Cloudera Streams Messaging Operator for Kubernetes 1.6.0

Deploying and Configuring Kafka Replications

Date published: 2024-06-11
Date modified: 2026-01-27

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streams Messaging Operator for Kubernetes | Contents | iii

Deploying a replication FlOW........ocuviieeiie e 4
Configuring prefixIess repliCation...........cccevev e 12
Checking the state of data replication..........ccoceeiriiienee s 12
Configuring data replication OffSELS.........ccceiieiiiesin s 13
Replicating from the latest offset for NAW Partitions............cooeereirciieree e 14
Manually setting exact offsets for specific SOUrce Partitions...........occeveereeneinenres e 14
Enabling exactly-once semantics for replication flows...........cccccevvevieeiieinnnee. 16
Performing a failover or failback..........ccocoviriiiiiin e 17
Performing a continuous and CONtrolled fallOVEN............ooe e 18
Performing a controlled failover With @ CULOFf ..o s 19
Performing a fallOVer 0N iSASIEN.... ..ottt st e e se st sbesbe b b 20
Performing a controlled faillDaCK......... ... 21
Using Single Message Transformsin replication flOws.........ccccceecvvevevvceevenenee. 21
Replication monitoring and diagNOSLICS.......cccuviieeiieeiieiie e 25
Advanced replication use cases and examples........ccovveiiiiinnn e, 26
Deploying areplication flow that uses multiple MirrorSourceConnector INSANCES.........cccooerererenerereseniens 26
Deploying a replication flow on multiple Kafka Connect CIUSLErS.........cooiiiiriiriereieeeeeeeeee e 29

Deploying bidirectional and prefixless replication fIOWS...........cooeeriri e 31

Cloudera Streams Messaging Operator for Kubernetes Deploying areplication flow

Y ou deploy areplication flow between two clusters by deploying a Kafka Connect cluster and an instance of each
replication connector (MirrorSourceConnector, MirrorCheckpointConnector, and MirrorHeartbeatConnector).
Additionally, you create various ConfigMaps and Secrets that store configuration required for replication.

The following steps walk you through how you can create a replication flow between two secured Kafka clusters.
Both Kafka and Kafka Connect are deployed in Kubernetes.

Kubernetes

Replication Namespace

Kafka Connect

Source Kafka i i f Target Kafka
Replication ~ Replication
- - Source't°pi01
MirrorHeartbeat

?

Load
Configs

ConfigMaps, Secrets,
property files

The Kafka Connect cluster that you set up must be anew cluster and must be dedicated to the replication flow.
Reusing an existing cluster that is running other connectors or using the same cluster for multiple replication flowsis
not recommended.

Replication of Kafka data as well as other replication-related tasks are carried out by the replication
connectors. Thesearethe M r r or Sour ceConnect or , M rr or Checkpoi nt Connect or, and
M rror Heart beat Connect or.

Deploying an instance of the M r r or Sour ceConnect or and M r r or Chekpoi nt Connect or are mandatory.
Deploying M r r or Hear t beat Connect or isoptional.

The connectors load their connection-related configuration from various Secr et s, Conf i gMaps, aswell as
property files.

This example usesthe Def aul t Repl i cat i onpol i cy, but provides instructions on what connector properties
you need to add if you want to usethel dent i t yRepl i cati onPol i cy (prefixless replication).

These steps assume that the two Kafka clusters have TLS encryption and PLAIN authentication enabled. Replication
can be configured for any other type of security aswell, but you will need to change the appropriate security
configurations.

For example, assume that one of the clusters does not use PLAIN, but a different authentication method. In a case
like this, you must collect and specify the configuration properties appropriate for that authentication method.
Configuration related to security is stored in Conf i gMaps and Secr et s that you will be setting up.

Cloudera Streams Messaging Operator for Kubernetes Deploying areplication flow

Tip: These steps use documentation replaceables to refer to the various resources that you need to set up

Q for replication. For example, the namespace you create will be referred to as[*** REPLICATION NSt **].
Pay attention to the replaceables if you are copying examples. Y ou will need to replace many valuesin the
configuration of your resources.

e Strimzi isinstaled. The Strimzi Cluster Operator is running. Seeinstallation I nstallation.
* You haveidentified the two Kafka clusters that you want to replicate data between.

The clusters can be any type of Kafka cluster running on any platform. These steps assume that both Kafka
instances are running in Kubernetes and were deployed with Cloudera Streams Messaging Operator for
Kubernetes.

* Resource examples in these steps use various features and configurations available in Kafka Connect. Familiarity
with the following is recommended.

» Deploying Kafka Connect clusters

» Configuration providers

* Adding external configuration to Kafka Connect worker pods
« Configuring connectors

* Replication overview

» Replication connectors and connector architecture

1. Collect the following for both source and target Kafka clusters.

* Bootstrap servers

e TLStruststore/crt

e TLStruststore password
* PLAIN credentials

The configurations you collect here will be specified inthe Secr et s and Conf i gMaps and the
Kaf kaConnect resource that you create in the following steps.

2. Create a namespace.
kubect| create nanespace [***REPLI CATI ON NS***]

Y ou deploy all resources required for the replication flow in this namespace.

3. CreateaSecr et containing credentials for the Docker registry where Cloudera Streams Messaging Operator for
Kubernetes artifacts are hosted.

kubect| create secret docker-registry [***REG STRY CREDENTI ALS SECRET** *]
\

--nanespace [***REPLI CATI ON NS***] \

- -docker-server [***YOUR REG STRY***] \

--docker -username [***USERNAME***] \

- -docker - password "$(echo -n 'Enter your password: ' >&2; read -s passw
ord; echo >&2; echo $password)"

e [***REGISTRY CREDENTIALS SECRET***] must be the same as the name of the Secr et containing
registry credentials that you created during Strimzi installation.

* Replace [*** YOUR REGISTRY***] with the server location of the Docker registry where Cloudera Streams
Messaging Operator for Kubernetes artifacts are hosted. If your Kubernetes cluster hasinternet access, use
container.repository.cloudera.com. Otherwise, enter the server location of your self-hosted registry.

https://docs.cloudera.com/csm-operator/1.6/installation/topics/csm-op-install-overview.html
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-deploy-configure/topics/csm-op-connect-deploying-clusters.html
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html#task_fsq_tdg_jcc
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html#task_vgy_5dg_jcc
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-operations/topics/csm-op-connect-configuring-connectors.html
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-overview/topics/csm-op-connect-replication-overview.html
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-overview/topics/csm-op-replication-connector-architecture.html

Cloudera Streams Messaging Operator for Kubernetes Deploying areplication flow

* Replace [***USERNAME***] with a username that provides access to the registry, and enter the
corresponding password when prompted. If you are using container.repository.cloudera.com, enter your
Cloudera credentials. Otherwise, enter credentials providing access to your self-hosted registry.

4. CreateaConfi gMap andtwo Secr et s for thetarget Kafka cluster.
These resources store configuration that provides access to the target Kafka cluster.
a) CreateaConfi gMap that contains the non-sensitive configuration properties of the target Kafka cluster.

kubect| create configmap [***TARGET CONFI GVAP***] \
--fromliteral =alias=[***TARGET CLUSTER ALI AS***] \
--nanmespace [***REPLI CATI ON NS***]

This Conf i gMap does not need to include connection related properties like the bootstrap server. These
connection properties will be sourced from the Kafka Connect worker’ s (cluster) property file. Sourcing them
from the workers' property file is possible because Kafka Connect will depend on the target Kafka cluster. You
can use this Conf i gap to store other reusable properties.

b) CreateaSecr et containing the PLAIN password to use when connecting to the target Kafka cluster.

kubect| create secret generic [***TARGET PASSWORD SECRET***] \
--fromliteral =pass=[*** PASSWORD***] \
--nanespace [***REPLI CATI ON NS***]

c) CreateaSecr et that containsthe TLS Certificate Authority (CA) certificate of the target Kafka cluster.

kubect| create secret generic [***TARCGET CERT SECRET***] \
--fromfile=ca.crt=[***PATH TO CA CERT***] \
--nanespace [***REPLI CATI ON NS***]

Tip: If thetarget Kafka cluster was deployed with Cloudera Streams M essaging Operator for
Kubernetes, aSecr et containing the certificate will already exist in the namespace of the target
cluster. The secret containing the certificate is called [*** TARGET KAFKA CLUSTER NAME***]-
CLUSTER-CA-CERT. Y ou can extract the certificate from this secret and deploy it in the new
namespace.

5. CreateaConfi gMap and aSecr et for the sour ce Kafka cluster.
These resources store configuration that provide access to the source Kafka cluster.
a) CreateaSecr et that containsthe trusted certificates and JAAS configuration of the source Kafka cluster.

kubect| create secret generic [***SOURCE SECRET***] \
--fromfile=ssl.truststore.certificates=[***TRUSTSTORE
CERTI FI CATES***] \
--fromliteral =sasl.jaas. config="org. apache. kaf ka. cormon. securi
ty. pl ai n. Pl ai nLogi nMbdul e requi red username="[*** USERNAME***] " passwo
rd="[*** PASSWORD***]";"' \
--nanespace [***REPLI CATI ON NS***]

b) Create aConfi gMap that contains non-sensitive configuration properties of the source Kafka cluster.
This Conf i gMap will contain the cluster alias, connection properties, and any other reusable properties.

kubect| create configmap [***SOURCE CONFI GVAP***] \
--fromliteral =alias=[***SOURCE CLUSTER ALI AS***] \
--fromliteral =boot strap. servers=[*** SOURCE KAFKA
BOOTSTRAP***] . [*** SOURCE KAFKA NAMESPACE***]:[***PORT***] \
--fromliteral =security. protocol =SASL_SSL \
--fromliteral =sasl . mechani sm=PLAI N \
- -namespace [***REPLI CATI ON NS***]

Cloudera Streams Messaging Operator for Kubernetes Deploying areplication flow

6. CreateaConfi gMap that stores configuration related to replication.

This Conf i gMap will store configuration that is shared by the connectors that you will deploy. Thismap is
created to single source configuration that is common across the connectors.

This example createsa Conf i gMap that defines a single property, topics, which specifies what topics should be
replicated. In this example, all test.* topics are added for replication.

kubect| create configmap [***REPLI CATI ON CONFI GVAP***] \
--fromliteral =topi cs="test.*" \
--nanmespace [***REPLI CATI ON NS***]

This Conf i gMap isreferred to in the following steps as [*** REPLICATION CONFIGMAP***].

Tip: Thereplication policy used by the connectorsis configured in this Conf i gMap. If not specified, the
Def aul t Repl i cati onPol i cy isused. Add the following property to the Conf i gMap if you want
to use adifferent replication policy.

replication. policy.class=[***POLI CY CLASSNAME** *]

The value of this property isthe fully qualified class name of the replication policy. If
youwant tousethel denti t yRepl i cat i onPol i cy (prefixless replication), add
or g. apache. kaf ka. connect. mirror.ldentityReplicati onPolicy asthevaue.

If you choose to configure the policy, you will need to reference the property in the configuration of the
connectors.

7. Deploy aKafka Connect cluster.

api Version: kafka.strinei.iolvl
ki nd: Kaf kaConnect
nmet adat a:
name: [*** CONNECT CLUSTER NAME***]
nanespace: [***REPLI CATI ON NS***]
annot at i ons:
strinzi.io/use-connector-resources: "true"
spec:
version: 4.1.1.1.6
replicas: 3
boot st rapServers: [***TARGET KAFKA BOOTSTRAP***] . [*** TARGET KAFKA
NAMESPACE* **] . [*** PORT* * *]
tls:
trustedCertificates:
- secretNane: [***TARCGET CERT SECRET***]
certificate: ca.crt
aut henti cati on:
type: plain
user nanme: [*** USERNAME* * *]
passwor dSecr et :
secret Name: [***TARGET PASSWORD SECRET* **]
password: pass
groupld: [***CONNECT CLUSTER NAME***] - CONSUVER- GROUP
of f set St orageTopi c: [***CONNECT CLUSTER NAME***] - OFFSETS- TOPI C
confi gStorageTopi c: [***CONNECT CLUSTER NAME***] - CONFI G TOPI C
st at usSt orageTopi c: [*** CONNECT CLUSTER NAME***] - STATUS- TOPI C
config:
config.storage.replication.factor: -1
of fset.storage.replication.factor: -1
status.storage.replication.factor: -1
config. provi ders: cfmap, secret,file
confi g. provi ders. cfmap. cl ass: io0.strinzi.kaf ka. Kuber net esConfi gMapC
onfi gProvi der
confi g. providers. secret.class: io.strinzi.kafka. KubernetesSecretConfig
Provi der

Cloudera Streams Messaging Operator for Kubernetes

config.providers.file.class: org.apache. kaf ka. cormon. confi g. provi de
r.Fil eConfigProvider

Notice the following about this resource configuration.

« The names specified in metadata.name, spec.groupld, and spec.* StorageT opic properties follow a consistent
naming convention.

Cloudera recommends adding cluster aiases to these names as well as using prefixes and postfixes. For
example, your cluster name can be repl-uswest-useast. Where repl is a prefix, useast and uswest are the aiases.
The group ID can be repl-uswest-useast-consumer-group, where repl-uswest-useast is the name of the cluster, -
consumer-group is a postfix.

The prefixes and postfixes like repl, -consumer-group, -offsets-topic, -config-topic, -status-topic are merely
suggestions.
« bootstrapServersis set to the target Kafka cluster’ s bootstrap.

That is, this Kafka Connect cluster will depend on the target Kafka cluster. Thisisamust have for correct
replication architecture. The .[*** TARGET KAFKA NAMESPACE***] postfix is only required because this
example assumes that the Kafka cluster is running in Kubernetes.

« trustedCertificates references a Secr et you created in a previous step, which contains the CA certificate of
the target cluster.

» * gtorage.replication.factor properties are set to - 1.

This means that these internal topics are created with the default replication factor configured in the Kafka
cluster that this Kafka Connect cluster depends on (the target Kafka cluster).

* Theconfig.providers.* properties enable various configuration providers.

These are necessary as the connectors you set up in alater step load configuration from various external
resources using these configuration providers.

. CreateaRol e and Rol eBi ndi ng.

TheKuber net esConf i gMapConfi gProvi der and Kuber net esSecr et Confi gPr ovi der
configuration providers specified in the Kaf kaConnect resourcein the previous step, require additional access
rightsto access the Conf i gMaps and Secr et s, respectively. Creating the below Rol e and Rol eBi ndi ng is
required to grant them these privileges.

api Versi on: rbac. aut hori zati on. k8s.i o/ vl
kind: Rol e
nmet adat a:
nane: connector-configuration-role
nanespace: [***REPLI CATI ON NS***]
rul es:
- api Groups: [""]
resources: ["secrets"]
resourceNanes: ["[***SOURCE SECRET***]"]
verbs: ["get"]
- api Goups: [""]
resources: ["configmaps"]
resourceNanes: ["[***SOURCE CONFI GVAP***]", "[***TARGET
CONFI GvAP***] " = "[***REPL| CATI ON CONFI GVIAP* **] "]
verbs: ["get"]
api Versi on: rbac. aut hori zati on. k8s.i o/ vl
ki nd: Rol eBi ndi ng
nmet adat a:
nane: connector-configuration-rol e-binding
nanespace: [***REPLI CATI ON NS***]
subj ect s:
- kind: ServiceAccount
nane: [***CONNECT CLUSTER NAME***] - connect
rol eRef:

Deploying areplication flow

Cloudera Streams Messaging Operator for Kubernetes Deploying areplication flow

ki nd: Rol e
name: connector-configuration-role
api G oup: rbac. aut horization.k8s.io

e Theresource names you specify in rules.api Groups.resourceNames are the names of the Conf i gMap and
Secr et resources you created for the source and target Kafka clusters in a previous step.

e TheServi ceAccount nameisfixed and follows a pattern.

The name is the Kafka Connect cluster name postfixed with -connect. This name is fixed because the
Ser vi ceAccount isgenerated and named by the Strimzi Cluster Operator. That is, the -connect postfix, is
not user defined, ensure that you do not change it.

9. Enable datareplication by deploying an instance of M r r or Sour ceConnect or .

M rror Sour ceConnect or requires access to both the source and target Kafka clusters. Therefore, it requires
access to all configurations you set up in previous steps. Additionally, some extra configuration is required.

Configuration required to connect to the target cluster is sourced from the Kafka Connect worker’s property file.

Configuration required to connect to the source cluster is sourced from the Conf i gMap, Secr et , and truststore
volume you set up for the source cluster in a previous step.

Other configurations such as the target cluster aliasis sourced from the Conf i gMap you set up for the target
cluster in a previous step.

api Version: kafka.strinei.io/vl

ki nd: Kaf kaConnect or

nmet adat a:
name: mrror-source-connector
nanespace: [***REPLI CATI ON NS***]

| abel s:
strinei.io/cluster: [***CONNECT CLUSTER NAME***]
spec:
cl ass: org.apache. kaf ka. connect. mrror. M rror Sour ceConnect or
tasksivax: 3
config:

key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter
val ue. converter: org.apache. kaf ka. connect. converters. Byt eArrayConver
ter
refresh.topics.interval.seconds: 10
topics: ${cfrmap: [***REPLI CATI ON NS***] /[***REPLI CATI ON
CONFI GVAP***] : t opi cs}

#replication.policy.class: ${cfmp:[***REPLI CATI ON
NS***] /[***REPLI CATI ON CONFI GVAP***] : repl i cati on. poli cy. cl ass}

Source cluster configurations - sourced from confignap, secret and
vol une
source.cluster.alias: ${cfrmap:[***REPLI CATI ON NS***] /[*** SOURCE
CONFI GVAP***] : al i as}
source. cl uster. boot strap. servers: ${cfmap: [***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: boot st rap. server s}
source. cluster.security.protocol: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: security. protocol}
source. cl uster. sasl . nechani sm ${cf map: [***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: sasl . mechani sni
source. cluster.sasl.jaas.config: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]: sasl . aas. confi g}
source.cluster.ssl.truststore.certificates: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]:ssl.truststore.certificates}

Target cluster configurations - nostly sourced fromthe Connect wor
ker config

Cloudera Streams Messaging Operator for Kubernetes Deploying areplication flow

target.cluster.alias: ${cfmap: [***REPLI CATI ON NS***] /[*** TARGET
CONFI GVAP***] : al i as}
target.cluster.bootstrap.servers: ${file:/tnp/strinei-connect.proper
ties: boot strap. servers}
target.cluster.security.protocol: ${file:/tnp/strinei-connect. proper
ties:security. protocol}
target.cluster.sasl.mechanism ${file:/tnp/strinei-connect.propertie
s: sasl . mechani sni
target.cluster.sasl.jaas.config: ${file:/tnp/strinei-connect.propertie
s:sasl . jaas.config}
target.cluster.ssl.truststore.certificates: ${secret:[***REPLI CATI ON
NS***] /[*** CONNECT CLUSTER NAME***]-connect-tls-trusted-certs:*.crt}

« Uncomment the replication.policy.class property if you added this property to [*** REPLICATION
CONFIGMAP***]. This property configures what replication policy is used for replication.

10. Enable consumer group offset synchronization by deploying an instance of M r r or Checkpoi nt Connect or.

M rror Checkpoi nt Connect or reguires access to both the source and target clusters. Additionally, it
reguires the same replication policy configuration, topic filters, and offset synchronization configurations as used
by M r r or Sour ceConnect or

api Version: kafka.strinei.io/vl

ki nd: Kaf kaConnect or

nmet adat a:
nane: mrror-checkpoi nt-connector
nanespace: [***REPLI CATI ON NS***]

| abel s:
strinei.io/cluster: [***CONNECT CLUSTER NAME***]
spec:
cl ass: org. apache. kaf ka. connect. mrror. M rror Checkpoi nt Connect or
tasksiax: 3
config:

key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter
val ue. converter: org.apache. kaf ka. connect. converters. Byt eArrayConver
ter
refresh. groups.interval .seconds: 10
sync. group. of f sets. enabl ed: true
topics: ${cfmap: [***REPLI CATI ON NS***]/[*** REPL| CATI ON
CONFI GVAP***] : t opi cs}
groups: test.*
#replication.policy.class: ${cfmp:[***REPLI CATI ON
NS***] /[*** REPLI CATI ON CONFI GVAP***] : repl i cati on. pol i cy. cl ass}

Source cluster configurations - sourced from configmap, secret and
vol ume
source.cluster.alias: ${cfmap:[***REPLI CATI ON NS***] /[*** SOURCE
CONFI GVAP***] : al i as}
source. cluster. bootstrap. servers: ${cfnmap: [***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: boot st rap. servers}
source. cluster.security. protocol: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]:security. protocol}
source. cl uster. sasl . nechani sm ${cf map: [***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: sasl . mechani snt
source. cluster.sasl.jaas.config: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]: sasl .| aas. confi g}
source.cluster.ssl.truststore.certificates: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]:ssl|.truststore.certificates}

Target cluster configurations - nostly sourced fromthe Connect wor
ker config

target.cluster.alias: ${cfrmap:[***REPLI CATI ON NS***] /[*** TARGET
CONFI GVAP***] : al i as}

10

Cloudera Streams Messaging Operator for Kubernetes Deploying areplication flow

target.cluster.bootstrap.servers: ${file:/tnp/strinei-connect.proper
ti es: bootstrap. servers}

target.cluster.security.protocol: ${file:/tnp/strinei-connect.proper
ties:security. protocol}

target.cluster.sasl.nechanism ${file:/tnp/strinei-connect.propertie
s: sasl . mechani sn

target.cluster.sasl.jaas.config: ${file:/tnp/strinei-connect.propertie
s:sasl . jaas. config}

target.cluster.ssl.truststore.certificates: ${secret:[***REPLI CATI ON

NS***] /[*** CONNECT CLUSTER NAME***]-connect-tls-trusted-certs:*.crt}

« Uncomment the replication.policy.class property if you added this property to [*** REPLICATION
CONFIGMAP***]. This property configures what replication policy is used for replication.

» The sync.group.offsets.enabled property is true by default. As aresult, setting this property explicitly to trueis
not necessary. The property is explicitly set to true in this example to highlight Cloudera requirements. Using
thisfeature isamust in any replication flow that you set up.

11. Enable heartbeating by deploying an instance of M r r or Hear t beat Connect or .

M rror Hear t beat Connect or isresponsible for creating minimal replication traffic in the flow. Because of
this, the Connector needs access to the source cluster, but configured asiif it was the target cluster. This means that
you need to provide the source cluster configurations with the producer.override. and target.cluster. prefixes.

api Versi on: kafka.stringi.io/vl

ki nd: Kaf kaConnect or

net adat a:
nane: mrror-heartbeat-connector
nanespace: [***REPLI CATI ON NS***]

| abel s:
strinei.io/cluster: [***CONNECT CLUSTER NAME***]
spec:
cl ass: org.apache. kaf ka. connect. nmirror. M rrorHeart beat Connect or
tasksMax: 1
config:

key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter
val ue. converter: org.apache. kaf ka. connect. converters. Byt eArrayConvert
er

#replication.policy.class: ${cfmp:[***REPLI CATI ON
NS***] /[*** REPLI CATI ON CONFI GVAP***] : repl i cati on. pol i cy. cl ass}

Cluster aliases

source. cluster.alias: ${cfmap:[***REPLI CATI ON NS***] /[*** SOURCE
CONFI GVAP***] : al i as}

target.cluster.alias: ${cfmap:[***REPLI CATI ON NS***] /[*** TARGET
CONFI GVAP***] : al i as}

Source cluster configurations configured as target - sourced from
configmap, secret and vol unme

target.cluster.bootstrap.servers: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: boot st rap. servers}

target.cluster.security. protocol: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]:security. protocol}

target. cluster. sasl.nechani sm ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: sasl . mechani sn}

target.cluster.sasl.jaas.config: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]: sasl .jaas.config}

target.cluster.ssl.truststore.certificates: ${secret:[***REPLI CATI ON
NS***] /[***SOURCE SECRET***]:ssl.truststore.certificates}

Source cluster configurations configured as producer override - sou
rced from configmap, secret and vol une
producer . override. boot strap. servers: ${cfnmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: boot st rap. servers}

11

Cloudera Streams Messaging Operator for Kubernetes Configuring prefixless replication

producer.override. security. protocol : ${cfnmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]:security. protocol}
producer.override. sasl . nechani sm ${cfmap: [***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: sasl . mechani sni
producer.override. sasl .jaas.config: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]:sasl.jaas. confi g}
producer.override.ssl.truststore.certificates: ${secr
et:[***REPLI CATI ON NS***]/[***SOURCE SECRET***]:ssl.truststore.certific
at es}

< Uncomment the replication.policy.class property if you added this property to [*** REPLICATION
CONFIGMAP***]. This property configures what replication policy is used for replication.

By default, replication flows you deploy use the DefaultReplicationPolicy, which prefixes the replicated topic names
in the target Kafka cluster. If you want replicated topics to retain their original name, you configure your replication
flow to use IdentityReplicationPolicy instead.

Y ou configure replications flows to use thel denti t yRepl i cati onPol i cy withthe

replication. policy.cl ass connector property. This property specifies the class name of the replication
policy to use. Y ou add the property to the configuration of the replication connectors that you deploy for each
replication flow. That is, you need to add the property to the configuration of M r r or Sour ceConnect or

M rror Hear t Beat Connect or,and M r r or Checkpoi nt Connect or.

The value of this property must be set to the same replication policy in each connector instance that is deployed for a
replication flow.

Instead of hardcoding the replication policy in each connector configuration, Cloudera recommends that you add
thevalueto a Conf i gMap that stores properties that are common to the connectors, and load the value using the
Kuber net esConf i gMapConfi gPr ovi der.

#. ..
ki nd: Kaf kaConnect or
spec:
cl ass: org. apache. kaf ka. connect. mrror.M rrorHeart beat Connect or
config:
replication.policy.class: ${cfmap:[***REPLI CATI ON NS***]/[*** REPLI CATI ON
CONFI GvAP***] : repl i cation. policy. cl ass}

A configuration setup like this enables you to specify the replication policy centrally.

Important: TheKuber net esConfi gMapConfi gPr ovi der must be enabled in the Kafka Connect
cluster where you deploy your connectors. Additionally, an appropriate Rol e and Rol eBi ndi ng is
required for the configuration provider to work.

Deploying areplication flow
Replication policies
Configuration providers

The MirrorSourceConnector keeps track of its progress in the source cluster using the Kafka Connect framework.
Kafka Connect allows checking and manipulating the source offsets of the connectors. Y ou can check the current
state of data replication by extracting source offsets and comparing them with the end offsets of replicated partitions.

12

https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-deploying-replications.html
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-overview/topics/csm-op-connect-replication-overview.html#concept_ekb_ztd_mcc
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html#task_fsq_tdg_jcc

Cloudera Streams Messaging Operator for Kubernetes Configuring data replication offsets

These steps use the kafka-get-offsets.sh Kafka tool to extract the end offsets of replicated partitions in the source
cluster. If your source cluster is deployed with Cloudera Streams Messaging Operator for Kubernetes, ensure that the
kafka_shell.shtool isavailableto you. The kafka_shell.sh tool sets up a pod where Kafkatools are readily available
making it easy to run kafka-get-offsets.sh. For more information, see Using kafka_shell.sh.

1. List the current offsets of theM r r or Sour ceConnect or .
a) Configureyour Kaf kaConnect or resource to include the spec.listOffsets property.

#. ..
ki nd: Kaf kaConnect or
spec:
cl ass: org. apache. kaf ka. connect. mrror. M rror Sour ceConnect or
listOFfsets:
t oConf i gMap:
name: [*** CONFI GVAP NANME* * *]

If the Conf i gMap you specify does not exist, the Strimzi Cluster Operator crestes it when you list connector
offsets using the strimzi.io/connector-offsets="list" annotation.

b) List connector offsets by annotating your Kaf kaConnect or resource with strimzi.io/connector-offsets="li
st

kubect| annotate kafkaconnector [***CONNECTOR NAME***] \
--nanespace [***NAMESPACE***] \
strinei.iolconnector-offsets="|ist"

Once the annotation is applied, the connector offsets are written to the Conf i gap specified in the spec.lis
tOffsets property of the Kaf kaConnect or resource. You will add your changes to this Conf i gvap. The
Strimzi Cluster Operator automatically removes the annotation once offsets are written.

Note: TheM rr or Sour ceConnect or updates its offsets every 60 seconds by default. Y ou can
E configure thisinterval with the offset.flush.interval.ms property of the connector.

2. Inthe source cluster, use the kafka-get-offsets.sh Kafka tool to extract the end offsets of the replicated partitions.

bi n/ kaf ka- get - of f sets. sh --boot strap-server [***SOURCE CLUSTER
HOST***] : [***PORT***] --topic "test.*"

« The kafka-get-offsets.sh tool accepts aregex string as the topic filter, but does not accept alist of regexes. To
specify multiple regex expressions in a single command (as a single regex string), chain expressions together
with pipes (]).

--topic "test.*|abc.*|zxc.*"

« If the source Kafka cluster is a Cloudera Streams Messaging Operator for Kubernetes Kafka cluster, use kafk
a_shell.sh to run the kafka-get-offsets.sh tool.

3. Compare extracted end offsets with the source offsets extracted in Step 1 on page 13.

Learn how you can configure and modify what offset the MirrorSourceConnector replicates form.

By default, M r r or Sour ceConnect or replicates datafrom the start of the source topics, and keeps track of the
progress by committing source offsets into the Kafka Connect framework.

13

https://docs.cloudera.com/csm-operator/1.6/monitoring-diagnostics/topics/csm-op-diagnostics.html#task_sqn_11b_1bc

Cloudera Streams Messaging Operator for Kubernetes Configuring data replication offsets

This behavior can be modified in the following ways.

» Starting data replication from the latest offset for new partitions.
» Manually setting exact offsets for specific source partitions.

Caution: Cloudera advises caution when modifying what offsets replication starts at. Modifying the start
offset might affect the guarantees provided for data replication.

To replicate data from the latest offset, you configure auto.offset.reset property for the source consumer in the
MirrorSourceConnector.

#...
ki nd: Kaf kaConnect or
spec:
cl ass: org.apache. kaf ka. connect. mrror. M rror Sour ceConnect or
config:
sour ce. consuner . aut o. of fset.reset: |atest

With this configuration, all new partitions (without a committed offset) are replicated from the latest offset. Cloudera
recommends applying this configuration under special circumstances only asiit violates the at-least-once guarantee of
datareplication.

This example uses the source.consumer. prefix. That is, auto.offset.reset is specifically set for the source consumer in
the connector, which is the consumer connecting to the source cluster.

auto.offset.reset | Kafka
Replication connector configurations

In some situations, it might be necessary to rewind the replication and reprocess records, or fast forward and skip
some records. To do this, you can manipulate the exact offsets per partition and change the state of the replication.

« Ensurethat you are familiar with the process of checking replication state. See Checking the state of data
replication .

« Altering the offsets of the M r r or Sour ceConnect or isthe same as any other connector. For more
information on connector offset management, see Managing connectors.

Note: You can aso interact with Kafka Connect and manage offsets using the Kafka Connect REST API.
Y ou can get administrative access to the REST API using the connect_shell.sh tool.

1. List the current offsetsof theM r r or Sour ceConnect or.
a) Configureyour Kaf kaConnect or resource to include the spec.listOffsets property.

#o..
ki nd: Kaf kaConnect or
spec:
cl ass: org.apache. kaf ka. connect. mrror. M rror Sour ceConnect or
listOfsets:
t oConf i gMap:

14

https://kafka.apache.org/41/documentation.html#consumerconfigs_auto.offset.reset
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-overview/topics/csm-op-replication-connector-architecture.html#concept_x2y_c1m_jcc
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-checking-replication-state.html
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-checking-replication-state.html
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-operations/topics/csm-op-connect-managing-connectors.html
https://docs.cloudera.com/csm-operator/1.6/kafka-connect-operations/topics/csm-op-connect-using-rest-api.html#task_vbx_f3g_jcc

Cloudera Streams Messaging Operator for Kubernetes Configuring data replication offsets

name: [***CONFI GVAP NAME* * *]

If the Conf i gMap you specify does not exist, the Strimzi Cluster Operator crestes it when you list connector
offsets using the strimzi.io/connector-offsets="list" annotation.

b) List connector offsets by annotating your Kaf kaConnect or resource with strimzi.io/connector-offsets="li
st

kubect| annotate kafkaconnector [***CONNECTOR NAME***] \
--nanespace [***NAMESPACE***] \
strinei.iol/connector-offsets="|ist"

Once the annotation is applied, the connector offsets are written to the Conf i gMap specified in the spec.lis
tOffsets property of the Kaf kaConnect or resource. You will add your changes to this Conf i gvap. The
Strimzi Cluster Operator automatically removes the annotation once offsets are written.

2. Edit the Conf i giVap containing offsets.

The payload is connector specific. For example, the structure for theM r r or Sour ceConnect or isthe
following.

{"offsets":[{"partition":{"cluster":"[***SOURCE CLUSTER ALI AS***]" "p
artition":0,"topic":"[***SOURCE TOPI C NAME***] "}, "of fset":{"of fset
"I [*** OFFSET***]}}])

Y ou can specify multiple partitions in the structure. Additionally, you can set offsets.offset to null to delete the
offset for a specific partition.

3. Configure your Kaf kaConnect or resource to include the spec.alterOffsets property. In addition, stop the
connector by setting spec.state to stopped.

#. ..
ki nd: Kaf kaConnect or
spec:

cl ass: org. apache. kaf ka. connect. mrror. M rror Sour ceConnect or

state: stopped

alterO fsets:

fronConf i gVap:
name: [*** CONFI GVAP NANME* **]

4. Alter connector offsets by annotating your Kaf kaConnect or resource with strimzi.io/connector-offsets="al

ter”.

kubect| annot ate kafkaconnector [***CONNECTOR NAME***] \
--nanespace [***NAMESPACE***] \
strinei.iolconnector-offsets="alter"

The annotation is automatically removed by the Strimzi Cluster Operator after connector offsets are successfully
updated.

5. ResumetheM r r or Sour ceConnect or.
To do this, set the spec.state property to running in the Kaf kaConnect or resource of the connector.

#...

ki nd: Kaf kaConnect or

spec:
cl ass: or g. apache. kaf ka. connect. mrror. M rror Sour ceConnect or
state: running

15

Cloudera Streams Messaging Operator for Kubernetes Enabling exactly-once semantics for replication flows

Y ou enable exactly once semantics (EOS) for replication flows by configuring EOS in the KafkaConnect resource.
Optionally, Cloudera recommends that you set the source consumer isolation level in your MirrorSourceConnector to
read_committed.

The progress of M r r or Sour ceConnect or istracked by periodically committing the offsets of the processed
messages. |f the connector fails, uncommitted messages are reprocessed after the connector starts running again.

Using EQOS, source connectors are able to handle offset commits and message produces in a single transaction. This
either resultsin a successful operation where messages are produced to the target topic along with offset commits, or
arollback of the whole operation. EOS is enabled in the Kaf kaConnect resource with the exactly.once.source.supp
ort property.

If transactional producers are writing messages to the source topic, Cloudera recommends that you filter records from
the aborted transactions out from the replicated data. Otherwise, aborted transactions are marked as committed in the
target, which resultsin invalid data. Thisis configured inyour M r r or Sour ceConnect or with theisolation.level
property. You set the property to read _committed.

Important: Due to the periodic nature of checkpointing, EOS does not apply to failover and failback
scenarios. Duplicate messages are expected.

1. Enable EOSin your KafkaConnect resource.

Configuration differs for newly deployed resources and existing resources.

Set exactly.once.source.support to enabled.

#. ..
ki nd: Kaf kaConnect
spec:
config:
exactly. once. source. support: enabl ed

a. Set exactly.once.source.support to preparing.

#...
ki nd: Kaf kaConnect
spec:
confi g:
exact|y. once. source. support: preparing

b. Wait until configuration changes are applied and worker pod rolling restart finishes. The restart beginsin
the next reconciliation loop.

kubect| get pods --nanespace [***NAMESPACE***] --watch

c. Set exactly.once.source.support to enabled.

16

Cloudera Streams Messaging Operator for Kubernetes Performing afailover or failback

2. Setisolation.level inyour M r r or Sour ceConnect or .

#. ..
ki nd: Kaf kaConect or
spec:
cl ass: org. apache. kaf ka. connect. mrror. M rror Sour ceConnect or
config:
sour ce. consuner.isol ation.level: read_conmtted

This example uses the source.consumer. prefix. That is, isolation.level is specifically set for the source consumer
in the connector, which is the consumer connecting to the source cluster.

E Note:
Setting the isolation.level comes with caveats. If the connector reaches a message written by an
uncommitted transaction, it stops reading until the transaction is either committed or rolled back. This
can cause significant lag in replication. Y ou can limit this by applying an appropriate application timeout,
however, the timeout you set will depend on the application and use case.

Replication connector configurations
Performing afailover or failback

Learn about failover and failback operations that you can perform between two Kafka clusters that have data
replication enabled. Performing afailback or failover operation enables you to migrate consumer and producer
applications between Kafka clusters. These operations are typically performed after a disaster event or in migration
scenarios.

Source Kafka Target Kafka

Prod Replication
busmess_topic p -
Group offsetsync .

Replication

Kafka Connect source.business_topic

»
Consume
business_topic
Consumer

The producer and consumer applications both connect to the source cluster, while a Kafka Connect cluster is
configured to replicate the business topics and synchronize the group offsets into the target cluster. Note that the busi
ness_topic in the target cluster is not created by replication. Instead you create this topic in preparation for the failover
or failback scenario.

There are multiple types of failover and failback operations that you can carry out. Which one you perform depends
on your scenario and use case. The failover and failback types are as follows.

Continuous and controlled failover

A continuous and controlled failover is carried out when all applications and services are working
as expected, but you want to move workloads from one cluster to another. Thistype of failover is

17

https://docs.cloudera.com/csm-operator/1.6/kafka-replication-overview/topics/csm-op-replication-connector-architecture.html#concept_x2y_c1m_jcc
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-replication-failover-failback.html

Cloudera Streams Messaging Operator for Kubernetes Performing afailover or failback

continuous because applications are moved continuously to the target without a cutoff. This failover
can be performed rapidly and comes with minimal service disruptions.

Thisfailover type works with Def aul t Repl i cati onPol i cy only.

Controlled failover with a cutoff

A controlled failover with a cutoff is carried out when all applications and services are working as
expected. The cutoff means that producers are stopped for the duration of the failover and consumer
traffic is exhausted in the source cluster.

Compared to a continuous failover, this failover is more complex, but does not rely on group offset
syncing, and can also guarantee message ordering for consumers even across the failover.

Thisfailover type works with both the Def aul t Repl i cati onPol i cy and
I dentityReplicationPolicy.

Failover on disaster
A failover on disaster is carried out when you encounter a disaster scenario where your source
cluster becomes unavailable. A failover on adisaster simply consists of reconfiguring and restarting
your client applications to use the target Kafka cluster.

Controlled failback

A controlled failback is the same as afailover operation but in areverse order. That is, you move
clients back to their original cluster. A failback operation assumes that you already performed a
failover operation.

Learn how to perform a continuous and controlled failover between Kafka clusters that have data replication enabled.

A continuous and controlled failover is carried out when all applications and services are working as expected.

That is, there is no disaster scenario. Instead you make an executive decision to move your workload from the
source cluster to the target cluster so that you can stop the source cluster, either temporarily or permanently, without
disrupting applications.

The failover is continuous because applications can be continuously moved to the target cluster without a strict cutoff.
Because of this, the failover can be performed rapidly with minimal service disruptions.

Throughout this process, replication of Kafka datais not stopped, ensuring that no datais lost.
i Important: Thisfailover type workswith Def aul t Repl i cati onPol i cy only.

Ensure that you are familiar with the process of checking replication state. See Checking the state of datareplication .

18

https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-checking-replication-state.html

Cloudera Streams Messaging Operator for Kubernetes Performing afailover or failback

1. Fail over consumers.
a) Gracefully stop consumers.
This alows the consumers to commit their offsets to the source Kafka cluster of their latest state.
b) Wait for the replication to successfully synchronize the latest offsets.

Calculate wait time based on the intervals configured in the emit.checkpoints.interval .seconds
(default 60 seconds) and synch.group.offsets.interval .seconds (default 60 seconds) properties of the
M rror Checkpoi nt Connect or . Thewait timeisthe sum of these properties multiplied by two.

wait time = 2 * (emt.checkpoints.interval.seconds + sync.group. of fsets.
i nt erval . seconds)

¢) Configure consumers to connect to the target cluster and to consume from both the replicated and the active
(prefixless) topic in the target cluster.

Thereisapossihility that consumers till did not process all messages from the source cluster. To pick up the
remaining data, they need to consume from the prefixed replica topics as well as from the active (prefixless)
topic so that they also see the new data produced to the target cluster when the producers are failed over.

Important: This also means that message ordering is not guaranteed, as consumers now consume
from two separate topics. Replicated messages might get mixed with messages produced into the target
cluster.

d) Start consumers.
2. Fail over producers.
a) Gracefully stop producers.
b) Configure producersto connect to the target cluster.
Producers can safely produce to the exact same topics without any name changes as the replicated datais
stored in a prefixed topic.

IE Note: Producers must never be configured to produce to the replicated (prefixed) topics.

c) Start producers.
3. Wait for the replication fo finish replicating all data that was produced to the cluster.

At thispoint, itis till possible that not all records are migrated to the target cluster. Check the state of the
replication to ensure that all records are fully replicated.

4. Stop the source cluster.

Learn how to perform a controlled failover with a cutoff between Kafka clusters that have data replication enabled.

A controlled failover with a cutoff is carried out when all applications and services are working as expected. That is,
thereis no disaster scenario. Instead you make an executive decision to stop the source cluster, either temporarily or
permanently, and move your workload from the source to the target cluster.

Thefailover has a cutoff because producers are stopped for the duration of the failover. Additionally, all consumer
traffic is exhausted in the source cluster. Thisresultsin alonger disruption in client applications.

A controlled failover with a cutoff is a complex process, but does not rely on group offset syncing, and can also
guarantee message ordering for consumers even across the failover.

Important: Thisfailover type works with both the Def aul t Repl i cat i onPol i cy and
& | dentityReplicationPolicy.

19

Cloudera Streams Messaging Operator for Kubernetes Performing afailover or failback

Ensure that you are familiar with the process of checking replication state. See Checking the state of datareplication .

1. Gracefully stop producers.
This stops the ingress traffic, allowing al consumersto fully read all data.
2. Monitor the consumers and the replication, and wait until all datais read.

< To monitor the consumer applications, use the kafka-consumer-groups.sh Kafka tool with the --describe
option. Wait until the lag becomes 0.

Note: There might be consumer groups of old or inactive applications for which the lag will never
become 0. Y ou will have to decide whether to follow up on those cases or ignore them for the cutoff.

« To check replication state, compare source offsets and the offsets of theM r r or Sour ceConnect or . Wait
until replication fully catches up with business data.

3. Gracefully stop consumers.

4. Gracefully stop replication.

5. Ifusingthel dentityRepl i cati onPol i cy: Reset the offsets of all consumer groups to the latest offset in
the target cluster.
This ensures that old data is not consumed after the failover. Steps 2 on page 20 and 3 on page 20 already
ensure that all old data has been successfully consumed.

6. Configure the producers to connect to the target cluster.
Producers can safely produce to the exact same topics without any name changes.

E Note: Producers must never be configured to produce to the replicated (prefixed) topics.

7. Start producers.
8. Configure consumers to connect to the target cluster.
Consumers can safely consume from the exact same topics without any name changes.

o If Defaul t ReplicationPol i cy andtopic prefixing is used, the replicated data is separated into the
prefixed topic. This only affects new consumers, as old consumers were previously allowed to completely
consume old data from the source cluster.

« IfldentityReplicationPolicyisused, al old datawas written into the topic already, since Step 2 on
page 20 and 3 on page 20 ensure that there will be no more old data coming into the topic. Only newly
produced datais written into it after the failover.

9. Start consumers.
10. Stop the source cluster.

Learn how to perform afailover operation in adisaster scenario between Kafka clusters that have data replication
enabled.

In adisaster scenario where your source cluster becomes unavailable, you cannot perform afailover in a controlled
manner. In acase like this, afailover operation simply involves reconfiguring and restarting all client applicationsto
use the target Kafka cluster.

In afailover on disaster, the data and the group offsets replicated up until the failure can be used to continue
processing.

In adisaster scenario with an uncontrolled stop and crash event, some messages that were successfully accepted in
the source cluster might not be replicated to the target cluster. This means that some messages will not be accessible

20

https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-checking-replication-state.html

Cloudera Streams Messaging Operator for Kubernetes Using Single Message Transforms in replication flows

for consumers, even though they were successfully produced into the source cluster. Thisis dueto the fact that
replication is asynchronous and may |ag behind the source data. Thisis also true when exactly-once semantics (EOS)
is enabled for data replication.

Learn about performing failback operations between Kafka clusters that have data replication enabled.

A controlled failback operation isthe same as a failover operation, but in reverse order. That is, you move your clients
back to their original Kafka cluster. Typically this means moving from the target cluster of the replication to the
source cluster of the replication some time after afailover operation was performed.

To complete afailback operation, follow the steps for any of the failover operations, but in reverse order. However,
take note of the following caveats.

« A failback assumes a bidirectional replication, as data produced into the target Kafka is not present in source, so
the data needs replication.

* You cannot perform afailback operation if thel dent i t yRepl i cati onPol i cy isinuse

Thisisbecausethel dent i t yRepl i cati onPol i cy does not allow bidirectional replication over the
same topics as the topic names are not atered during replication. A bidirectional replication setup with
I dentityReplicationPolicy wouldresultinareplication loop where topics are infinitely replicated
between source and target clusters. If usingthel dent i t yRepl i cati onPol i cy, after afailover you must
stop and remove your previous replication setup and reconfigure it again in the reverse direction before you can be
ready to failback.

e TheM rror Checkpoi nt Connect or and group offset synchronization only function in the context of a
single replication flow. Mapping offsets back to the original topic is not supported.

This means that any progress made by consumersin the target Kafka cluster over the replicated (prefixed) topics,
akathe old data, islost. Thereisahigh likelihood that consumers will reprocess old data after the failback. Y ou
can avoid a scenario like thisif theinitial failover operation that you carry out is a controlled failover with a
cutoff. A failover with a cutoff guarantees that all old data was aready consumed.

In Cloudera Streams Messaging Operator for Kubernetes you can apply Single Message Transforms (SMT) in the
connectors that make up areplication flow. Configuring an SMT chain enables you to transform the Kafka records
during replication. This collection of examples demonstrates how you can transform keys and values as well as
metadata in Kafka records during replication.

The following examples on key and value transformation are simple examples that are meant to demonstrate the use
of the SMT framework in data replication. They might not be directly applicable or appropriate for al use casesin
aproduction environment. Specifically, these examples usethe JsonConver t er with schemaless datawhich is
handled as a Map by the Kafka Connect framework. Y ou can replacethe JsonConver t er for any other converters
to handle data with schema depending on your data formats present in your use case.

Whileit is possible to modify the topic name of arecord using the SMT framework, these types of transformations
should not be used in replication flows. Modifying the topic name can block replication policy and data replication as
awhole.

WhentheM rr or Sour ceTask provides Kafka records for the Kafka Connect framework, it provides them with
keys and values as only bytes that have the BY TES schema. Thisistrue even if your datainside the blob is structured
data, for example JSON.

21

Cloudera Streams Messaging Operator for Kubernetes Using Single Message Transforms in replication flows

The result of thisisthat you can not directly manipulate the data, because most SMT plugins rely on the Kafka
Connect internal dataformat and its schema. In this context, the BYTES schemais meaningless. Y ou can use the
Convert Fr onByt es plugin with an appropriate converter to be able to run manipulations on structured data.

The following example converts each replicated message value into JSON format with the Convert Fr onByt es
plugin. This example assumes that the message values contain JSON data.

#...
ki nd: Kaf kaConnect or
net adat a:
name: ny-source-connector
| abel s:
strinei.iolcluster: my-connect-cluster
spec:
cl ass: org.apache. kaf ka. connect. mrror. M rror Sour ceConnect or
config:

transforns: Convert FronBytes

transforns. Convert FronByt es. t ype: com cl ouder a. di m kaf ka. connect . t r ansf
or ns. Convert FronByt es$Val ue

transforms. Convert FronByt es. converter: org.apache. kaf ka. connect . j son. Jso
nConverter

transf orns. Convert FronByt es. converter. schenas. enabl e: fal se

Adding additional transfor mations

Y ou can put any transformation after the Conver t Fr onByt es plugin. The following example replaces two fields
in the record values with the Repl aceFi el d plugin.

#oo.
ki nd: Kaf kaConnect or
nmet adat a:
name: my-source-connect or
| abel s:
strinei.iolcluster: my-connect-cluster
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
config:

transforns: Convert FronBytes, Repl aceFi el d

transforns. Convert FronByt es. type: com cl ouder a. di m kaf ka. connect . trans
forns. Convert FronByt es$Val ue

transf orns. Convert FronByt es. converter: org.apache. kaf ka. connect. json. Js
onConverter

transf orns. Convert FronByt es. converter. schenas. enabl e: fal se

transforms. Repl aceFi el d. t ype: org. apache. kaf ka. connect . transf or nms. Repl ac
eFi el d$Val ue

transforns. Repl aceFi el d. renanes: nane:repl aced_nane, age: r epl aced_age

After applying your transformation, you have to consider how to create bytes from your structured JSON. Thereisa
required converter in the connector configuration which is applied on the records just before providing them for the
Kafka connect framework’ s producer.

This conversion happens after the data goes through your SMT chain. In this example, you can simply use
JsonConvert er asvalue converter, you do not need additional SMT steps to convert values back.

#. ..
ki nd: Kaf kaConnect or
nmet adat a:
name: my-sour ce-connect or
| abel s:
strinei.iolcluster: my-connect-cluster
spec:

cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or

22

Cloudera Streams Messaging Operator for Kubernetes Using Single Message Transformsin replication flows

config:
val ue. converter: org.apache. kaf ka. connect. json. JsonConverter
val ue. converter. schenmas. enabl e: fal se
key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter

Once both the SMT chain and the converters in the connector configuration are applied, you will get avalue
transformation chain like the following.

Figure 3: Value conversion using ConvertFromBytes and ReplaceField

Kafka Connect Data Kafka Connect Data
BYTES Schema Schemaless (Map Schema)

. T i ConvertFromBytes 'ageSB --------- : ReplaceField
MirrorSourceTask t {"age":30, "name" :"John" } '—P (Uses JsonConverter) " name : "John" '—’ (Value Manipulation)
e ‘ (Value Manipulation) R 3

Kafka Connect Data
Schemaless (Map Schema)

Ereplaced_age:30

(: replaced_name:"John"
Binary Data
JsonConverter """" """""""""" _ ’
(vallielconverter property) E{ replaced_age":30, "replaced_name" :"John }': > Producer

The keys were not converted to JSSON, so you can use Byt eAr r ayConvert er onthem, only the values need to be
converted from JSON to byte array. The key transformation chain is as follows.

Figure 4. Key conversion using ByteArrayConverter

Kafka Connect Data
BYTES Schema

Binary Data
_ ! 3 ByteArrayConverter [: .
MirrorSourceTask : —} IR R ; key .—} Producer

Filtering datausing SMTs

If your replication flow replicates topics with different data formats, a transformation chain like the one in the
examples above will fail when trying converting data of the wrong type.

A typical example of that happens when your replication flow usesaM r r or Hear t beat Connect or . The
heartbeats topic contains records that can not be converted into JISON. Since heartbeat records are automatically
replicated by the M r r or Sour ceConnect or, you will encounter exceptions during data conversion

In cases like this, you must use predicates to filter heartbeat records from the transformation chain.

#. ..
ki nd: Kaf kaConnect or

nmet adat a:
nanme: ny-sour ce-connect or
| abel s:
strinei.iolcluster: my-connect-cluster
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
config:

transforms: Convert FronByt es, Repl aceFi el d, Convert ToByt es
transforms. Convert FronByt es. t ype: com cl ouder a. di m kaf ka. connect . transf
ornms. Convert FronByt es$Val ue

23

Cloudera Streams Messaging Operator for Kubernetes Using Single Message Transforms in replication flows

transforns. Convert FronByt es. converter: org.apache. kaf ka. connect.j son. Jso
nConverter

transf orns. Convert FronByt es. converter. schenas. enabl e: fal se

transf orns. Repl aceFi el d. t ype: org. apache. kaf ka. connect . transf or ns. Rep
| aceFi el d$Val ue

transforns. Repl aceFi el d. renanes: nane: repl aced_nane, age: r epl aced_age

transforns. Convert ToByt es.type: com cl ouder a. di m kaf ka. connect . t ransf or
ns. Convert ToByt es$Val ue

transforns. Convert ToByt es. converter: org.apache. kaf ka. connect.json. JsonC
onverter

transforms. Convert ToByt es. converter. schenas. enabl e: fal se

predi cates: Not Heartbeats

predi cat es. Not Heart beat s. type: org. apache. kaf ka. connect . transf orms. pred
i cat es. Topi cNaneMat ches

predi cat es. Not Heart beats. pattern: ~(?!(.+\.)?heartbeats).*$

transf orns. Convert FronByt es. predi cat e: Not Heart beats

transfornms. Repl aceFi el d. predi cat e: Not Heart beat s

transforms. Convert ToByt es. predi cate: Not Heart beats

key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter

val ue. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter

Since heartbeats records are not converted into JSON, they remain byte arrays. All the other record values, however,
will be converted to JSON.

To unify the data format of the record values, you have to convert your non heartbeat record values back to byte
arrays, using Conver t ToByt es. After applying your configuration, al record values become byte arrays, so you
can use Byt eArrayConvert er asthefina converter. Key conversion in this case is the same as in the previous
example.

Figure 5: Value conversion with a predicate that filters heartbeat records

Kafka Connect Data
BYTES Schema

Kafka Connect Data / R, . \

BYTES Schema | Kafka Connect Data

BYTES Schema

i {"age":30,"name":"John"} | = sl L

: : TRUE i :
MirrorSourceTask - OR —p NotHeartBeats ¢ {"age" :30, "name" :"John"} —_—)

§<heartbeats binary payload> S '

ConvertFromBytes
(Uses JsonConverter)
(Value Manipulation)

Kafka Connect Data
Schemaless (Map Schema)

Kafka Connect Data Kafka Connect Data
Schemaless (Map Schema) BYTES Schema
ReplaceField . epla ced) age 3@ 777777 E ConvertToBytes T H ByteArrayConverter /
repLaced_nane; “Jonn’ T Rl (oP1aced-a0e" 120, Treplaced-nane’ "o’ - ENERIEENY <
Binary Data

{"replaced_age":30, "replaced_name" :"John"}

OR

<heartbeats binary payload>

Producer

24

Cloudera Streams Messaging Operator for Kubernetes Replication monitoring and diagnostics

Unlike transformation of keys or values, you can transform the metadata (headers, timestamps and so on) in Kafka
records without any preliminary conversion. That is, you do not need to create a chain with multiple transforms or
predicates. You can smply use asingle plugin likel nser t Header .

The following transformation chain example adds smt-header-key=smt-header-value as a fixed header to all of the
replicated records using the | nser t Header plugin.

#...
ki nd: Kaf kaConnect or
net adat a:
name: ny-source-connector
| abel s:
strinei.iolcluster: my-connect-cluster
spec:
cl ass: org.apache. kaf ka. connect. mrror. M rror Sour ceConnect or
config:

transforns: |nsertHeader

transforns. | nsert Header . header: snt-header - key

transforns. | nsert Header. type: org. apache. kaf ka. connect . transforns. | nsert
Header

transforns. | nsert Header. val ue.literal: snt-header-val ue

Single Message Transforms
MirrorHeartbeatConnector
Transformations | Kafka

If you already installed Prometheus and Grafana, you can monitor your replication flows. When configuring Kafka
cluster replication, replication connectors provide some additional metrics which are worth monitoring besides the
underlying Kafka Connect cluster metrics.

For the complete list of replication connector related metrics, Monitoring Geo-Replication in the Apache Kafka
documentation. In order to be able to access these metrics, you must configure the Connect JIM X metrics exporter.

Y ou can use the included kafka-connect-replication-metrics.yaml example file to create a Kafka Connect cluster
which exports the necessary metrics. This example exports both replication related metrics as well as metrics about
the underlying Kafka Connect cluster, which can be useful when monitoring replication flows.

Before applying the example file, you need to modify spec.bootstrapServers which should point to your target Kafka
cluster. After deploying the replication connectors into this Kafka Connect cluster, the metrics will be available with
the kafka_connect_mirror_ prefix. Y ou can change the prefix by specifying different renaming rulesin the IMX
exporter configuration.

The following are some metrics that can be of interest when monitoring a replication:

» kafka_connect_mirror_mirrorsourceconnector_byte rate — Measures the Bytes/sec in replicated records through
the source connector.

» kafka_connect_mirror_mirrorsourceconnector_record age ms— Time duration between record timestamp in the
source topic and the time when the source connector handles the record.

» kafka_connect_mirror_mirrorsourceconnector_replication_latency_ms— Time duration it takes records to
propagate from source to target. The difference between record timestamp in the source topic and the time when
the producer receives ack from the target cluster that the record was written successfully.

» kafka connect_source task_source record active count — The number of records that this task has consumed
from the source but not yet produced to the target.

25

https://docs.cloudera.com/csm-operator/1.6/kafka-connect-operations/topics/kafka-connect-smt-overview.html
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-overview/topics/csm-op-replication-connector-architecture.html#concept_cs4_55d_mcc
https://kafka.apache.org/41/documentation.html#connect_transforms

Cloudera Streams Messaging Operator for Kubernetes Advanced replication use cases and examples

» kafka_connect_connector_task offset_commit_avg_time _ms— Time duration that this task takes to commit its
offsets to the target.

o kafka_consumer_fetch_manager_records_|lag — Consumer lag which in the context of the replication indicates
whether the consumer in the source connector can keep up with the rate records are produced in the source.

A sample Grafana dashboard is provided in strimzi-kafka-connect-replication.json among the examples which
configures visualizations of the above metrics. It can serve as abasis for monitoring replication flows. Y ou can even
use it for multiple replication flows, as you can choose the namespace and connect cluster which you want to monitor.
Y ou might want to tailor it to your specific needs by modifying or extending this dashboard.

The prometheus-rules.yaml contains some replication related alerting rules under the replication group. Y ou might
want to configure the exact threshol ds based on your specific needs or define your own rules. It is also recommended
to configure the alerting rules for Kafka Connect (connect group).

Monitoring Geo-Replication
Cloudera Archive

A collection of advanced replication flow examples for different use cases leveraging the configuration options
available with Kafka Connect-based replication.

When using Kafka Connect-based replication, you have full control over the configuration and deployment

of the replication connectors (M r r or Sour ceConnect or, M r r or Checkpoi nt Connect or, and

M rror Hear t beat Connect or). Asaresult, you can fine-tune your replication set up and deploy the following
types of replication flows.

e A replication flow that uses multiple M r r or Sour ceConnect or instances

This type of replication flow can be used if you want to replicate different topics, located in the same source
cluster, using different replication configurations.

« A replication flow that is deployed on multiple Kafka Connect clusters

Thistype of replication flow can be used to separate replication work across available resources. It enables you to
have dedicated resources for specific replication workloads.

» A bidirectiona and prefixless replication flow

This type of replication flow can be used if your business requires a bidirectional replication setup that also uses
prefixless replication. That is, you require a deployment that has topics that are actively produced, consumed, and
bidirectionally replicated at the same time with the topic names remaining unchanged during replication.

The following provides instructions and examples that demonstrate how you can set up each of these replication
flows.

Tip: Thefollowing instructions assume that you are familiar with the procedure of deploying areplication
Q flow. Review Deploying areplication flow before continuing.

Learn how to deploy areplication flow that uses multiple MirrorSourceConnector instances to carry out replication
of asingle source cluster. Using multiple MirrorSourceConnectors enables you to replicate different topics using
different replication configurations.

26

https://kafka.apache.org/41/documentation.html#georeplication-monitoring
https://archive.cloudera.com/p/csm-operator/1.6/examples/metrics/
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-deploying-replications.html

Cloudera Streams Messaging Operator for Kubernetes Advanced replication use cases and examples

Using Kafka Connect-based replication, you can deploy replication flows that use multiple instances of the

M rr or Sour ceConnect or . Using multiple connector instances, in turn, enables you to fine tune how datais
replicated and apply different replication configurations to different topics that are in the same source Kafka cluster.
For example you can configure the following.

» Different compression type per connector

» Different replication factor per connector

« Different single message transforms per connector
« Different offset sync frequency

TheM rror Sour ceConnect or instances are deployed in asingle Kafka Connect cluster. Additionally, all
connector instances connect to the same source and target clusters. All other configurations related to replication can
be customized in each connector instance.

The following example demonstrates a configuration where a header is added to a subset of replicated topics. Thisis
done by creatingtwo M r r or Sour ceConnect or instances and configuring one of them to use Single Message
Transforms (SMT).

Steps

To deploy replication flow with multiple M r r or Sour ceConnect or instances, follow the stepsin the Deploying
areplication flow with the following changes.

1. Create multiple Conf i gMaps that store configuration related to each replication.

In this example, atotal of three Conf i gMaps are created. One that stores configuration properties common to
both M rror Sour ceConnect or instances, and an additional two that store configuration properties specific to
each M rr or Sour ceConnect or instance.

property in your Conf i gMaps. The topics that you add to the topics property are the topics that will be
replicated by your M r r or Sour ceConnect or instances. A single topic must be only replicated by a
singleM rr or Sour ceConnect or instance.

i Important: Ensurethat thereis no overlap in the topics that you configure as the value of the topics

kubect| create configmap [*** COVON REPLI CATI ON CONFI GVAP***] \
--fromliteral =replication.policy.class="org. apache. kaf ka. connect. m rror
. Def aul t Repl i cati onPol i cy" \
--nanespace [***REPLI CATI ON NS***]

kubect| create configmap [***FI RST REPLI CATI ON CONFI GVAP***] \
--fromliteral =topics="test.*" \
--nanespace [***REPLI CATI ON NS***]

kubect| create configmap [***SECOND REPLI CATI ON CONFI GVAP***] \
--fromliteral =topi cs="prod. *" \
--fromliteral =transfornHeader Key="ny_ header key"
--fromliteral =transfornHeader Val ue="ny_header val ue"
--nanespace [***REPLI CATI ON NS***]

27

https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-deploying-replications.html
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-deploying-replications.html

Cloudera Streams Messaging Operator for Kubernetes Advanced replication use cases and examples

2. Deploy multipleM r r or Sour ceConnect or instances.
Configure each connector instance as needed. Reference appropriate Conf i gMaps.

In this example, two connector instances are deployed. Both instances reference [*** COMMON REPLICATION
CONFIGMAP***] created in the previous step. Additionally, each connector instance also pulls configuration
from their respective Conf i gMaps.

The second connector instance includes an SMT chain that applies a transformation on the replicated records. The
SMT chain adds a header to each record replicated by the second connector instance.

#. ..

ki nd: Kaf kaConnect or

net adat a
nane: first-mrror-source-connector

spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
config:

topics: ${cfrmap:[***REPLI CATI ON NS***]/[***FI RST REPLI CATI ON
CONFI GVAP* **] : t opi cs}

use comon replication policy in both connectors

replication.policy.class: ${cfrmap:[***REPLI CATI ON NS***] /[*** COMWON
REPLI CATI ON CONFI GVAP***] : repl i cati on. pol i cy. cl ass}

#...

ki nd: Kaf kaConnect or

nmet adat a
name: second-mirror-source-connect or

spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
config:

topics: ${cfrmap:[***REPLI CATI ON NS***]/[***SECOND REPLI CATI ON
CONFI GVAP* **] : t opi cs}

transforns: insertHeader

transforns.insert Header.type: org.apache. kaf ka. connect . transforns
. I nsert Header

transformns. i nsert Header. header: ${cfmap:[***REPLI CATI ON
NS***] /[*** SECOND REPLI CATI ON CONFI GVAP***] : t r ansf or nHeader Key}
transforms. i nsertHeader.val ue.literal: ${cfmap:[***REPLI CATI ON
NS***] /[*** SECOND REPLI CATI ON CONFI GVAP***] : t r ansf or nHeader Val ue}

use conmmon replication policy in both connectors

replication.policy.class: ${cfmap:[***REPLI CATI ON NS***] /[*** COMMON
REPLI CATI ON CONFI GVAP***] : repl i cati on. pol i cy. cl ass}

3. Configure the topics property of your M r r or Checkpoi nt Connect or instances so that they include al
topicsthat are replicated.

...
ki nd: Kaf kaConnect or
nmet adat a:
nane: mrror-checkpoi nt-connector
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Checkpoi nt Connect or
taskshax: 3
config:

28

Cloudera Streams Messaging Operator for Kubernetes Advanced replication use cases and examples

topics: ${cfmap:[***REPLI CATI ON NS***]/[***F| RST REPLI CATI ON
CONFI GVAP***1 : t opi cs}, ${ cf map: [***REPLI CATI ON NS***] /[*** SECOND
REPLI CATI ON CONFI GVAP***] : t opi cs}

groups: [***CONSUMER GROUP NAME***]

Learn how to set up areplication flow that is deployed on two or more Kafka Connect clusters. A replication set up
like this enables you to spread replication tasks across available clusters allowing you to have dedicated resources for
critical workloads.

Using Kafka Connect-based replication, you can set up areplication flow that is spread across multiple Kafka
Connect clusters. Thisis done by deploying multiple Kafka Connect clusters and an instance of each replication
connector on each Kafka Connect cluster. Afterward, you configure your replication connectors to replicate data
between the same source and target Kafka cluster pair.

In asetup like this, replication between a source and atarget cluster is carried out by multiple sets of replication
connectors. In a standard deployment, replication would be carried out by a single set of the replication connectors.

A replication set up that uses multiple Kafka connect clusters makes it possible for you to designate K afka Connect
clusters to handle specific types of workloads. For example, you can dedicate a cluster to handle replication of
business critical topics, while adifferent cluster can handle the replication of other topics.

Steps

To deploy areplication flow with multiple Kafka Connect clusters, follow the stepsin the Deploying a replication
flow with the following changes.

1. Deploy multiple Kafka Connect clusters with differing configurations in separate namespaces.

When deploying multiple Kafka Connect clusters, use a different namespace for each cluster. Thisway it is
possible to separate the dedicated configurations and Secr et s into the appropriate namespace. It also makes
it possible to use namespaced limitations, such as Resour ceQuot a, or to apply different namespaced access
control policiesto each Kafka Connect cluster.

For example, you can set up two Kafka Connect clusters. One to handle small workloads, which has fewer
replicas and fewer resources allocated. Additionally, one for larger workloads, which has more replicas, higher
resource allocation, aswell as limits.

#. ..
ki nd: Kaf kaConnect
nmet adat a
nane: smal |l -workl oad
nanespace: [***SMALL WORKLOAD NS***]
spec:
replicas: 3
config:
Custom configuration
resour ces:
requests:
menory: "1G"
cpu: "1"
limts:
menory: "2G"

29

https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-deploying-replications.html
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-deploying-replications.html

Cloudera Streams Messaging Operator for Kubernetes Advanced replication use cases and examples

cpu: "2"

#. ..
ki nd: Kaf kaConnect
nmet adat a:
nanme: hi gh-wor kl oad
nanmespace: [***H GH WORKLOAD NS***]
spec:
replicas: 6
config:
Custom configuration for higher workl oads
resour ces:
requests:
menory: "6G"
cpu: "2"
[imts:
menory: "12G "
cpu: "4"

2. Create Conf i gMaps that contain replication related propertiesin each of your namespaces.

Assuming that you are deploying two Kafka Connect clusters, one for small and one for high workloads,
you would create two Conf i gMaps that contain the topic filter (topics property) configuration for your
M rror Sour ceConnect or instances.

For example, the M r r or Sour ceConnect or instancein the high workload Kafka Connect cluster can
replicate business critical topics with high expected volume. The connector running in the small workload cluster
can handle the replication of less critical topics with less expected volume.

Important: Ensurethat thereis no overlap in the topics that you configure as the value of the topics
property in your Conf i gMaps. The topics that you add to the topics property are the topics that will be
replicated by your M r r or Sour ceConnect or instances. A single topic must be only replicated by a
singleM rr or Sour ceConnect or instance.

kubect| create configmap [***SMALL WORKLOAD CONFI GVAP***] \
--fromliteral =topi cs="low *" \
--nanespace [***SVALL WORKLOAD NS***]

kubect| create configmap [***H GH WORKLOAD CONFI GVAP***] \
--fromliteral =topi cs="high.*" \
--nanespace [***H GH WORKLOAD NS***]

Note: In addition to the dedicated Conf i gMaps, creating another Conf i gMap that contains common
IE connector properties, like replication.policy, is recommended.

3. Deploy and configure your M r r or Sour ceConnect or instances to replicate appropriate topics.

#. ..
ki nd: Kaf kaConnect or
met adat a:

name: mrror-source-connector
nanespace: [***SMALL WORKLOAD NS***]

| abel s:
strinei.io/cluster: snmall-workload
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
tasksMax: 3

30

Cloudera Streams Messaging Operator for Kubernetes Advanced replication use cases and examples

config:

topics: ${cfmap: [***SMALL WORKLOAD NS***]/[***SMALL WORKLQAD
CONFI GVAP***] : t opi cs}

#. ..
ki nd: Kaf kaConnect or
met adat a:

name: mrror-source-connector
nanespace: [***H GH WORKLOAD NS***]

| abel s:
strinei.iolcluster: high-workload
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
tasksiax: 3
config:

topics: ${cfmap:[***H GH WORKLOAD NS***]/[***H GH WORKLQAD
CONFI GVAP* **] : t opi cs}

4. Configure the topics property of your M rr or Checkpoi nt Connect or instances so that they include all
topicsthat are replicated.

#o...
ki nd: Kaf kaConnect or
net adat a:

nanme: mrror-checkpoint-connector
namespace: [***SVALL WORKLOAD NS***]
spec:
cl ass: org. apache. kaf ka. connect. nmirror. M rror Checkpoi nt Connect or
tasksMax: 3
config:
topics: ${cfmap: [***SMALL WORKLOAD NS***]/[***SMALL WORKLQAD
CONFI GVAP* **] : t opi cs}
groups: [***CONSUVER GROUP NAME***]

...
ki nd: Kaf kaConnect or
net adat a:
nanme: mrror-checkpoint-connector
namespace: [***H GH WORKLOAD NS***]
spec:
cl ass: org. apache. kaf ka. connect. nmirror. M rror Checkpoi nt Connect or
tasksMax: 3

config:

topics: ${cfmap:[***H GH WORKLOAD NS***]/[***H GH WORKLQAD
CONFI GVAP* **] : t opi ¢S}

groups: [***CONSUVER GROUP NAVE***]

Learn how to set up bidirectional and prefixless replication flows. A replication set up like is achieved with the use
Single Message Transforms (SMT).

31

Cloudera Streams Messaging Operator for Kubernetes Advanced replication use cases and examples

Using out of the box configurations and behavior, deploying a bidirectional flow that uses the prefixless replication
policy (I denti t yRepl i cati onPol i cy)) isnot recommended. This is because the prefixless replication policy
does not support replication loop detection. By default, a setup like this resultsin records being replicated infinitely
between your source and target clusters.

However, using such a setup can make failover and failback scenarios easy. This is because bidirectional and
prefixless setup requires minimal reconfiguration of Kafka clients when you failover or failback between Kafka
clusters. You only need to reroute the client to connect to a different cluster. Reconfiguring clients to consume from
or produce to differently named (prefixed) topics is not necessary.

A bidirectional and prefixless replication setup can be achieved when using Kafka Connect-based replication with
the use of an SMT chain. By deploying an SMT chain on top of your replication flow, you can effectively filter
replication loops while still having at-least-once guarantees.

Important: Even though areplication setup like thisis possible without replication loops, checkpointing

& and consumer group offset synchronization do not work. This means that when your clients switch to a
new cluster, it can happen that a considerable amount of duplicates are processed as consumers restart
consumption from the beginning of the topic.

Steps

To configure a bidirectional and prefixless replication flow, follow the steps in Deploying a replication flow with the
following changes.

1. Deploy two replication flows.

* Thereplication setup must be bidirectional. One replication replicates data from cluster A to cluster B, the
second replicates datafrom B to A.

« Thereplication flows are configured to use prefixless replication. That is, replication.policy.class property
of theM rr or Sour ceConnect or and M rr or Hear t beat Connect or instances are set to
org. apache. kaf ka. connect. mirror.ldentityReplicationPolicy.

» Skip the creation of M r r or Checkpoi nt Connect or instances. M r r or Checkpoi nt Connect or
instances enable consumer group offset synchronization, which is not supported in a bidirectional setup.
Creating these connectors is not necessary.

2. Configureyour M r r or Sour ceConnect or instanceswith an SMT chain that filters replication loops.

Thefollowing isan example M r r or Sour ceConnect or instance that usestheFi | t er and
I nsert Header transforms aswell asthe HasHeader Key predicate. When used in combination, these plugins
provide away to filter replication loops.

#. ..
ki nd: Kaf kaConnect or
spec:
cl ass: org.apache. kaf ka. connect. mrror. M rror Sour ceConnect or
tasksivax: 2
config:
transforns: FilterReplicatedFronTarget, | nsertHeader
transforms. Fil t er Repl i cat edFroniar get.type: org. apache. kaf ka. connect . tr
ansforns. Filter
transforns. Fi |l t er Repl i cat edFronirar get . predi cate: Repl i cat edFroniTar get
transforns. | nsert Header. type: org. apache. kaf ka. connect.transforns. In
sert Header
transforms. | nsert Header. header: replicated-from ${cfmap: [***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: al i as}
transforms. | nsert Header.value.literal: true
predi cat es: Repli cat edFr onTar get
predi cat es. Repl i cat edFronirar get . t ype: org. apache. kaf ka. connect . transfo
rs. pr edi cat es. HasHeader Key
pr edi cat es. Repl i cat edFronirar get . nane: replicated-from ${c
fmap: [***REPLI CATI ON NS***] /[***TARGET CONFI GVAP***] : al i as}

32

https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-deploying-replications.html

Cloudera Streams Messaging Operator for Kubernetes Advanced replication use cases and examples

emit. of fset-syncs. enabl ed: false

Notice the following about this example.

Thel nsert Header transformation adds a new header for each replicated record. The header marks each
record. Thisway the record include information on which cluster it came from.

TheRepl i cat edFr onTar get predicate returnstrueif arecord already has the configured target cluster
related replication header. In other words, it returnstrueif the record came from the target cluster earlier.
TheFi | t er Repl i cat edFr onirar get transformation excludes records from replication for which

the Repl i cat edFr onirar get predicate returns true. Thisfilters replication loops because arecord is
never replicated back to a cluster where it was replicated from. This does not mean that some records are
not consumed from source. All records are consumed. The records that would cause areplication loop are
dropped.

emit.offset-syncs.enabled is set to false to disable creation of the offset syncsinternal topic. Thisis done
because checkpointing is not supported in thisset up. M r r or Checkpoi nt Connect or instances are not
created. Creating thisinternal topic is unnecessary.

Note: Ensure that cluster aliases are consistent across your replication flows. For more information, see
Replication aliases.

33

https://docs.cloudera.com/csm-operator/1.6/kafka-replication-overview/topics/csm-op-connect-replication-overview.html#concept_u22_4td_mcc

	Contents
	Deploying a replication flow
	Configuring prefixless replication
	Checking the state of data replication
	Configuring data replication offsets
	Replicating from the latest offset for new partitions
	Manually setting exact offsets for specific source partitions

	Enabling exactly-once semantics for replication flows
	Performing a failover or failback
	Performing a continuous and controlled failover
	Performing a controlled failover with a cutoff
	Performing a failover on disaster
	Performing a controlled failback

	Using Single Message Transforms in replication flows
	Replication monitoring and diagnostics
	Advanced replication use cases and examples
	Deploying a replication flow that uses multiple MirrorSourceConnector instances
	Deploying a replication flow on multiple Kafka Connect clusters
	Deploying bidirectional and prefixless replication flows

