution.

» spec.tls— Enables secure connection between the clients and the Ingress itself. This property must define the
same host as the rule. the Secr et should point to the Secr et where the credentials for the secure client
communication are stored.

Ingress | Kubernetes
Network Policies | Kubernetes
TLS/HTTPS | Ingress-Nginx Controller

52

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.github.io/ingress-nginx/user-guide/tls/

	Contents
	Deploying Kafka
	Deploying a Kafka cluster
	Deploying a Kafka cluster in combined mode
	Validating a Kafka cluster

	Deploying Cruise Control
	Deploying and configuring the Strimzi Entity Operator
	Deploying and configuring the Strimzi Topic Operator
	Deploying and configuring the Strimzi User Operator

	Configuring Kafka brokers
	Updating broker configuration
	Configurable broker properties and exceptions

	Storage configuration
	Ephemeral storage
	Persistent storage
	JBOD storage
	Storage recommendations

	Pod scheduling
	Default tolerations
	Pod scheduling recommendations

	Rack awareness
	Configuring rack information on Kubernetes nodes
	Configuring rack awareness for Kafka brokers
	Configuring follower fetching
	Default affinity rules for rack awareness

	Configuring Kafka broker node IDs
	Configuring Kafka for Prometheus monitoring
	Configuring logging for Kafka cluster components
	Listener configuration
	NodePort
	Configuring nodeport listeners

	Route
	Configuring route listeners

	Load balancer
	Configuring load balancer listeners

	Ingress
	Configuring ingress listeners

	Accessing the Cruise Control REST API
	Configuring Cruise Control users
	Configuring external access

