cloudera

Apache Impala Guide

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or

service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logos mentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Cloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.

395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Impala 3.1.x / CDH 5.16.x
Date: August 3, 2021

Table of Contents

Introducing Apache Impala........cccciiiiiiiiiiiirrrccrrecrrcc e reneeesensessenseseess 1O

Ty gV o= =T 1T 0 1= SRR 16
HOW IMpPala WOrKS With CDH.......ooiiiiiiiie ettt e e et e e e e et e e e e ettt e e e e esnaseeeeeansseeeeeanneaeaeans 16
PrimMary IMPala FEAtUIES. .. .iiiiiiiiiee ettt e e ettt e e ettt e e e eeba e e e e e ssbaeeeeeansaaeeeeanssseeeeassseeeeannnsneaaens 17

Impala Concepts and Architecture......c.ccoveeiiieeiiiiiiiiieiiiicicrrccrenecreesesensseneneeness 18

Components Of the IMPAla SEIVET........uiiiiie e e e e e e e e e e e e e e e e e e eeeesaaatraaeeeeaeaeesannnnnes 18
LT [T To] e B0 o =T Lo T SRR 18
LE L= [T e o B (o (=X e = PP UUPPTN 18
The IMPAIA CALAIOG SEIVICE......cc.eeeeeeeeee ettt e e ettt e e et e e e ettt e e ettt e e e st e e e aass s e e assaaasaassaaeeaassaasassaaaeesssaeesnsses 19
Developing IMPala APPIiCaAtIONS. ...ci ittt e e e et e e e ettt e e e e ssabeeeeessnteeeeeennbaeeeseanraeeeeans 20
Overview Of the IMPaAIa SQL DIGQIECT................oeeeeeeeeeeeeeeeeee et e et e e et e e et e e ettt e e e et e e e e st eeeats e s e e sassaaestseaeeasssaessssseas 20
Overview of IMpala Programming INTEIFOCES.c.uueeueerieeeie ettt ettt ettt e st ssesenineeane s 21
How Impala Fits INto the HAad0OP ECOSYSTEML....uiiiiiiii ittt e e e e e e e e et r e e e e e e e e e e e e eannenranaeeeas 21
HOW IMPGIA WOIKS WIth HIVE..........veeeeeeeeeeee ettt et e ettt e e ettt e e et e e ettt e e easstaeeaatstaeassaaaaaasssaeasssaeeasssaeenssses 21
Overview of Impala Metadata aNd the MELASLOIE.............ccc.uuueeeeeieee et ee ettt e e e e e ettt e e e e e e et et aaeeeeeessasaseaaaaeeaas 22
HOW IMPGIQ USES HDFS......co.eeeeeeeeee ettt ettt e ettt e et e e ettt e e e et e e e atste e e ettt s e easssaaeaatstaaasssaaaansssaasastsaasesnsssaennssees 22
HOW IMPQAIA USES HBASE. ...ttt e e ettt e e e e e ettt e e e e e e ettt a e e e e eee s assseaaaeeesaaasasasaaeeeaesnstsseeaaeeaaan 22

Planning for Impala Deployment.......cccccciieiieniiieiieiireireeinrneneeceenerencssnsernsssenesns 23

TeaTo] T 2 (Te [T 001) €T OO 23
Product COMPALIDITIEY IMIGEEIX........coeeeeeieeeieeeeeee ettt ettt ettt e st e et e st e et e st e e st e enaneeneas 23
SUPPOITEA OPEIALING SYSTOIMS......vveeeeeeeeeeee e et e et e et e e ettt e e et a e e et e e e ettt s e e eassaaeeaseaaeassseaaaassssaeaasssaasantssaeassssaaeassseaaaas 23
Hive Metastore and Related CONFIGUILION............ccueeeeeisiieeeeeeeeeee ettt ettt ete e e e s 23
Lo 1Y B DT oY=l g Lo =T ol (=SSR 23
Networking CoNfigUIation REGUIF@MENLS.c.ueeiueeeieiseeee ettt ettt e ettt e et et e ettt e e enanees 24
L2 Lo T o = t=Te TV 4=l L= 2SR 24
USEI ACCOUNT REGUITEIMENTS. ...ttt ettt ettt et s et e st e e ettt e et e e st e e e sttt e e e tneaesnnneas 25
Guidelines for Designing IMPala SCHEMAS.........coiiiiiiiie e e e e e et e e e e eare e e e e nareee e e eanres 25

Setting Up Apache Impala Using the Command Line.......ccccceereeiireirencrencienccnnennn 27

What is Included in an Impala INStallation...........oooiiiieiice e e e e e e e 27
Installing Impala from the CoOMMANT LiNE.......occuiiiiiiiiiiiie et et e e e sar e e s sabaeeessenbaneeesanes 27
Modifying IMpala STartUp OPtioNS......eiie i e e e e e e e e e e e e e e e e e e s aeasbaeraeeeaeeeeseasssnenernees 29

Configuring Impala Startup Options through the COMMQANG LiNe...............oeeeeuveieeeeiiieeeieeeesiieeeeteaeesaaaessaaeeesiaaaeesasneas 29

Checking the Values of Impala CONfigUIQtion OPLIONS............cccuueeeeeueeeeeiieeeeeieeeeeeeeeeettee e e ettt eeeeetsa e e et e e e etseaeeeasaaeesnes 32

Startup Options fOr iMPAIAU DOACMON..........cccccueeeeeeee et eete et e s ee e et e e ettt e ettt e e e sstteesasseaeesassaasassesesssssasssssenasans 32
Startup OPtions fOr SLATESTOIEA DACMON.............cceueeeeeeeeeeeeee et ettt e e ettt e e ettt e e ettt e e e ettt e e esasaaeestseaeeaasaaeesassaaessseseens 32
Startup Options fOr CAtAlOGA DACIMON..........ccccuueeeeeieeeseeeeeeeeeeee e e st e e ettt e e ettt e e ssteaeessttaasasseaeessssaasassesenssssasnssssnasnas 32
YL TaT = o 0] o T 1 OSSPSR 32
Starting IMmpala from the COMMEANG LINE..............cc.ueeeeeeiieeeeee e et e e ettt e ettt e e ettt e e e ettt e e e ssaaeaststaeesssaaeessseaasessseseens 33
Installing Impala With CloUdEra MA@coccuiiiie ittt ettt e ettt e e e et e e e e sbte e e e e sataeeesessbaeeeesenseneeeeanns 33
Installing Impala from the CoOMMAND LiNE.......occuiiiiiiiiiiee et et e sar e e s ssbaee e s ssnnaeeeesanes 34

Managing IMpPala.......ccceieiiieiiiiiiieiiiiirrierecernereeeerneressesnsessssssnsessssssnsessssssasssassess 30

Post-Installation Configuration for IMPala.........c.eeii i e et e e e eaaeeeeeeaes 36
Configuring Impala to WOrk With ODBC.......cccuuiiiiiiiiiiie ettt e e s e e e st e e e e s rba e e e e s abaeeeeesanaaeeeesnrees 37
DOWNIOAAING TN ODBC DIVueeeeeeeeeeeeee et e ettt e e e e e ettt e e e e e e e ettt eaeaeeeatassseaaaeeesassssseaaaeeeeasasssasasaaeaaaas 38
CONFIGUIING TNE ODBC POIL......ooeeeeeeeeeeee e et e e e e ettt e et e e e et a e e et e e e et e e aastseaeaasssaeeassstaeansssaaaaasssasanssanasasssaennssnees 38
Example of Setting Up an ODBC Application fOr IMPQIQ...............oooeeueeeeeeeeeeeeeee ettt e e e e eeeeaeaaeeaneas 38
Notes about JDBC and ODBC Interaction wWith IMpPala SQL FEALUIES.............covueerieesiieesieesieesiee st siee et siveesiteesiteesineens 39
Configuring IMpala t0 WOrk With JDBC......ccoicuiiiiiiiiiiee ettt et e e s e e e s e e e e seba e e e e e nbaeeesesnsraeeeesnnsees 40
CONFIGUITING TRE JDBC POI ..ottt e ettt e ettt e e ettt e e et e e e et e e e et e e e eats e s e e st e e e aatsaaaaassaaaeasssaeeassasesanseseeaasneas 40
CROOSING tNE JDBC DIIVEI ..ottt ettt ettt ettt ettt et ettt et et e st e st e et e st e et s enaneenanes 40
Enabling Impala JDBC SUPPOIt ON CHENT SYSEOMIS..........ueeeceeeeeeeiiee e et e e ettt e e ettt e e ettt e e ettt e e e et e e estaaaeestsaaeeeaseaeesasees 40
EStaDIISNING JDBC CONNECLIONS.......c..eeeuieeeiieesieeeee ettt ettt ettt s e ettt e e ettt ettt ettt e et e st e s st e st e eneeebneeanas 41
Notes about JDBC and ODBC Interaction With IMpPala SQL FEATUIES............ccccveeeeeeeeeeetieeeesieeeeeeaeeesteaesssaaeescseaeesseeas 42
Kudu Considerations fOr DIMIL SEAEEMENTS..........c..eeeueeeieisieeeee sttt ettt ettt st et s et e e enane s 43

(BT oT={ 1= To [T V-1 [11] o - | - T PPN T |

Upgrading Impala through Cloudera Manager - ParCels........uuiiiiii oo ee s 44
Upgrading Impala through Cloudera Manager - PACKAgES.......cciuicuiiieiiiiiiiee ettt e et e e esvaee e e e 45
Upgrading Impala from the CommMand LiNE.......c.uuiiiiiciiiie ettt e e e sae e e e s esabae e e s senaaneeesenes 45
Converting Legacy UDFs During Upgrade to CDH 5.12 Or Hiher.....ocviiooi oo 47
(61T o{ = Yo [@0 T 0 1Y [[T =1 T Y o 1P 47
Handling Large Rows During Upgrade to CDH 5.13 / Impala 2.10 OF HIiGREI.........cccocveveieiesiesiesieiesiesiesiesiesseiesiessensens 47
Impala Roles with SELECT or INSERT Privilege Receive REFRESH Privilege During the Upgradeccooveeevuveeecunennn. 48
[0 (o [V 1LY =3 a1 o IO g Lo [T L= SRR 49

Starting IMpala......ccce i ren e ress s ssnsssssnssssensssssnsesssnses DO

Starting Impala through CloUudera Manager........c..uuuiiiiiiiiie e e e ese e e e e e e e e e s rnbaarreeeeeeeeeeesnnnnnnes 50
Starting Impala from the ComMmMaNd LiNE.........uuiiiiiiiiiie et e et e e e s e aae e e e e aare e e e e s ares 50
Modifying IMPala STartUp OPtioNS......uiii ittt ert e e e etae e e e e et ta e e e e ssabaeeeessnbteeeeeastaeeessassseeeeanns 51
Configuring Impala Startup Options through Cloudera MONGQGEr................ceccueeeeecieeeeeiieeeeeieeeeeetee ettt e e esreeeeeereaeeeaneas 51
Configuring Impala Startup Options through the COMMQAN LiNe...............ceeeeuveeeeeeiiieeeieeeesieeeetea e sstaaessaaeessaaaeesaseeas 51

Checking the Values of Impala CONfigUIQtioN OPLIONS............cccuueeeeeeueeeeeieeeeeeeeeeeeeeeeetctee e e et eeeeetsa e e ettt e e e sstsaaeeassaaeeanees 54

Startup OPtions fOr iIMPAIAA DOACMON...........c.c.veeeeeeeeeeeeeee e eeeee et eee e e e e e ettt e e e et a e e et e e e e ttsaaeeaatsaaeaaatssaeesssaessassneaaa 54

Startup OpPtions fOr SLATESTOIEA DACIMON.oeeeeeeeeeeeee et eete e et e e ettt e et e e ettt e e e et e e sasssaaeasstaessssaaesssssaesssseaenns 54
Startup Options fOr CAtAlOGA DACMON.c..eeeeeeeeeeeeeeeeeeeeeeeeee ettt e e e e e e et e e e st eeestteeeeaaasaaeestsaaeessssseeesssaeesasesaaaas 54
Startup Options for Automatic Invalidation Of MEEAGGTQ.c..eeeeeueeeeeeiieeeeee et eeett ettt e e e sta e e saaa e s sstaasasseaeenans 54

IMpala TULOrialS. ... it rene s rensssenssssensssssnssssensessess DO

TULOrials fOr GELLING STArtEU.ueiiiiiiiieee e e e e e e e e e e sttt e e e e e eeaeesessaanssssaseeeaaeeeeesannnnsrnnns 56
[(o (oY =20 WAV L=2TVA Ve ool o N [K o Lo =SSR 56
LOAA CSV DAL frOM LOCOI Fil@S........ooooeeeeeeeeeeeeeeee ettt e et e et e e et e e e ettt e e e et e e e e s s e e eatssaeeetsaaeeatssaeenasseas 61
Point an Impala Table At EXiStiNG DALQ FilES.............ccueeeesieeeeeeie e estee e e st e e ettt e et eeesattaeeessaaaesssaasasssaaasesnsaaensanees 63
DeSCribe the IMPQIQ TADIE..............ooeeeeeeeeeee et e e e ettt e e e e e e ettt e e e e e ettt s e e e e e e sssasasaaaaaeeaessstssesaaeeaaias 64
(O TV g (L= [T e Te o Lo o) =PSRRI 64
Data Loading and QUEIYING EXAMPIES..........ccoeeeeeeeeeeeeeeeeeeeeeeee ettt e e e ettt e e e e e et ettt e e e e e e e ssesaaaaeeesssssssesaaaeeansaes 65
AAVANCEA TULOTTAIS. ..t itteeeeiiee ettt e e sttt e st e e sttt e ssteeesbaeeessaeesnsaeesnsseeensseesnssessnssesensseesnnsenenn 67
Attaching an External Partitioned Table to an HDFS Directory StrUCLUIE............cc.ecvveeeiieeesieeiieesie ettt 67
Switching Back and Forth Between IMpPala QNd HIVe..................occueeeeeceeeeeeieeeeteeeeeetee e ettt e ettaaeestaaeeessaaeesissaaeesseaaeeans 69
Cross Joins and Cartesian Products with the CROSS JOIN OPEIGLONccueevueeereeesieeeieesieeeiee sttt 70
Dealing with Parquet Files with UnKnOWN SChEMa...........cuiiiiiiiiiic e 72
DoWnIoAd the DALA FIleS INEO HDFS........cccuueeiieeeeeeee ettt ettt ettt s e st s bttt e et e et a et e saseesstaesseesbeesnseas 72
Create DAtADASE QNO TODIES.............oeeeieeeeeiee ettt et e et e et e et e e et e e e st e e et e e e et a e s aastaaesnaseaesasteaesnasneas 72
Examine Physical GNA LOGICAI SCREMIQ............oooeeeeeeeeeeeeeee ettt e et e e e et e e et e e e et a e e et e e e s sstaaesstsaaeesasssaesnsees 73
YN e Lo 1Y 7L=3 D o L o TSP UPPP 75

IMmpala AdminNistration.......cccciieiiieiiiiiieiirrcrcrrcreerreereeerenereeesensernsesensernssssnnesn s O3

Admission Control and QUENY QUEUINE........cciiuiieeeieiieee e eeciee e e e et e e e et e e e e ete e e e e seabeeeeeeebaeeeeesaraeeeesnraeesesnssens 83
Overview of IMPaAla AAMISSION CONTIOL...........ooeeeueeieeiiieeeeee ettt e et e st e e et e e s e sstaeeesstaasesssteesanasseesnasees 84
Concurrent Queries and AdMISSION CONTIOL........c..oeiuierieesiieeite sttt ettt ste st e st e st e s saeesttessesensseenases 84
Memory Limits aNd AdMUSSION CONTIOL.....c.....oieeuiieeesiiee ettt e e e et e e sttt e e st e e s st e e e s attaeesattaeessatnessnssnens 84
How Impala Admission Control Relates to Other Resource Management TOOIS.............c.eeeecuereeecveeessiiieeeesiiseesiieaessseenn 85
How Impala Schedules and Enforces Limits 0n CONCUIT@Nt QUEIIES.............cceeeuvereeecuiisesiiieeessiiieessiteaesiitaeesiseeessineeessssnens 85
How Admission Control works with Impala Clients (JDBC, ODBC, HiVESEIVEI2)............ccocueeeeiuereeeiieaasiiiieeeesisiseesissassssenens 86
SQL and Schema Considerations for AdMiSSION CONTIOL............coecuueieeiiiieeeiiie et ese et e e see et e e ssisteeesiaeaesnaes 86
CoNnfiguring AdMUSSION CONTIOL........uueecueeeeeeiieeeeeee ettt e e e et e e e et e e e et e e e e st e e e easstaeeaasaeaeassaaaasassaaeassaaasasssaensssses 86
Guidelines for USiNg AdMISSION CONTIOL...........ooeeuueieeiiieesieee ettt ettt e e e e e et e e s et e e eassaesesssteesanasneesnasees 91
Resource Management fOr IMPala..... ...t e e e et e e e e eetbe e e e eearaeeeeeanreeeaeaans 91
HOW RESOUICE LiMMitsS A€ ENFOICEOM.c.uveeeeeiie ettt e ettt e e ettt e e ettt e s et e e sttt e e estaaasaassaaessnstaaeanssaaeanasseaennsneas 91
impala-shell Query Options for ReSOUIrce MANGGEMENT...........cc..ueeeceueeeeeiieeeeeeieeeeeeeeeeeeate e e st e e et e e e essaaaestsaaeesssseesssees 92
Limitations of Resource Management fOr IMPAIQ.................ooeeeueeeeeeiiieeciee et ee e et e et e e e ete e e estaeeatsaaessnsaaennsees 92
How to Configure Resource Management for IMpala.........cuuuveeieiii i 92
(0= LT B (o A (ol Y= Y] (ol =30 =l Yo KSR 92
USING AGMUSSION CONEIOL..c.nnveieeeiiie ettt ettt e e e et e e ettt e e et e s ettt e e et e e s anstaassaastaaessstaesssseaesnnsseas 93
SELEING PEIr-QUEIY IMEMOIY LIMITES.....ieeeeeeeeeeeeeeeeeeeeeeee e ettt ettt ettt ettt ettt ettt e et e e et et et et e te e et aeseseseseaesaaesassasasssssssnssnnen 93

Creating DYNQAMIC RESOUICE POOIS...........cueeeiieeeeiee ettt et e e e e et e ettt e e et e e sttt e e e tsaeesaasteaeasstaaesntsaeesnasneasnssneas 94

Impala Resource ManAGeMENT EXAMPIE............cc..uuueeeeeeeeeeeeeeee e ee ettt e e e ettt e e e e e ettt e e e e e e s sssseseaaaeeasssatssseaaaaaeas 96

Setting Timeout Periods for Daemons, QUEries, aNd SESSIONS.......cccciuieeeiiiiiiieeeciiieeeeeeiree e e e eree e e e erraee e e eeaeeeas 97
INCreasing the StALESTOre TIMEOUL...........ccueiiuueeeieeeee ettt ettt ettt et e et e ettt e et e st e et esaeeeneas 98
Setting the Idle Query and Idle Session Timeouts fOr iIMPAIAQ.............c.oevveeiiveeciieiiesiee ettt see e 98
Setting Timeout and Retries for Thrift Connections to the Backend ClieNt...............cccueeeeeueieesiieeesiiieeeeiiiseeciieeesiiea e 99
(0T To=] [T e B O TV I=] o O PR OSUPPRP 99
Using Impala through a Proxy for High Availability.........ccooiiuiiiiiiiie e 100
Overview of Proxy Usage and Load Balancing for IMPaIQ...................oooeeueeeeeiueeeeeiee e eeee ettt 100
Choosing the Load-BalanCing AIGOITERM...............eeeeeueieeeeee et e et e et e e e ettt e e ettt e e sttt e e e ssttaesantaaeasasaaaeenteaensannes 101
Special Proxy Considerations for CIUSters USING KEIDEIOS............c.uueeeeeeeeeeeeeeeeeeee et et eetaee et eeesaeaeeeraaeasraaaans 101
Special Proxy Considerations for TLS/SSL ENABIEA CIUSTEIS...........ccccvveeeeeeeereeireeireeeseeeteeieseeseeseeeseeesseeseesseesssesssesssessssiseens 102
Example of Configuring HAProxy Load Balancer fOr IMPQIQ................coccueeeeeeueeeeeeee e ettt e et eeerea e e 103
Managing Disk SPace for IMPala Data.......ccueeeriieiiiieeiiie et esieeestee et e st et e e sabe e e sabee e sateessabeeesabeessnseeesaseeas 105
AUAItiNG IMPAla OPEIatiONS. . uuiiiiieiiiie ettt e eee e e e et e e e e seba e e e e s ettaeeeesaataeeaesassaeeeeeanstaeeessnssaseasans 106
Durability and Performance Considerations for Impala AUIting.................cccoueeeeeueeeeeiiiee et eeteee et eerea e 106
FOIrMQLE Of tNE AUGTE LOG FilES....cc...eeeeeeeeeeeeeeeeeee et e ettt e e et e e et e e e et e e et e e e anstaeaataaesanssaaensnssaasanssenensnnes 107
WRICh OPeratioNs Are AUGITEU.cccoeeeeeeeeeeee ettt e e e e ettt e e e e e e ettt e e e e e e ssat s s e e aaeeesassaasseaaaaeeesssssasesaaens 107
REVIEWING TNE AUIE LOGS...cc.evvieeeeeeeeeeee ettt et e e et e et e e ettt e e ettt e e et e e e ettt e e e aasteaeaasssaaaastsaaaannssaaesansaasansssnennnnes 108
Viewing Lineage Information for IMpala Data.........cccuiiii it eere e s et e e s s sbraeeeeeanes 108

IMPAla SECUNItY...ciuiieiiieiriiiriereecrreerenertnerensernseressesnsessssssnsessssssnsessssssnsesassssnsess 109

Security GUIAElINES fOr IMPAla.....uiiicieeiiie et et e et e e st e e sbte e staeesnbeeessseesnsaeesnseeesnnes 109
Securing Impala Data and LOg FileS........uiiii ittt e e st e e e e ae e e e e bae e e e e e anaees 110
Installation Considerations for IMPala SECUIILY......ciiiciiiie i e et e e e saaaeeeean 111
Securing the Hive Metastore Database. e e e e e e e e e e s e e earraraeereaaaeeeaaas 111
Securing the Impala Web User INTEI aCe.......c.viii ittt et e e et e e e e rae e e e e naeeas 111
Configuring TLS/SSL fOr IMPala....eiceeiiieeiiieiiecie ettt ettt ettt e v e ete e etbe e ete e s ve e beeeaaeebeesabeebeessseenreens 112
USING ClOUAEIA IMONQGET..........eveeeeeeeeeeeee ettt e ettt e e e e e ettt e e e e e e sttt s e aaaeeeaaaassasaaaaeaaasastsssasaaeeaassssssasasaaeaaaes 112
USING the COMMIGNG LiN@.......cocoeeeeeeeeeeeeeee et e et e e e et e e et e e et e e ettt e e e astaeessseaaansteaeeaasstaeasssaaaannsaaennnnses 113
Using TLS/SSL With Business INTEIlIGENCE TOOIS........c...ccoueeeeueeeireeeeeeeeieeeeeeeeteeeteeetaeeetteeesaeeeeseseesseeestseetsseeasssessessesesrseeses 114
Specifying TLS/SSL Minimum Allowed Version GNd CIPDREIS...........ccueecueeceeeseeeeiieseeeeieeeeeeetteaeeeeettaeeaeesseaeseessaaesee s 114
Enabling Sentry Authorization fOr IMPala........oeeiii i e e e s e aaeee s 115
TR 10 N 1 [=e T 1Y Lo e L= ARSI 115
Starting the impalad Daemon with Sentry Authorization ENGDIEd................c.coeceeemieieiiiniiisieeseeeeeee e 118
Enabling Sentry for Impala in ClOUAEIA MONGAGEL............c.c..uveeeeueeeeeeieeeeeeee e esteeeeeetee e e ettt e e et e e e s e e esataaeesasaeaessseaeesasees 119
Using Impala with the Sentry Service (CDH 5.1 0F RigRer ONIY)............ooeeiieiiesieseeeeee ettt 119
Using IMpala With the SENLIY POLICY File................ooeuueeeeeeeeeeeeee ettt e ettt e st a e ettt e e ettt e e e et aaeesataaaeenseaeeeannes 121
Setting Up Schema Objects for a Secure Impala DeploymMent................coocueeemeeeeiiiniieeteseeee et 123
Debugging Failed Sentry AUtROIIZAtION REGQUESES...........cccuueeeeeieeeeeieeeeeeeee e ettt e e e etee e e ettt e e e taae e e st e e esssaaeetsaaaeasssseesasees 123
The DEFAULT Database in @ SECUIre DePIOYMENL............cccueeeieeeieieieeeee ettt sttt sttt 124
TaaY o] I U Nd g =T ok aToF o o P PEURRRNE 124
Enabling Kerberos Authentication fOr IMPQIQ...............oueeeuueeeeeeieeeeee et es e et e e et a e et e e et a e e st e e e esasaaeesnteaeesasees 124

Enabling LDAP AUthentiCation fOr IMPQIQ..............oeeecuueeeeeeeee e e ettt e ettt e et e e e ettt e e e ettt e e e eaaaaeesataaeeeeaseaeeeannes 128

Using Multiple Authentication Methods With IMPAIQ................ccccuueeeeeiee e e e e ettt e e e e e et essraeaaaeeeessiaases 130
Configuring Impala Delegation for HUE QNG Bl TOOIS............ccocueeeeeeiieeeeee e e ettt esta e e eta e e sttt a e ssstaaestsaaeennsaaesensees 130

Impala SQL Language Reference.......cccccueeiireeiiieniiiieeiiiienciienisiensenenssenenssssensseness 132

(600] 0010 41T 0 L £ T OO U PP UUPPPPPPPPPPPPPNE 132
D L= T Y7 0TSO PUPPPPPPUPN 132
ARRAY Complex Type (CDH 5.5 OF RIGREE ONY)......cc.oooeereeieeieeeee ettt ettt ettt et e s e naae e 133
BIGINT DOTQ TYPC..coeeeeeeeeeeeeeieeeeeeeeeeetetetetetet ettt a e a s s s asaassansnsasasasasasans 136
BOOLEAN DQEO TYDC...cneeeeeeee ettt ettt e et s ettt s e e e st e e et e e st e e e st e s e itstessinneeseasneeesannns 137
CHAR Data Type (CDH 5.2 OF RIGREE ONIY)......oooneeeeeeeeeeeeeee ettt e ettt e e ettt e e ettt e e et e e e et aaeesataaaeeaaseseeeanees 138
DECIMAL DOA TYPC.evveeeeeeereseeseeeeeesieseseessesassesassasaesasses s assssssasses st ssesssssasssssassssassssassssssasssasssssssassssssasssnansanssssnssnans 140
DOUBLE DOEO TYPC...ccceeeeeeeeeeeeieeeeeeetetetetetettt ettt s e s s s s s s s s aaaanaasasasasasasans 148
FLOAT DGO TYPC.....eeeeeeeeee ettt ettt e ettt e e sttt e st e e ettt e ettt e sttt e e s s ats e e e e tn e e s satnneeensnneanannns 149
INT DOTQ TYPC.ccooeeeeeeeeeeeeeeeeeeeeeeeeetetee ettt s s e n e s s s e a e s s s asnsasnsasasasasasasens 150
MAP Complex Type (CDH 5.5 OF RIGREE ONIY)......c..oeueeieieeeeee ettt s ettt ettt e ente e e 151
REAL DQUQ TYPC..cocoeeeeeeeeeeeeeeeeeeeeeeeeeteteeetteeet ettt s e s a e a e s s e s s s s s aaasssasasasasasasans 155
SMALLINT DAEG TYDC....veveveeveevereeeeseeseeeesiesessessesessesassssssasssassessssssssssssssssssssesssssssssasssssssassasassssssassassasasssansassassnsssssansanen 155
STRING DOEO TP eeeeeeeeeeeeeeeeeeeeeeeee e e ee e et e e et et e et e e et et e e et et ettt ettt e et e e ettt et et e e et et et et et et et e e e e aa s e ae s ea e e e s e et e s et e batatasetetatasabasssnbasasssssnsnes 156
STRUCT Complex Type (CDH 5.5 OF RIGREI ONIY)......oocueeieeieeieeee ettt ettt se st enaeeseens 158
TIMESTAMP DOEQ TYPC.c.ueveenieiesiieesiieeeieesieeeiteetteesata e tta e st e st e st e st e st e e staeata s s st e s ateesasaesateesstaantssasssenasaannsaenatassnseenass 163
TINYINT DOEQ TYPC.eveeveveeeeeeeesiereevesiesaeeessesasvesassasss et sassassssas s sasssssanassassasssssssssssassssas s st s sssassanassassasansassasassnsssansnen 170
VARCHAR Data Type (CDH 5.2 OF RIGREI ONIY).....c...eeeeeeeeeeeeee ettt ettt e ettt e et e e e et a e e etaaaeesasaaaeasseaaan 171
Complex Types (CDH 5.5 OF RIGREI ONIY)......c.oooueeieieeeseeee ettt ettt sttt e st et et teenteenteeaeas 174
[=Y =] PRI 201
A Y T=Ta (ol N =1 | PR UOPSPPPOPPRRPIN 201
SEEING LIT@IQIS. ...t ettt ettt e e e e ettt e e e e e ettt e e e e e e e e tssesaaaeeeasststssseaaaeaaaassssesaaaeeaassasssasasaseaasssnres 202
L2 10Te) [=o T I N =1 4 | KOOSR UOPSPPPUPPPIN 203
TIME@STAIMD LIEOIQIS.evveeeeeeeeeeeee ettt e e e ettt e e e e e e ettt e e e e e e e e tssseaaaaeeeaaaasssseaaaeeeasastsssasaaaeseeaasssnnaaaseaaian 204
INULL...eseeee ettt ettt ettt et e st e st e et e skt e et e skt e et a et e e it e e s et e e e at e et e e te e et e et e et e e tteenaneee 204
N O R O] o 1] = | o] T OO T OO TP U PP O P O PP PPPPOPPPPRRPRR 205
AFTERMETIC OPCIALOIS. ... vveeeeeeeeeeeee e et e et e e ettt e e et e e et e e ettt e e e e st e e essse e e ettt e e e assseaeaassaaeaatssaaaaatseaaasssaaeaasssaaeasssaaeanses 205
BETWEEN OPEIATON ...ccuuieeeeiieeeeeee ettt ettt ettt e e et s e e e st e e et e e sttt e e e et st e s e stntessanneesensnneenaanes 208
COMPATISON OP@IATOIS.c.ccevesesesesesiieieeeeeteteeetetetetet ettt sataasssss sttt s s s s s s nsnnansssasasasasans 209
EXISTS OP@IATON ...ttt ettt et e e ettt e st e e sttt e ettt e st e e e sttt e e e atn e e e snsneeesnneesaaaes 210
JLIKE OPEIATONccccoeeeeeeeeeeeeeeeeeeeeeeeeeeeteeee ettt e s s s aaa s s s aasaaasaaasasasasasasasanens 213
A RO o =T (o PRSP OPPPPPOPPPPROt 214
JREGEXP OPEIATONcc.ccceeseseeeieseieieieeeeeteeetete ettt s s s a e s s s s s aasanansasasasasasens 217
IS DISTINCT FROM OPEIOTON....cccueeeiieiieeeeee ettt ettt e et e et e e ettt e sttt e e sttt e st e e s asneesenneaesnnne 218
IS INULL OPEIALONcccceeeeeeeeeeeeeeeeeeeeeteteteeeteteee ettt a s e s e s s asaaaasnansasasasasasens 219
IS TRUE OPEIATON.....ceeeieeeee ettt ettt ettt e ettt e st e e sttt e ettt e e st e e e st e e e tn e e s sanneeeessnneesennns 220
LIKE OO cccccveeeeeeeieeeeeeeeeeeeeeeeetetetee ettt e a s s a s a s s s s e s e s asasasasasasasasasanens 221
LOGUCOI OPEIALOLS. ...ttt et ettt et e e ettt e e ettt e et et e et e s at e e et e st e sateaeseesteeenseeeaes 221
REGEXP OPEIALONc.ccceeeeieeeeeieieeeeeeeeeeeteeeteeetee ettt e s s e s e s s aaaaassnansasasasasasens 224

RLIKE OPEIOTON ...ttt ettt ettt e ettt e ettt e st e e ettt e s ettt e st e e e sttt e e s astn e e e sansneeensnneeeenaen 225

Impala Schema Objects and ObJECT NAMES......ccuuiiiiieiiiiie ettt e e s st e e s st eeeesbaaeeeessnaeeeean 226

OVEIVIEW Of IMPAIA AlIGSES......ooeeeeeeeeeeeeeee ettt e et e e et e e e et e e ettt e e e ettt e e e aataaaeaasssaeeastssaaasssaeesasssasansssnaeannes 226
OVervieW Of IMPAIG DOALADASES.cceueeeeeeesieeee ettt et ettt e e et st e et e st e et e et e it e e saseenaneenneenane 228
OVEIVIEW Of IMPOIA FUNCLIONS.vveeeeeeeeeie e e e e e e et e e et e e e ettt e e et e e e eats e e e e aassaaeaasssaaasssssaaasssaeasasssasasssesaenanes 228
OVervVieW Of IMPAIA IACNTIfIEIS...........cccueeeieeeeeee ettt ettt et e e ettt ettt e sateeniteenaee e 230
OVEIVIEW Of IMPAIA TADIES........cc..eeeeeeeeeeeeee ettt ettt e e e ettt e e et e e e ettt e e e et s e e ettt e e e aatsaaaasssaaesasssaeassssnaeanes 231
OVEIVIEW Of IMPOIA VIBWS......cceieeeeeeee ettt ettt e e sttt et e ettt e st e aas e e naseenateesneenan 233
FaaY o] Y @ TS =) =T o =Y o £ UEURRRNS 237
DDL SEATIMENTS.c.c.eeeeeee ettt ettt e e ettt e e e sttt e e e e ettt e e e e e sttt e e e e e eeens 237
DIMIL SEQT@MENTS. ...ttt ettt e+ e ettt e 222ttt e e e e e et s et e e e e e eaasas et e e e e eeeastnnneeeens 238
ALTER DATABASE SEALEIMENL ..ottt ettt ettt ettt et e st e st e st e st e e tteeateesataenateasaneenane 239
ALTER TABLE SEGTEIMENT.....ccuvvveeeiieeiee et ettt et ettt et e sttt e et e et e et e et e et s e ate e sse e s ataeaateasatseeateseassaanssseasseesssasaasaesataaanseanass 239
ALTER VIEW SEGEEME@NT ...ttt ettt ettt et et s e et e st e st e et e et e e ste e ateenasaenateasseenaes 253
COMPUTE STATS SEAEEIMENT.....ccuivieeeeesiiteeee st e see et e te ettt et e ettt e e aae e s ate e st e e attaeaseesasteeaseaesseasssaassaanssaesasaenasessnseenass 254
CREATE DATABASE SEOAEEME@NL......ccoeeeeieeee ettt ettt e s e st e st e et e et e et e e ste et e e saseenateesseenane 261
CREATE FUNCTION SEGEEMENT......cccueeeiiiesieesiieesieesteeteestteette e tte ettt e aaa et e e st e st e st esa st e aaseaeataaaseseassaenssaesssaenssesnseenass 263
CREATE ROLE Statement (CDH 5.2 OF RIGREE ONIY).......cccuveereeeieeeeei e et ettt e ttteettea et esa e s aeessaaesaesssaeassseassseasseeans 268
CREATE TABLE SEATEIMENT....cc.eveeiiieeeeeesiiee et steete st e tte et e ettt e st ettt e et e s s e e e aaa e st e e st s sa st e ansteeasteaasseaassaeassaesasaannsassnseenass 269
CREATE VIEW SEALEIMENT.....ccneeeeiieeeee ettt ettt ettt ettt ettt e st e st e et e et e et e e st e et e e s ateenaseesaseenateesnsnenass 283
DELETE Statement (CDH 5.10 OF NiGREI ONIY)........cccc.ueeeeeeeeeeeeeeeeee ettt e et e e ettt e e e et a e et aaeeasaaeesanees 284
DESCRIBE STATEIMENT......coeeiiieeeeeee ettt ettt ettt e e e e ettt e e e e ettt e e e e e st e e e e e e e e nnnneeeeens 286
DROP DATABASE SEATEIMENT.....cc.vvieeeeesiiiesieesiteeieesteetee e stte ettt e atte ettt e s asa e st e e s st e et e e aseesattaaasesesteaasssaassaeassassasaenasassnseenass 296
DROP FUNCTION SEOEEIMENT....c..uvieneieeiieeee ettt sttt ettt ettt e st e st e st e st e et e et e e st e esteenaseesaseenateessnenans 298
DROP ROLE Statement (CDH 5.2 OF NIGREE ONIY)...........ooeeeeeeeeeeeeeeeee ettt ettt e et e e et a e et eeeeseaeeeanns 299
DROP STATS SEOAEEMEGNL ...ttt ettt e s e st e et e st e et e et e et e e st e e ate e s ateenateesaseesateasnseenaes 300
DROP TABLE SEQEEME@NT.....vvveeeeeiiieeeeeste ettt et e ittt ettt e e ate e ettt e et e st e et e et e et s e st e e st e e asteeasseeasseesssaesnseenasassnseenass 303
DROP VIEW SEAEEMENT.....cccoooeeeeeeeeeeeeee ettt ettt e e e ettt e e e ettt e e e e e st ee e e e eennnneeeeens 305
EXPLAIN SEQEEIMONL ...ttt ettt et e ettt o2+ 2ttt et e e a2 e ettt e e e e e e asas e e e e e e e eenstnnneeaens 306
GRANT Statement (CDH 5.2 OF RIGREE ONIY).......ccvveeeeeeeeeeeie et eee ettt e ttte et ettt e e ae e s te e e e e s teasasseeassaesssaessssanseanas 308
INSERT STQEEIME@NT. ...ttt ettt ettt e e e e ettt 4222ttt e e a2 e ettt e e e e e e e aaas e e e e e e e eennsnnneeaens 312
INVALIDATE METADATA SEOLEIMENTvveeiieeiieeee ettt ettt e s e st e st e st e st e st e et s enateenateenseenans 321
LOAD DATA SEAEEMIENT.....coeeeeeeeeee ettt ettt et e e ettt et 22 a2ttt e e e a2 e et e e e e e e e e e aassseeeeeeeeananssnneeeaens 323
REFRESH STQTEIMEN.......coeeeiieeeeeeeeeee ettt ettt ettt e e e e sttt e e e e e et e e e e e st et e e e e e e snnneeeeens 326
REFRESH FUNCTIONS SEQEEMENT......veeviieiieesiieeeieesee et stae et e ette ettt et ata ettt e st e sttt e s aseesataeaastaeaseaasesssssensssasssaenssassseenass 327
REVOKE Statement (CDH 5.2 OF RIGREI ONIY).........oocveeeeeee ettt ettt ettt et s e s e st e e essesatsaeasssensseaseeias 328
SELECT SEATEMIGNT....ccceeeaeeee ettt ettt ettt e e e ettt e 22 e ettt et e e e e ettt et e e e e e astse et e e e eaaasssnseeeaeeeannaasnnen 329
SET STATOIMENT. ...ttt ettt ettt e e e e e et e e e e ettt e e e s e et e e e e e e nanneeaeeesannnes 356
SHOW SEATEMENT.....ccoeeeaeeeeee ettt ettt e ettt et 42 e ettt et a2 a2 ettt et e e e e et e et e e e eaaaansassteeeeaeaaaasnnen 396
TRUNCATE TABLE Statement (CDH 5.5 OF RIGREE ONIY)......vveeveeeeeeeeeeeeeeee ettt s e eae e e e aaaeesass e aaaenans 412
UPDATE Statement (CDH 5.10 OF RIGREI ONIY)......oc.ueeeeeeeeeeeeeeeeeeee ettt e et e et e e et a e et aeeeareaeeeasns 414
UPSERT Statement (CDH 5.10 OF RIGREE ONIY).......oocueeeeiieeeeeeeeeee et ettt e s e et s e e tea et eeasta e aaseeeasaassaesaseaeseeeases 416
USE STQEEIME@NT........eeeeeee ettt ettt et e e ettt a2 e ettt e e e e e ettt e e e e e e atstseeeaeeeeanassnnneeaeeaaaas 417
VALUES STOTEME@NT....ccceeeeeeeeee ettt ettt e e ettt e e e ettt e e e e st e e e s e st eeaeeenaannnnee 417

OPLIMIZEEr HINTS N IMPQIG............eeeeeeeeeeeeeee ettt e e e e e ettt e e e e e ettt eaeeeeeessttaseaaaeeesasssssesaaeaeeasasrssaeaaeas 418

ToaTo 1 I U1 [T ol U o ot a oY o L SR UPRIR 423

IMPAIa MAtREMALICAI FUNCLIONS.cc..eeeeeeiie e e et e e e et e e et e e e ettt e e e st e e e et e e esasseaeasssasaaasseaeesassaasassesaeannes 429
IMPAIG Bit FUNCEIONS. ...ttt ettt ettt e et e et ettt et e ettt e bt e eate e st esateesaseenateeenneeeae 445
IMPAIA TYPE CONVEISION FUNCLIONS.veeeeeeeiieeeeeeeeee e ettt e et e e e et e e ettt e e esaeaeeststeaeaeasaaeesassaaeassesaaassseseessssaesasssessesnses 454
IMPQAIa DAL ANA TIME FUNCLIONS.cc..eeeieeeiieeee ettt ettt e e st e et e st e ettt st e et e enaneenaneenaeenan 455
IMPAIA CONAIEIONA] FUNCLIONS.vveeeeeeeeeeie e e e et e e e et e e e et e e ettt e e e et e e e e aasaaeesasssaaasasasesasssaeesasssasanssensesanes 487
IMPAIA SEIING FUNCEIONS. ...ttt ettt e et e ettt st e ettt et e ettt e st esase e st enateeeneeeae 492
IMPAIA MiSCEIIANEOUS FUNCLIONS.ccceeeeeeeiieeeeeee e e et e et e e e et e e et a e e ettt e e e et e e e eaastaaeaasssaeasssssasasssaseasassaasasssenanannen 508
IMPAIA AGGIEGALE FUNCLIONS.eieeeeeeeeee ettt ettt ettt e et ea e ettt et e ettt e tne et e e saseenateesneenane 510
IMPAIA ANGIYEIC FUNCEIONS. ... vveeeiee ettt e e ettt e et e e et e e e ettt e e ettt e e e eatseaaaaassaaeaasssaaaaatssaaasssaaesasssaseasssaeennes 537
USEr-DefiN@d FUNCEIONS (UDFS)...ciciiivriieiiiirieeeeeiireee e eeeteeeeeeetreeeeeeetaeeeeeeesaaeeeeeesssseeeeasssseeeeeassaseseessseeeesasnseeeeas 555
(85 @0 Tol=] o) & SO 556
RUNEIME ENVIFONMENT fOF UDFS........oveeeeeeeeee ettt e et e ettt e e ettt e e et a e et e e e e staaaeasseaeastaaasanssaaensnssaasassensnnnnen 559
Installing the UDF DeVelOPMENT PACKAGE.ueveeeieeeeeeeeeeee ettt e e e ettt e e e e e ettt a e e e e eeesasae et aeaeeessssssaaaaaaaeas 559
Writing USer-DefiNed FUNCLIONS (UDFS).........cccueeeueeeeeeeeieeeeeeesteeeeeeetteeettaesaaeesaessaeetse e s e e ssaasassaeassseessaessssaasssssssenseanns 560
Writing User-Defined Aggregate FUNCLIONS (UDAFS).........c...eeee oot ettteeeeee e et e e essaaaeeasaaeesaaaaeeaseaeeaans 563
BUIIAING QNA DEPIOYING UDFS..........eeeeeeeeeeeeeeeeee et e et a et e e et e e ettt e e st e e e satseaaaasssaaesasstasanssaaaaansseaenssssaasanssenennnnen 564
Performance CONSIAEIATIONS fOr UDFS..............occueeeeeeeeeeeee e eeeeeeetee e ettt e e et e e e et e e et e e e ease e e e aats e e e saassaeeaatsaaeeaatsaeeaannes 565
Examples Of CreQting QN USING UDFS.............coecuuueeeeiieeeeset e eetteeeseaeeeatt e e ststaaaatsaaesassaaeasssaaaaasssaasansaasesssseaeassseeessnnses 565
Security Considerations for USer-DefiNed FUNCLIONS..............cc.ueeeeeueeeeieieeeeeieeeeeeieeeetttee e e st eeettaaaesssaeaesaseaeeesassaeesasseeaas 571
Limitations and RestriCtions fOr IMPAIA UDFS...............coeeeuuieeeeieeeeeeeeee e esteeee e e et e e e aistaaeasteaessstaaesssseaeesnseaessasnes 571
Converting Legacy UDFs During Upgrade to CDH 5.12 OF HIQREI............cooeeeeeeeieiiieeeeeeeeeieeeee e eeeecteteeea e e eeesaveaaaaaeeeeas 571
SQL Differences Between Impala and HIiVE.........cooiiiii oot 571
HiveQL Features not AVailable in IMPGIQ.............c..oocueiiiieiieeeee ettt sttt e 572
Semantic Differences Between Impala and HIVEQL FEALUIES............cccueeeueiesieesiiesieesieesieesieesieesitassiaessiseessseesseessee s 573
Porting SQL from Other Database Systems t0 IMPala.......coccuiiiiiiiiiiii e e 574
POrting DDL QNd DML SEAEOMENTS...........eveeeeeee ettt e e ettt e e e e e e ettt e e e e e eaa s eaaaeeeessasssseaaaeeesassssssenaaaeeas 574
Porting Data Types from Other DAtADASE SYSTOIMS........ccccuuueeeeieeeeeieeeeeee e e see e e tea e e staaeststaeesttaaessstaaessseasenasseeessnsees 574
SQL Statements t0 REMOVE OF AUGPL.......c..coeueeeeeeeeeeeeeeeeeeee e e et ettt e e e e e ettt e e e e e e e es st aeaaeesessstssseasaaaeaassssanesaaseeasises 577
SQL CONSLIUCES t0 DOUDIE-CRECK..........eeeeeeeeiieee ettt ettt ettt s e et e et e et e e sateesateesaeesaseas 578
Next Porting Steps after Verifying SyNtax and SEMOANTICS.ccccueeeeeeeeeeeiiieeeeeeee et eeee e et e et a e e et e e e e ereaeeeaeeas 579

Using the Impala Shell (impala-shell Command).......ccccceeuereenierrenccreencerennerennee.... 580

impala-shell Configuration OPtiONS.........ciii i e et e e e et ba e e e e sabaeeeeesnraeeeeeennsees 580
Summary of impala-shell CONfiGQUIALION OPTIONS..............eeeeeeeeeeeeeeee e eeeee ettt e ettt e e e ettt e e e e e e e st aeesssaeeesassaseesseeaas 581
iMPAIA-SNEI CONFIGUIATION FilE.........veeeeeeeeeeeeee et et e et e e e e et e e et e e e sasaa e et e e eesssaeeasssaasasssssaeesssasnassseanans 583
Connecting to impalad through impala-shell.........c..ooiiiiiii e e 584
Running Commands and SQL Statements in impala-shell.........ooo e 586
Variable SUbStItution in iMPQIA-SREIL.................ooeeeeeeeeeeeeeeeee et e ettt e et e ettt e e e sttt e e st e e e saaeeastaaesssssaaesssseeens 586
impala-shell ComMmMaNnd REfEIENCE.........iiii e e e et e e e s e e e e s sbae e e e e snnsees 587

Tuning Impala for Performance.......cccceeeeeieecieeeiencitencienceeeccrencrencerescrenscssscsensesnsess 390

Impala Performance Guidelines and Best PractiCes..........cuiiiiiiiiiiiiiiiieiee et 590

Performance Considerations fOr JOIN QUETIES.......cuuieicuiieiiieeiiieeesteeeteesste e et eeetteeessaeeesaeesssseeessseeeseeeennseean 593
How Joins Are Processed when Statistics Are UNQVQIlADIE................c..oocueeeiueeeiiiiiieeieesieeee ettt 594
Overriding Join Reordering With STRAIGHT JOIN...........coueuuuieeeeeeeeeeecceeeeee e e e ettt e e e e e e sttt aa e e e e sesaasaaaaaeeeessssssneaaaeaaias 594
Examples Of JOIN Order OPtiMUZATION.cc...veeeueeeeeeiee et eet e e et e e e et e e ettt e e e ettt e e sassteaeessseaaaassseseaassaaesassseaensnsssesnnnses 595
Table and ColUMN STatISTICS. ..iiuiiiie ettt e e e st e e s s e e e e s asbaeeeesantaeeeeeanssaeeessnsssneens 600
OVEIVIEW Of TADIE SEATISTICS. ... eveeceeeeeeeieeeeeee ettt e et e e ettt e e e e et e e e ettt e e ettt e e e et e e e e aassaaeaasssaaaastssaaasssaaesasssasanssssaeanes 600
OVEIVIEW Of COIUMN SEALISTICS.veeeeeeeiieeee ettt ettt et e ettt sa e et e et e et e et e ettt e naseenaneenneenane 601
How Table and Column Statistics Work for Partitione@d TABIES..............cc..ueeeeeueeeeeiie et eettea et e e e erea e 602
Generating Table aNd COIUMN SEALISTICS.cc..eeiueeeieieieee ettt ettt ettt et st et esineesinee e 603
[0 =Tot o [Lo A TR o Y Ko A K A (o TP 607
Manually Setting Table and Column StatisticsS With ALTER TABLE..........cc.oooii ettt 609
Examples of Using Table and Column Statistics With IMPQIQ..............ccoeeueeieecieeeesiee et e e et e e e sraa e e 610
Benchmarking IMPala QuUEIIES.ciiiuiiiie ettt e et e e e st e e e st e e e e ataeeeeesaaeeeesasssaeeeeeansseeeeesnseeeens 613
Controlling IMPala RESOUICE USAEE....ccuuiiieiiiiiiie e eeiieee e eetttee e e ettt e e e ete e e e et e e e s sbteeeeessbaeeeessnsaeeessansseeesennnsees 613
Runtime Filtering for Impala Queries (CDH 5.7 or higher only).........coooiiiiiiiiiiie e 614
Background Information for RUNEIME Filt@IING.............ceeeeuueeeeeieeeeee et esee e ettt e e et a e e taeassttaeesstaaeasaseasesnseaeesnnnes 614
RUNEIME FIltEIING INTEINQIS..........oeeeeeeeeeeeeeee et ettt e e e ettt e e e e e e e ettt e e e e e e e ettt a s e e aaeeesasssssesaaeseeasassssaeaaens 615
File Format Considerations for RUNTIME FIlt@riNg............ccuuueeeuueeeeeiieeeeee et e e et e e et a e e te e e ettt e e ssstaaesssaaaennsaaesnasees 615
Wait INEEIVAIS fOr RUNTIME FIlLIS.......ccc..veeeeeeeee ettt e e ettt ettt e et e e ettt e e e et s e e e aatsaaeesassaeeesssaeeeasenaaans 616
Query Options fOr RUNEIME FIlLEIING.........ccuueeuee ittt ettt s e st e st e st e e steeateenateesteesneeeas 616
Runtime Filtering QNG QUETY PIOANS..............oeeeieeeeeeeee et e ettt e e e ettt e e e e e e s ettt e e e e e e e s ssseeaaaaeeesssassssenaaaaeas 616
Examples of Queries that Benefit from RUNEIME FilteriNg...........ccceovvieeeuiiisiiesiiesieeetee sttt 617
Tuning and Troubleshooting Queries that Use RUNLIME Filtering.............ccccuuueeeeeieeeiiiiiieeeeeeeeesciteeeeeeeeesseaeveaaaeeesssanees 618
Limitations and Restrictions fOr RUNTIME FIlteriNg............ccuueeiueeeeeeieeeeeie e esiee e e tea e et e e e te e e sttt e e ssstaaeassaaaenanaaaessnsees 618
Using HDFS Caching with Impala (CDH 5.3 or higher ONly).......oeiciieiiiiceee et 619
Overview of HDFS CACRING fOr IMPAIA..............cccueeeeeeeee et e et e et e e e ettt e e e ettt a e et e e e ettt e e saassaeesasseaeeanteseesnses 619
Setting Up HDFS CACRING fOI IMPQIQ..........ccc.oomiueiaiiiiieeeeeeeeee ettt ettt ettt ettt nine e s 619
Enabling HDFS Caching for Impala Tables QNd PAIrtitioNS..............cccveeeeeeeeeeeeiieeeeieeeeeeeeestee e et e e estaa e e staaaaesseaeeesseas 620
Loading and Removing Data with HDFS Caching ENGDIEA...............ccceeeueimmiieiieseeeiee ettt 621
Administration for HDFS CAching With IMPQIQ..............ccoccueeeeeeiieeeeeee et e ettt e et e e ettt e e e et e e ettt e e e eseaeeesssaeesasees 622
Performance Considerations for HDFS Caching With IMPalQ................ccceoomiiiniiiniiieiiesieeee ettt 623
TeStING IMPAIA P OIMANCE. .. . iiiiciee ettt e e et e e st e e et e e s teeessseeesaseeesnbaeeensaeesnseeeennseeenseeas 624
Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles.........cccocovveeiiiiiiieiiicciiieeeeens 625
Using the EXPLAIN Plan for Performance TUNING.............ccueeeueerueeeieeeee ettt ettt ettt sttt sne e 625
Using the SUMMARY Report for Performance TUNING............cc.ueeeeeueeeeeiieeeeesiieeeesaeeeeitaaaestaaaeestaaeesssssaaessssasesssssaesissees 626
Using the Query Profile for PErformance TUNING.............cccueeiueerueeeieeeee ettt ettt sttt ettt esne s 627
Detecting and Correcting HDFS Block SKeW CoNditioNs.........uuiiiiiieiiiiiiiiiiieiee et e e 627

Scalability Considerations for Impala.......ccccccerreniirreniireecereecereencerenecereneceeenseenenss. 0630
Impact of Many Tables or Partitions on Impala Catalog Performance and Memory Usage............cccuveeeenneee. 630
Scalability Consideration for Large CIUSLEIS.......iiiiiiiii ittt ettt e et e e s e srre e e e e s arae e e e snneeas 630

Scalability Considerations for the Impala StateStore.... ..o 631

Effect of Buffer Pool on Memory Usage (CDH 5.13 and higher)......coocvioiiieiciieceeeeeece e 632

SQL Operations that SPill t0 DiSK......cccueiiiiiiiiiee e e e e e e e e e s e e e e e e e e e s e s nnearteereaeaaeaaans 632
Limits on Query Size and COmMPIEXITY.....cciiiiiieiiiiiiie ettt e e e s e e e et e e e e e saae e e e e s araeeeesaaaeeeeennnseeeaas 636
Scalability Considerations for IMPala 1/O.........ooueiiiie ettt e et e et e e e et e enas 636
Scalability Considerations for Table LayOUL........ccoiciiiii i e e e e e seneeas 637
Kerberos-Related Network Overhead for Large CIUSTEIS........oeiiiiiiiiei ettt e e e 637
Kerberos-Related Memory Overhead for Large CIUSTEIS........uuiiiiiiiiie ettt e evee e e e eavaee e 637
Avoiding CPU Hotspots for HDFS Cached Data........ccuuiiiiiiiiiiei ettt e s eavvee e s eeavaeae s essraaeeeennns 638
Scalability Considerations for NameNode Traffic with File Handle Caching........ccccccveeviiiiiiiiiiiiieeciee e, 638
Scaling LIimits @and GUILEINES......ccoo i e e e e e e e e e e st re e e e eeeeeee e s nnrsssrrreeaaaaanens 639
How to Configure Impala with Dedicated Coordinators...........ccuiciiieeiiciiiiee e et e e evae e 640
Determining the Optimal Number of Dedicated COOrdiNAEOrS...........c..occuuirieieiiieiiieeieeseeeee ettt 641
Deploying Dedicated Coordinators and Executors in Cloudera MONAGEer..............cccueeeecueeeecciiieeeiiieeesiieeaesrieeeeeisvaeeeens 644
Deploying Dedicated Coordinators and Executors from Command LiNE..............ccceeecueimmeemieieniiisiiesieeeieesee s 645

Partitioning for Impala Tables.......ccccicciieiiieiiieniiieiiiiirenciencereerenccrnerencerescrenscense .. 040

When to Use Partitioned Tables........ccuuiiiiiiiiiee ettt st e e st e e st e s s bae e snaeesbeeesnnaeeans 646
SQL Statements for Partitioned Tables..........ui i et 646
Static and Dynamic PartitionNing ClaUSES.......uuuiiiiiiiiiee ettt e e e et e e e e sabae e e e enbaeeeeennees 647
Refreshing @ SiNgle PartitioN...........eeei i e e e e e e e e e e e e e s te e e e e e eeeeeeeennsnneenneees 647
Permissions for Partition SUDAIrECTONIES.civiuiii ettt e st e e sa e e e sareeesnree s 648
Partition Pruning fOr QUEIIES......eii it e et ee ettt e e e ettt e e e e b e e e e s atbeeeeesaaaeeeeeaasaeeeeeasnsaeeesansaneens 648
Checking if Partition Pruning HAPPENS fOr @ QUEIY............ueeeeueeeeeeeeeeeeeeeeeteee e ettt e ettt e e ettt e e e e tsaaeesaaaaestsaaeesssaeeesases 648
What SQL Constructs Work wWith PArtition PrUNiNG.............cceeiueerieesiiesiee st ettt ettt ste st e siaesteasnsaestneenineenes 649
[0V Lo T TTol oo Ta a0 oY I 4V [1 Lo O 649
Partition KEY COIUMINS......uiiiiiiiiieee et e ettt e e e e e e e et e e e e s e aabaeeeeeaasbaeeeeaabaeeeeaansbaeeeeannsaeeesannseneas 651
Setting Different File FOrmats for Partitions........coociiiii ittt et e e e e e e 651
MaNAGING ParTitioNS...ceeeiiiiiiiiiiie et e e ettt et e e e e e e s s s bbbttt eeeeeessessanabsbesaeeeeeseesssnnnnsnrnned 652
Using Partitioning With KUdU Tables........coeiiiiiiiieeeee e e e e e e e e st re e e e e e e e e e e e nneneaeeeees 652
Keeping Statistics Up to Date for Partitioned Tables.........coccuuiiiiiiciiiiie et 652

How Impala Works with Hadoop File Formats........cccccceeveiieniiinicieecinecieeniennenees...655

Choosing the File FOrmat for @ Table. ... e e e e e erae e e e e anees 656
Using Text Data Files With Impala Tables. ... e e e e e e e raeeeeeas 656
Query Performance for IMPala TEXt TADIES............ceeueeereeeeiieesieeeit st s et s tte ettt esite e st e st e sseesbsessstaessteesineenas 657
CrEALING TEXE TADICS........eveeeeeeeeeeee ettt et e e et e e et e e e ettt e e et a e e sttt s e e aaste e e st e e asntseaaasstaaesasssasanssseasnnnes 657
DOLA FileS fOr TEXE TADIES.........oveeeeeeeeeeeeeeeee ettt e e e et e e e ettt e e ettt e e e ettt e e e aassaaeaasssaaaaatssasesssaaesasssaaensssnaeanes 658
Loading Dat@ into IMPQAIA TEXE TODIES.......cc..eeeeeeieeeesiiee ettt e et e st e e ettt e e st e e e st e e s astte e s sssaessaataeaesnsteeesnasnes 659
USiNG LZO-COMPIESSEU TOXE FilES.........vveeeeeieeeeeeesee ettt e et e ettt e e e e e ettt e e e et e e et aaeeantsaaeeanssaaeasssaaaaassssaennseans 660
Using gzip, bzip2, or SNAPPY-COMPIESSEA TOXE FilES......cc..ueeeeeiiieeeiieeesieee et ete e st e st e e ettt e e saaaeestteassnasnesesseeas 663

Using the Parquet File Format with Impala Tables.......ccueeiiiiiiiiic e 664

Creating Parquet TADIES iN IMPOIQ..............oeeeeieeeeeeee et e ettt e e e e e et e e e e e ee e aaaaeeessasssseaaaeeessssssssenaaaaeas 664

LoOAAING DA iNTO POATGQUEL TABIES............eeeeeeiieeeeee ettt e et e e et e e e s e e e et e e e e staaeesssaaeassaaesnsssaaessssaasanssensnnnnes 665
Query Performance for IMpala PArQUET TADIES.oeeeeueeeeeeeeeeeeee et et ee e e e ettt e e ettt e e ettt e e eeasaaeesasaaaeeaseaeasanns 666
Snappy and GZip Compression for PArquUEt DA FIlES..............ueeeeuueeeeeiieeeeiieeeectteesee e e sttt e e etaaeessaaaeasastaessssaaessnseeaeas 668
Parquet Tables for IMPala COMPIEX TYPES.......cccueeeeeeeeeeeeeeee e e et e ettt e e et e e ettt e e ettt e e e et e e e e et e e eetssaaesatssaeesseaeeeannes 670
Exchanging Parquet Data Files with Other HGd00p COMPONENTLS.........ccc.ueveeecieeeesiieeeeitaeeseeeeesteaessaaaessaaeesssaaeesseeas 670
How Parquet DAt FileS Are OFGQNUZEU.cceeuueeeeeeeeeeeeeeceeeee e e ettt ee e e e e ettt a e e e e e sttt e e e e e e eeesatssaeaeseeessssssaasaaaaans 673
Compacting Data Files fOr PATGUET TADIES.eeeecueeeeeeee et eeee e et e e sttt a e e sttt e e st aeeaasteaesstaaesassaaeesssanasassesensnnnes 674
Schema EVOIULION fOr PATQUETL TADIES............ccc.uveeeeeeeeeeeeeeeee ettt e e e e et e e et e e e e e e et s e e easaaeeessaaeesssenaan 675
Data Type Considerations for PArQUEL TADIES...............ueeeeueeeeeeieeeeee e ette e ettt e e e tta e e atsteaaastaaessstaaeassseasensseaeesnnnes 676
Using the Avro File Format with Impala Tables.......couiuiiiiiiiiiie e e e 677
CrEALING AVIO TADIBS.........oeeeeeeieeeeee ettt e ettt e ettt e e ettt e e e ettt e e e ass s e e ettt e e e aasseaeeassaaeeatseaananssaaeasssaasassseaeanes 677
Using a Hive-Created Avro TADBIE iN IMPAIQ.............cc.coouiimieiieeeeeee ettt 679
Specifying the Avro SCRema@ tRrOUGR JSON................oee ettt e st e e et e e ettt e e e ettt e e e eaae e e s saeaeatsaaeesassaaeasseaaas 680
LoAdING DAL INEO QN AVIO TADIC........c...eeeeeeeeeeeeeeeee ettt sttt ettt sttt ettt e eenaneenaeenane 680
ENabling COMPIeSSiON fOr AVIO TOBIES.oeeeeeeeeeeiee et e e ettt e e e e et e e e et a e ettt e e e et e e e aasssaaesasseaeessssaeesannes 680
How Impala Handles AVro SCHEMQA EVOIULION.ccooueeeieiiieeee ettt ettt nane e 680
Data Type Considerations fOr AVIO TADIES..............ueeeeueeeeeeee e eeeee et e ettt e ettt e e e et e e ettt e e e eatas e e e sttaeessssaeeaasseaeesssesessanses 681
Query Performance for IMPala AVIO TODIS............ccc.eeiueeeiiiieeee ettt ettt sineenine e 682
Using the RCFile File Format with IMpala Tables........cooieiiiiiieee e e 682
Creating RCFile Tables and LOAQING DOTA..............ceeeeueeeeeiee e eeee e et e e et e e e ettt e e et a e e satteaessstaaeeastaaessssaaaensteaeesanses 682
Enabling COMPression fOr RCFilE TADIES.................oeeeeueee e ettt e ettt e e et e e et e e e et eeetaaaeeataeeeesateaeeeannes 683
Query Performance for IMPala RCFIIE TADIES.c..coovueeeueiesieeeit ettt ettt s e sttt ite e iteenane e e 684
Using the SequenceFile File Format with IMmpala Tables.........oeeiiiiiii e 684
Creating SequenceFile Tables ANd LOAGING DALQ.............ccuueeeeeueeeeeiiieeeeeie e eeteeeee e e ee e e e tteeesetteaeesssaaeasssaaaeasssaeesasees 685
Enabling Compression for SEQUENCEFIlE TADIES..............c.oooueiemieeiiiieieeee ettt ettt sane e 685
Query Performance for Impala SEGUENCEFIIE TADIES.............ccocueeieiesieesiiesieeste sttt ste st sia s taesieessiaaesaeeees 686

Using Impala to Query Kudu Tables........ccccciteeeiiieeiiiinniiiiecereeierencerensserenseesenseenes. 0687

Benefits of Using Kudu Tables With IMpPala.......ccuveiiiiiiii e e e aaee e 687
Configuring Impala for Use With KUQU.........eeiiiiiiiieeee ettt e e e e e e e e ra e e e e e e e e e e eean 687
Cluster TOPOIOGY fOr KUAU TOABIES.............oeeeeiieeeeeee ettt et e e et e e e e e e sttt e e e e st e e s sasseaeassaaeaansseaeassssaasassenaesanes 687
(U o [V =Y o] Lo A oY T - o1 oY SRR 688
Impala DDL Enhancements for Kudu Tables (CREATE TABLE and ALTER TABLE)......cc.cceeeeiiiieeeeciieeee et 688
Primary Key COIUMNS fOIr KUGU TOBIES.oveeeeeeeeeeee ettt e et e e e e ettt e e et e e e ettt e e e astsaaeansaaaeastsaaeanstsaeenanses 688
Kudu-Specific Column Attributes fOr CREATE TABLE.........c...ueee ettt eetee e et e ettt e e et a e eets e e e easaaaeaaseaeesases 688
PartitionNing fOr KUGU TOBIES.ueeeeeeeeeeee et e et e et e e et e e et e e e et e e e aatseaeasssaaeaasssaaassssaaaansssaesanssaasanssenanannes 692
Handling Date, Time, or Timestamp DAt With KUGU................coeeeeeeeuuieeiieee et eeeeettee e e e et a e e e e e e ssiaaaraaaaaeeaas 695
How Impala Handles KUdU MELAOQLA.eeeeeeeeeeeiee ettt e e e et e e ettt e e e et e e ettt a e et e e e astsaaeassaaeeaasseaeesssseeesannes 697
Loading Data intO KUAU Tables.....ui ittt ettt e st e e et e e e s snsbaeeeeessaeeesennsseeeeeansneeeas 698
Impala DML Support for Kudu Tables (INSERT, UPDATE, DELETE, UPSERT).......cviiiiiiiiieeeeciiee et 698
Consistency Considerations for KUdU Tables.......coccuiiii ittt et e e e 699

Security Considerations for KUdU Tables..........uiiiiiiiiiii et e e e araeas 699

Impala Query Performance for KUdu Tables.........uuii it e s e e e saaeeeeas 700

Using Impala to Query HBase Tables......ccccceveiieeiiieiienciinciencinnnereeceencereeceeneneeenea 701

Overview of Using HBase With IMPala.......coccuiiiiiiiiiii e e e e et e e e ebae e e e e 701
Configuring HBase for Use With IMpPala........ccuiiiiiiiiiic et e e e e ae e e e e 701
Supported Data Types fOr HBASE COIUMINS.......uiiiiiiiiieeiiiieee ettt e e e eiiee e e e et e e e e e etee e e e e sbteeeeesnseaeeeesnsaeeeeennsees 702
Performance Considerations for the Impala-HBase INtegration..........ccceeeeeeieiiiicccciiiiiee e 702
Use Cases for Querying HBase through IMpala.........occuiiiiiiiiiii e et 706
Loading Data into @an HBAS@ Table.......ueii i e et e e e st e e e e st a e e e e e saabeeeeesaaaeaaas 706
Limitations and Restrictions of the Impala and HBase INtegration.........cceeeveiiiieiiiiieiee e 706
Examples of Querying HBase Tables from IMpala.........cccuiiiiiiiiicc e e e 707

Using Impala with the Amazon S3 Filesystem.........cccceeeeieeiirencrencrecrenccrencrenneneee.. 709

How Impala SQL Statements WOrk With S3.........uuiiiiiiee et e e et e e e aaaeea s 709
Loading Data into S3 for IMPala QuUETIES.......eiiiiiiiiie ettt e e e et e e e s saa e e s e treeeeessaaeeeessnaeeeean 710
Using Impala DML StQtemMENTLS fOr S3 DAT...........oeeecueeeeeeieieeeeeeeeeeee e ettt e e ettt e e et e e ettt e e e ettt s e e sttt aeeassaaeesasaaaeasssaeeeanses 710
Manually Loading Data into IMpala TADIES 0N S3........cc..eeeeee ittt ettt ettt et esieeenaee e 710
Creating Impala Databases, Tables, and Partitions for Data Stored on S3..........eeveeeiiieii i 711
Internal and External Tables Located 0N S3.. ..o ittt sttt e e st e e s s iaeeeeean 712
Running and Tuning Impala Queries for Data Stored 0N S3........cciiiii i 714
Understanding and Tuning Impala Query Performance for S3 DAtQ............cccuveeeeuieeesciieeesiiieeesiieeesieeeesieeessiveaesiaeens 714
Restrictions on IMpala SUPPOIt FOr S3..... i e et e e e et a e e e e e s tr e e e e eeaaeeeeeennnnaeaean 715
Best Practices for Using IMpala With S3... ...t e e et e e e et e e e e e anaeeaean 715
Specifying Impala Credentials to Access Data in S3 with Cloudera Manager.........ueeeeeeeeeiiiciiiieeeeeeeeeeeeeeeecinnns 716
Specifying Impala Credentials on Clusters Not Secured by Sentry Or K@rberos...............ccccvuveeeccueeeeiceeeeesiieeesiiieeeeeisenaeens 716
Specifying Impala Credentials to AcCesS Data iN S3....ccocuiiiii i e e e e e e 716
Using Impala with the Azure Data Lake Store (ADLS)......ccccceeeeiiirinnennnnnnciceneneenennes 718
P B O UISTEES. .t teteiteee ettt ettt et e e e e e e ettt et e e e e e e e e e aab bttt et e e e e e e e e e aabtbbeeteeeeeeeean e anbtbbeeeeeeeeeeaaaan 718
How Impala SQL Statements WOrk With ADLS.......ccooo oo e e e e e e e e e e e aneananeeeeeas 718
Specifying Impala Credentials to Access Data in ADLS..........coociiieiiiiiieee ettt e et e e e e e e e e eearaeeas 719
Loading Data into ADLS for IMPala QUEIIES.cuuviiiieiiiie et eeitt e ettt e et e e e st e e e e ar e e e e e naaaeeeesnnaeeeean 719
Using Impala DML Statements fOr ADLS DOUTQ.............ueeeeueeeeeeeeeeeeeeeee e e eeetee e ettt e e ette e e e etsaeeeetaeaeeatsaaeeasaaeeaasseseesasnes 719
Manually Loading Data into IMPala TABIES 0N ADLS...........ooeeeeeeeeeeeeeeeeee et e e e e eta e e et eeestta e e esstaaestsaaeennseaeesnsees 720
Creating Impala Databases, Tables, and Partitions for Data Stored on ADLS..........ccceevivieeeeiiiieee e 720
Internal and External Tables Located 0N ADLS.......cooiiiiiiiiiiiee ettt st e e st e e s s b e e e ssiaeeeeean 721
Running and Tuning Impala Queries for Data Stored 0N ADLS...........cooiiiiiieiiiiiiee e ivaee e 723
Understanding and Tuning Impala Query Performance for ADLS DQtQ.............cccueeeeeenieesieesieeeiee et 723
Restrictions on IMpala SUPPOIt fOr ADLS.......oo ittt e et e e et e e e e e eaar e e e e e ar e e e e esnaeeeeeennaeeaean 724

Best Practices for Using ImMpala With ADLS...........uuiiiiiiiiiiec ettt e st e e s saaae e e e s ear e e e e e aaaeeeesnnaeeaean 724

Using IMPala LOBBING...ccccciiiieiiiieiiiiniiieniiieniiiensisrensessensessensssssnsssssnssssasssssnssesses 1 2D

Locations and Names of IMPala LOg FilS.......uuuiiiiiiieei e e e e e e e e e e e e e e e e et s aaeeeeeas 725
Managing Impala Logs through Cloudera Manager or Manually..........ccoviiiiiiiiiiiiciiieec e 726
(e = Yu T Y= [aaY o F= | = I e =4SP PPR 726
Y A o= e oo =1 = T e Y= PRSP 726
Understanding IMpPala LOg CoNtENTS.......ociiiiiiiiieee e e e e et e e e e e e e e e e s e e e aaeereeeaeeeeesnnnsnsanneees 727
SELHING LOGEING LEVEIS...ccc et e et e e e e et e e e e e tta e e e e saataeeeesansteaeesassasaeeaassaeeeeannses 727
Redacting Sensitive Information from Impala Log FilesS......c.uuiiiiiiiiiiii i 728

Troubleshooting Impala.......ccoiiiiieiiricrcrcrrecrree e rrneereneesenssesenseenens 129

Troubleshooting IMpPala SQL SYNTAX [SSUEBS.....uuuiiiiiieei ittt e e e e e e e e eccre e e e e e e e e e s e esabaraareeeaeeeeseessssessaneeees 729
Troubleshooting /O Capacity PrODIEMS.cocuiii ettt e e e et e e te e e earee e eaaeeeearea s 729
Impala Troubleshooting QUICK REFEIENCE.......ccccuviiiieeiie e e e e e e e e e aaeeaean 730
Impala Web User Interface for DEDUGEING......ccucuiiii ettt e e e e e et e e e e s aaa e e e e snaaeeaean 731
Debug Web Ul fOr IMPQAIAQ...............oooceeeeeeeeeeeee et e e e ettt e e et a e e et e e e et e e e e asaaeesatssaaesssaeesasssaeessssnaeanes 732
Breakpad Minidumps for Impala (CDH 5.8 or higher only).........cccuuiiiiiiiiiiececee e 734
Enabling or Disabling Minidump GENEIQLION.ceeeeuieeeseiieeesiee e et esiee e et e e et e e s ttteeesttte e s sstaaessseessssteaesnasees 734
Specifying the Location for MiNiQUMP Fil@S................ueeeueeeeeeiee e ee e e ettt e et e e et ta e e ettt e e e esaa e e s tsaaaestsaaeessssaaessseaaan 734
Controlling the NUMBer Of MINIAUMD FIlES............cueeiuueeeeeieeeeeieee ettt e e st e e st a e e s atte e s sstaessaseeesssseeesnasees 734
DELECHING CIrASN EVENTS.....oeeeeeeieeeeee et e e e e e ettt e e ettt e e et a e ettt e e e ettt e e eassaaeaatstaaaassseaesasssaaaastsaaaasssaaeaasssasanssssasanes 734
Using the Minidump Files for Problem RESOIULION.ccceeeeeeeureeeieeeeeeeeeeeeeee e et eetteaa e e e e e ettt e e e e e e s esasseaaeeeeeesinases 735
Demonstration Of BreQKPAT FEALUIE.............eeeeueeeeeeeeeeeeee et e et ee e e et e e et e e e ettt e e e s ste e e aatstaasastsaaeasssaasaatsaaeansssseesanses 735
o T g £V EY=Te I o1V [1o - 1 - TR PN 738

Impala Reserved Words........ccciieeiiiiieiiiieeiiiieciiieiininicneeeenenssnsnssesesssssenssssenssssens 740
List Of CUITENT RESEIVEU WOIUS. ...ciiiuviiiieiiiiiiie ettt e e e ettt e e s sttt e e s sttt e e e ssatbeeeesesbaeeessnnbeeeesnnsseeeess 740
Planning for FUTUIE RESEIVEA WOTITS.......cuviiiiiiiiiiee ettt e e e e et e e e et e e e e e saae e e e e araeeesesnaeeeeennnaneeean 742

Impala Frequently Asked QUESEIONS.......ccccceieiieniiieiieiiincieeiirniereecieeeresssenennceees 745

Transition 10 APACHE GOVEIMANCE.....uuiiiiiiiiiiie e ettt e ettt e e st ee e e st e e e e sastaeeeeesstaeeeeessssaeeeeassaeeesanssseeesennssaeaens 745
B 12 La Y= LY =1 = TS PUUURRN 745
IMPAla SYSTEM REGUITEIMENES.tiiiiiieiiee e e e e e e s e e e e e e e e s s s b e teeeeeeaeeeesaasnrantaereeaeeeeeeessnsnssennenes 746
Supported and Unsupported Functionality In ImMpala..........cooociiiiiiiiiiiiice e 748
[1030V [T I PRSP 749
TaaYo T 1 T =T (o] o 5 =L Lol TR PEUURROE 749
IMIPAIA USE CaSES..uuutiiiiiiiieeeie ittt et e e e e e s e e s tatereeeeeeeeeesasasaatasaeeaaeeasesaaaassstaseesaeeaasssssssasssssannneaeeeeessannnnsssnnns 752

Questions about IMPala AN HIVE........c.uiiii it e et e e e et e e e e e earae e e e e enaeeeeeeaneees 752

Ta eV | ANz 11 =1 o 11 L PSP PURRPOE 753

TaaY o= 1 = T 1 =T g = F U PESPRPRE 754
1] O | PP PPPUPPOPPPPPPRNE 756
[T u A To] aT=To I =] o LTSRS 757
(12T LY T TP P PP UPPPPPPPPP 758

Appendix: Apache License, Version 2.0.......ccccccceereeeerenerencrencrencrescrenscsnscsssscsnscesnss 799

Introducing Apache Impala

Introducing Apache Impala

Impala provides fast, interactive SQL queries directly on your Apache Hadoop data stored in HDFS, HBase, or the
Amazon Simple Storage Service (S3). In addition to using the same unified storage platform, Impala also uses the same
metadata, SQL syntax (Hive SQL), ODBC driver, and user interface (Impala query Ul in Hue) as Apache Hive. This provides
a familiar and unified platform for real-time or batch-oriented queries.

Impala is an addition to tools available for querying big data. Impala does not replace the batch processing frameworks
built on MapReduce such as Hive. Hive and other frameworks built on MapReduce are best suited for long running
batch jobs, such as those involving batch processing of Extract, Transform, and Load (ETL) type jobs.

E’; Note: Impala graduated from the Apache Incubator on November 15, 2017. In places where the
documentation formerly referred to “Cloudera Impala”, now the official name is “Apache Impala”.

Impala Benefits

Impala provides:

e Familiar SQL interface that data scientists and analysts already know.

¢ Ability to query high volumes of data (“big data”) in Apache Hadoop.

e Distributed queries in a cluster environment, for convenient scaling and to make use of cost-effective commodity
hardware.

¢ Ability to share data files between different components with no copy or export/import step; for example, to
write with Pig, transform with Hive and query with Impala. Impala can read from and write to Hive tables, enabling
simple data interchange using Impala for analytics on Hive-produced data.

¢ Single system for big data processing and analytics, so customers can avoid costly modeling and ETL just for
analytics.

How Impala Works with CDH

The following graphic illustrates how Impala is positioned in the broader Cloudera environment:

Hive
Metastore

-

Impala Shell

The Impala solution is composed of the following components:

e Clients - Entities including Hue, ODBC clients, JDBC clients, and the Impala Shell can all interact with Impala. These
interfaces are typically used to issue queries or complete administrative tasks such as connecting to Impala.

16 | Apache Impala Guide

¢ Hive Metastore - Stores information about the data available to Impala. For example, the metastore lets Impala
know what databases are available and what the structure of those databases is. As you create, drop, and alter
schema objects, load data into tables, and so on through Impala SQL statements, the relevant metadata changes
are automatically broadcast to all Impala nodes by the dedicated catalog service introduced in Impala 1.2.

e Impala - This process, which runs on DataNodes, coordinates and executes queries. Each instance of Impala can
receive, plan, and coordinate queries from Impala clients. Queries are distributed among Impala nodes, and these
nodes then act as workers, executing parallel query fragments.

e HBase and HDFS - Storage for data to be queried.
Queries executed using Impala are handled as follows:

1. User applications send SQL queries to Impala through ODBC or JDBC, which provide standardized querying
interfaces. The user application may connect to anyi npal ad in the cluster. Thisi npal ad becomes the coordinator
for the query.

2. Impala parses the query and analyzes it to determine what tasks need to be performed by i npal ad instances
across the cluster. Execution is planned for optimal efficiency.

3. Services such as HDFS and HBase are accessed by local i npal ad instances to provide data.
4. Eachi npal ad returns data to the coordinating i npal ad, which sends these results to the client.

Primary Impala Features

Impala provides support for:

e Most common SQL-92 features of Hive Query Language (HiveQL) including SELECT, joins, and aggregate functions.
e HDFS, HBase, and Amazon Simple Storage System (S3) storage, including:

— HDES file formats: delimited text files, Parquet, Avro, SequenceFile, and RCFile.
— Compression codecs: Snappy, GZIP, Deflate, BZIP.

e Common data access interfaces including:

— JDBCdriver.
— ODBC driver.
— Hue Beeswax and the Impala Query Ul.

¢ impala-shell command-line interface.

e Kerberos authentication.

Impala Concepts and Architecture

The following sections provide background information to help you become productive using Impala and its features.
Where appropriate, the explanations include context to help understand how aspects of Impala relate to other
technologies you might already be familiar with, such as relational database management systems and data warehouses,
or other Hadoop components such as Hive, HDFS, and HBase.

Components of the Impala Server

The Impala server is a distributed, massively parallel processing (MPP) database engine. It consists of different daemon
processes that run on specific hosts within your CDH cluster.

The Impala Daemon

The core Impala component is the Impala daemon, physically represented by the i npal ad process. A few of the key
functions that an Impala daemon performs are:

e Reads and writes to data files.

e Accepts queries transmitted from the i npal a- shel | command, Hue, JDBC, or ODBC.
¢ Parallelizes the queries and distributes work across the cluster.

e Transmits intermediate query results back to the central coordinator.

Impala daemons can be deployed in one of the following ways:

e HDFS and Impala are co-located, and each Impala daemon runs on the same host as a DataNode.
e Impala is deployed separately in a compute cluster and reads remotely from HDFS, S3, ADLS, etc.

The Impala daemons are in constant communication with StateStore, to confirm which daemons are healthy and can
accept new work.

They also receive broadcast messages from the cat al ogd daemon (introduced in Impala 1.2) whenever any Impala
daemon in the cluster creates, alters, or drops any type of object, or when an | NSERT or LOAD DATA statement is
processed through Impala. This background communication minimizes the need for REFRESHor | NVALI DATE METADATA
statements that were needed to coordinate metadata across Impala daemons prior to Impala 1.2.

In CDH 5.12 / Impala 2.9 and higher, you can control which hosts act as query coordinators and which act as query
executors, to improve scalability for highly concurrent workloads on large clusters. See How to Configure Impala with
Dedicated Coordinators on page 640 for details.

Related information: Modifying Impala Startup Options on page 29, Starting Impala on page 32, Setting the Idle Query
and Idle Session Timeouts for impalad on page 98, Ports Used by Impala on page 738, Using Impala through a Proxy
for High Availability on page 100

The Impala Statestore

The Impala component known as the StateStore checks on the health of all Impala daemons in a cluster, and continuously
relays its findings to each of those daemons. It is physically represented by a daemon process named st at est or ed.
You only need such a process on one host in a cluster. If an Impala daemon goes offline due to hardware failure,
network error, software issue, or other reason, the StateStore informs all the other Impala daemons so that future
queries can avoid making requests to the unreachable Impala daemon.

Because the StateStore's purpose is to help when things go wrong and to broadcast metadata to coordinators, it is not
always critical to the normal operation of an Impala cluster. If the StateStore is not running or becomes unreachable,
the Impala daemons continue running and distributing work among themselves as usual when working with the data
known to Impala. The cluster just becomes less robust if other Impala daemons fail, and metadata becomes less
consistent as it changes while the StateStore is offline. When the StateStore comes back online, it re-establishes
communication with the Impala daemons and resumes its monitoring and broadcasting functions.

If you issue a DDL statement while the StateStore is down, the queries that access the new object the DDL created will
fail.

Most considerations for load balancing and high availability apply to the i npal ad daemon. The st at est or ed and
cat al ogd daemons do not have special requirements for high availability, because problems with those daemons do
not result in data loss. If those daemons become unavailable due to an outage on a particular host, you can stop the
Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a different host, and
restart the Impala service.

Related information:

Scalability Considerations for the Impala Statestore on page 631, Modifying Impala Startup Options on page 29, Starting
Impala on page 32, Increasing the Statestore Timeout on page 98, Ports Used by Impala on page 738

The Impala Catalog Service

The Impala component known as the Catalog Service relays the metadata changes from Impala SQL statements to all
the Impala daemons in a cluster. It is physically represented by a daemon process named cat al ogd. You only need
such a process on one host in a cluster. Because the requests are passed through the StateStore daemon, it makes
sense to run the st at est or ed and cat al ogd services on the same host.

The catalog service avoids the need to issue REFRESHand | NVALI DATE METADATA statements when the metadata
changes are performed by statements issued through Impala. When you create a table, load data, and so on through
Hive, you do need to issue REFRESHor | NVALI DATE METADATA on an Impala node before executing a query there.

This feature touches a number of aspects of Impala:

e See Setting Up Apache Impala Using the Command Line on page 27, Upgrading Impala on page 44 and Starting
Impala on page 32, for usage information for the cat al ogd daemon.

e The REFRESHand | NVALI DATE METADATA statements are not needed when the CREATE TABLE, | NSERT, or
other table-changing or data-changing operation is performed through Impala. These statements are still needed
if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the
statements only need to be issued on one Impala daemon rather than on all daemons. See REFRESH Statement
on page 326 and INVALIDATE METADATA Statement on page 321 for the latest usage information for those
statements.

Use - -1 oad_cat al og_i n_backgr ound option to control when the metadata of a table is loaded.

e |fsettofal se, the metadata of a table is loaded when it is referenced for the first time. This means that the first
run of a particular query can be slower than subsequent runs. Starting in Impala 2.2, the default for
| oad_cat al og_i n_backgroundisfal se.

e Ifsettotrue, the catalog service attempts to load metadata for a table even if no query needed that metadata.
So metadata will possibly be already loaded when the first query that would need it is run. However, for the
following reasons, we recommend not to set the optiontotr ue.

— Background load can interfere with query-specific metadata loading. This can happen on startup or after
invalidating metadata, with a duration depending on the amount of metadata, and can lead to a seemingly
random long running queries that are difficult to diagnose.

— Impala may load metadata for tables that are possibly never used, potentially increasing catalog size and
consequently memory usage for both catalog service and Impala Daemon.

Most considerations for load balancing and high availability apply to the i npal ad daemon. The st at est or ed and
cat al ogd daemons do not have special requirements for high availability, because problems with those daemons do
not result in data loss. If those daemons become unavailable due to an outage on a particular host, you can stop the
Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a different host, and
restart the Impala service.

E,i Note:

In Impala 1.2.4 and higher, you can specify a table name with | NVALI DATE METADATA after the table
is created in Hive, allowing you to make individual tables visible to Impala without doing a full reload
of the catalog metadata. Impala 1.2.4 also includes other changes to make the metadata broadcast
mechanism faster and more responsive, especially during Impala startup. See New Features in Impala
1.2.4 for details.

Related information: Modifying Impala Startup Options on page 29, Starting Impala on page 32, Ports Used by Impala
on page 738

Developing Impala Applications

The core development language with Impala is SQL. You can also use Java or other languages to interact with Impala
through the standard JDBC and ODBC interfaces used by many business intelligence tools. For specialized kinds of
analysis, you can supplement the SQL built-in functions by writing user-defined functions (UDFs) in C++ or Java.

Overview of the Impala SQL Dialect

The Impala SQL dialect is highly compatible with the SQL syntax used in the Apache Hive component (HiveQL). As such,
it is familiar to users who are already familiar with running SQL queries on the Hadoop infrastructure. Currently, Impala
SQL supports a subset of HiveQL statements, data types, and built-in functions. Impala also includes additional built-in
functions for common industry features, to simplify porting SQL from non-Hadoop systems.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might seem familiar:

e The SELECT statement includes familiar clauses such as WHERE, GROUP BY, ORDER BY, and W TH. You will find
familiar notions such as joins, built-in functions for processing strings, numbers, and dates, aggregate functions,
subqueries, and comparison operators such as | N() and BETWEEN. The SELECT statement is the place where
SQL standards compliance is most important.

¢ From the data warehousing world, you will recognize the notion of partitioned tables. One or more columns serve
as partition keys, and the data is physically arranged so that queries that refer to the partition key columns in the
VWHERE clause can skip partitions that do not match the filter conditions. For example, if you have 10 years worth
of data and use a clause such as WHERE year = 2015, WHERE year > 2010, or WHERE year | N (2014,
2015), Impala skips all the data for non-matching years, greatly reducing the amount of 1/0O for the query.

¢ InlImpala 1.2 and higher, UDFs let you perform custom comparisons and transformation logic during SELECT and
| NSERT. . . SELECT statements.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might require some learning and practice for you to become proficient in the Hadoop environment:

e Impala SQL is focused on queries and includes relatively little DML. There is no UPDATE or DELETE statement.
Stale data is typically discarded (by DROP TABLE or ALTER TABLE ... DROP PARTI TI ONstatements) or
replaced (by | NSERT OVERWRI TE statements).

e All data creation is done by | NSERT statements, which typically insert data in bulk by querying from other tables.
There are two variations, | NSERT | NTOwhich appends to the existing data, and | NSERT OVERWRI TE which
replaces the entire contents of a table or partition (similar to TRUNCATE TABLE followed by a new | NSERT).
Although thereis an | NSERT ... VALUES syntax to create a small number of values in a single statement, it is
far more efficient to use the | NSERT ... SELECT to copy and transform large amounts of data from one table
to another in a single operation.

¢ You often construct Impala table definitions and data files in some other environment, and then attach Impala so
that it can run real-time queries. The same data files and table metadata are shared with other components of
the Hadoop ecosystem. In particular, Impala can access tables created by Hive or data inserted by Hive, and Hive

can access tables and data produced by Impala. Many other Hadoop components can write files in formats such
as Parquet and Avro, that can then be queried by Impala.

e Because Hadoop and Impala are focused on data warehouse-style operations on large data sets, Impala SQL
includes some idioms that you might find in the import utilities for traditional database systems. For example,
you can create a table that reads comma-separated or tab-separated text files, specifying the separator in the
CREATE TABLE statement. You can create external tables that read existing data files but do not move or transform
them.

e Because Impala reads large quantities of data that might not be perfectly tidy and predictable, it does not require
length constraints on string data types. For example, you can define a database column as STRI NGwith unlimited
length, rather than CHAR(1) or VARCHAR(64) . (Although in Impala 2.0 and later, you can also use
length-constrained CHAR and VARCHAR types.)

Related information: Impala SQL Language Reference on page 132, especially Impala SQL Statements on page 237 and
Impala Built-In Functions on page 423

Overview of Impala Programming Interfaces
You can connect and submit requests to the Impala daemons through:

e Theinpal a-shel | interactive command interpreter.
e The Hue web-based user interface.

e JDBC.

e ODBC.

With these options, you can use Impala in heterogeneous environments, with JDBC or ODBC applications running on
non-Linux platforms. You can also use Impala on combination with various Business Intelligence tools that use the
JDBC and ODBC interfaces.

Each i npal ad daemon process, running on separate nodes in a cluster, listens to several ports for incoming requests.
Requests from i npal a- shel | and Hue are routed to the i npal ad daemons through the same port. The i npal ad
daemons listen on separate ports for JDBC and ODBC requests.

How Impala Fits Into the Hadoop Ecosystem

Impala makes use of many familiar components within the Hadoop ecosystem. Impala can interchange data with other
Hadoop components, as both a consumer and a producer, so it can fit in flexible ways into your ETL and ELT pipelines.

How Impala Works with Hive

A major Impala goal is to make SQL-on-Hadoop operations fast and efficient enough to appeal to new categories of
users and open up Hadoop to new types of use cases. Where practical, it makes use of existing Apache Hive infrastructure
that many Hadoop users already have in place to perform long-running, batch-oriented SQL queries.

In particular, Impala keeps its table definitions in a traditional MySQL or PostgreSQL database known as the metastore,
the same database where Hive keeps this type of data. Thus, Impala can access tables defined or loaded by Hive, as
long as all columns use Impala-supported data types, file formats, and compression codecs.

The initial focus on query features and performance means that Impala can read more types of data with the SELECT
statement than it can write with the | NSERT statement. To query data using the Avro, RCFile, or SequenceFile file
formats, you load the data using Hive.

The Impala query optimizer can also make use of table statistics and column statistics. Originally, you gathered this
information with the ANALYZE TABLE statement in Hive; in Impala 1.2.2 and higher, use the Impala COVWPUTE STATS
statement instead. COMPUTE STATS requires less setup, is more reliable, and does not require switching back and
forth between i npal a- shel | and the Hive shell.

http://gethue.com/

Overview of Impala Metadata and the Metastore

As discussed in How Impala Works with Hive on page 21, Impala maintains information about table definitions in a
central database known as the metastore. Impala also tracks other metadata for the low-level characteristics of data
files:

¢ The physical locations of blocks within HDFS.

For tables with a large volume of data and/or many partitions, retrieving all the metadata for a table can be
time-consuming, taking minutes in some cases. Thus, each Impala node caches all of this metadata to reuse for future
queries against the same table.

If the table definition or the data in the table is updated, all other Impala daemons in the cluster must receive the
latest metadata, replacing the obsolete cached metadata, before issuing a query against that table. In Impala 1.2 and
higher, the metadata update is automatic, coordinated through the cat al ogd daemon, for all DDL and DML statements
issued through Impala. See The Impala Catalog Service on page 19 for details.

For DDL and DML issued through Hive, or changes made manually to files in HDFS, you still use the REFRESH statement
(when new data files are added to existing tables) or the | NVALI DATE METADATA statement (for entirely new tables,
or after dropping a table, performing an HDFS rebalance operation, or deleting data files). Issuing | NVALI DATE
METADATA by itself retrieves metadata for all the tables tracked by the metastore. If you know that only specific tables
have been changed outside of Impala, you can issue REFRESH t abl e_name for each affected table to only retrieve
the latest metadata for those tables.

How Impala Uses HDFS

Impala uses the distributed filesystem HDFS as its primary data storage medium. Impala relies on the redundancy
provided by HDFS to guard against hardware or network outages on individual nodes. Impala table data is physically
represented as data files in HDFS, using familiar HDFS file formats and compression codecs. When data files are present
in the directory for a new table, Impala reads them all, regardless of file name. New data is added in files with names
controlled by Impala.

How Impala Uses HBase

HBase is an alternative to HDFS as a storage medium for Impala data. It is a database storage system built on top of
HDFS, without built-in SQL support. Many Hadoop users already have it configured and store large (often sparse) data
sets in it. By defining tables in Impala and mapping them to equivalent tables in HBase, you can query the contents of
the HBase tables through Impala, and even perform join queries including both Impala and HBase tables. See Using
Impala to Query HBase Tables on page 701 for details.

Planning for Impala Deployment

Before you set up Impala in production, do some planning to make sure that your hardware setup has sufficient capacity,
that your cluster topology is optimal for Impala queries, and that your schema design and ETL processes follow the
best practices for Impala.

Impala Requirements

To perform as expected, Impala depends on the availability of the software, hardware, and configurations described
in the following sections.

Product Compatibility Matrix

The ultimate source of truth about compatibility between various versions of CDH, Cloudera Manager, and various
CDH components is the .

Supported Operating Systems

The relevant supported operating systems and versions for Impala are the same as for the corresponding CDH 5
platforms. For details, see the Supported Operating Systems page for CDH 5.

Hive Metastore and Related Configuration

Impala can interoperate with data stored in Hive, and uses the same infrastructure as Hive for tracking metadata about
schema objects such as tables and columns. The following components are prerequisites for Impala:

e MySQL or PostgreSQL, to act as a metastore database for both Impala and Hive.

Always configure a Hive metastore service rather than connecting directly to the metastore database. The Hive
metastore service is required to interoperate between different levels of metastore APIs if this is necessary for
your environment, and using it avoids known issues with connecting directly to the metastore database.

See below for a summary of the metastore installation process.

¢ Hive (optional). Although only the Hive metastore database is required for Impala to function, you might install
Hive on some client machines to create and load data into tables that use certain file formats. See How Impala
Works with Hadoop File Formats on page 655 for details. Hive does not need to be installed on the same DataNodes
as Impala; it just needs access to the same metastore database.

To install the metastore:

Install a MySQL or PostgreSQL database. Start the database if it is not started after installation.

Download the MySQL connector or the PostgreSQL connector and place it in the / usr/ shar e/ j ava/ directory.
Use the appropriate command line tool for your database to create the metastore database.

Use the appropriate command line tool for your database to grant privileges for the metastore database to the
hi ve user.

5. Modify hi ve-si t e. xm to include information matching your particular database: its URL, username, and
password. You will copy the hi ve-si te. xm file to the Impala Configuration Directory later in the Impala
installation process.

P WNPR

Java Dependencies
Although Impala is primarily written in C++, it does use Java to communicate with various Hadoop components:

e The officially supported JVMs for Impala are the OpenJDK JVM and Oracle JVM. Other JVMs might cause issues,
typically resulting in a failure at i npal ad startup. In particular, the JamVM used by default on certain levels of
Ubuntu systems can cause i nmpal ad to fail to start.

http://www.cloudera.com/documentation/enterprise/latest/topics/rn_consolidated_pcm.html#cdh_cm_supported_os
http://www.mysql.com/products/connector/
http://jdbc.postgresql.org/download.html

¢ Internally, thei nmpal ad daemon relies on the JAVA HOME environment variable to locate the system Java libraries.
Make sure the i npal ad service is not run from an environment with an incorrect setting for this variable.

e All Java dependencies are packaged in the i npal a- dependenci es. j ar file, which is located at
fusr/lib/inpalallib/.These map to everything that is built under f e/ t ar get / dependency.

Networking Configuration Requirements

As part of ensuring best performance, Impala attempts to complete tasks on local data, as opposed to using network
connections to work with remote data. To support this goal, Impala matches the hostname provided to each Impala
daemon with the IP address of each DataNode by resolving the hostname flag to an IP address. For Impala to work
with local data, use a single IP interface for the DataNode and the Impala daemon on each machine. Ensure that the
Impala daemon's hostname flag resolves to the IP address of the DataNode. For single-homed machines, this is usually
automatic, but for multi-homed machines, ensure that the Impala daemon's hostname resolves to the correct interface.
Impala tries to detect the correct hostname at start-up, and prints the derived hostname at the start of the log in a
message of the form:

Usi ng host nane: i npal a- daenon- 1. exanpl e. com

In the majority of cases, this automatic detection works correctly. If you need to explicitly set the hostname, do so by
setting the - - host nane flag.

Hardware Requirements

The memory allocation should be consistent across Impala executor nodes. A single Impala executor with a lower
memory limit than the rest can easily become a bottleneck and lead to suboptimal performance.

This guideline does not apply to coordinator-only nodes.

Hardware Requirements for Optimal Join Performance

During join operations, portions of data from each joined table are loaded into memory. Data sets can be very large,
so ensure your hardware has sufficient memory to accommodate the joins you anticipate completing.

While requirements vary according to data set size, the following is generally recommended:
e CPU

Impala version 2.2 and higher uses the SSSE3 instruction set, which is included in newer processors.

E’; Note: This required level of processor is the same as in Impala version 1.x. The Impala 2.0 and
2.1 releases had a stricter requirement for the SSE4.1 instruction set, which has now been relaxed.

e Memory

128 GB or more recommended, ideally 256 GB or more. If the intermediate results during query processing on a
particular node exceed the amount of memory available to Impala on that node, the query writes temporary work
data to disk, which can lead to long query times. Note that because the work is parallelized, and intermediate
results for aggregate queries are typically smaller than the original data, Impala can query and join tables that are
much larger than the memory available on an individual node.

e JVM Heap Size for Catalog Server

4 GB or more recommended, ideally 8 GB or more, to accommodate the maximum numbers of tables, partitions,
and data files you are planning to use with Impala.

e Storage

DataNodes with 12 or more disks each. 1/0 speeds are often the limiting factor for disk performance with Impala.
Ensure that you have sufficient disk space to store the data Impala will be querying.

User Account Requirements

Impala creates and uses a user and group named i npal a. Do not delete this account or group and do not modify the
account's or group's permissions and rights. Ensure no existing systems obstruct the functioning of these accounts and
groups. For example, if you have scripts that delete user accounts not in a white-list, add these accounts to the list of
permitted accounts.

For correct file deletion during DROP TABLE operations, Impala must be able to move files to the HDFS trashcan. You
might need to create an HDFS directory / user /i npal a, writeable by the i npal a user, so that the trashcan can be
created. Otherwise, data files might remain behind after a DROP TABLE statement.

Impala should not run as root. Best Impala performance is achieved using direct reads, but root is not permitted to
use direct reads. Therefore, running Impala as root negatively affects performance.

By default, any user can connect to Impala and access all the associated databases and tables. You can enable
authorization and authentication based on the Linux OS user who connects to the Impala server, and the associated
groups for that user. Impala Security on page 109 for details. These security features do not change the underlying file
permission requirements; the i npal a user still needs to be able to access the data files.

Guidelines for Designing Impala Schemas

The guidelines in this topic help you to construct an optimized and scalable schema, one that integrates well with your
existing data management processes. Use these guidelines as a checklist when doing any proof-of-concept work,
porting exercise, or before deploying to production.

If you are adapting an existing database or Hive schema for use with Impala, read the guidelines in this section and
then see Porting SQL from Other Database Systems to Impala on page 574 for specific porting and compatibility tips.

Prefer binary file formats over text-based formats.

To save space and improve memory usage and query performance, use binary file formats for any large or intensively
queried tables. Parquet file format is the most efficient for data warehouse-style analytic queries. Avro is the other
binary file format that Impala supports, that you might already have as part of a Hadoop ETL pipeline.

Although Impala can create and query tables with the RCFile and SequencefFile file formats, such tables are relatively
bulky due to the text-based nature of those formats, and are not optimized for data warehouse-style queries due to
their row-oriented layout. Impala does not support | NSERT operations for tables with these file formats.

Guidelines:

e For an efficient and scalable format for large, performance-critical tables, use the Parquet file format.

¢ Todeliver intermediate data during the ETL process, in a format that can also be used by other Hadoop components,
Avro is a reasonable choice.

¢ For convenient import of raw data, use a text table instead of RCFile or SequenceFile, and convert to Parquet in
a later stage of the ETL process.

Use Snappy compression where practical.

Snappy compression involves low CPU overhead to decompress, while still providing substantial space savings. In cases
where you have a choice of compression codecs, such as with the Parquet and Avro file formats, use Snappy compression
unless you find a compelling reason to use a different codec.

Prefer numeric types over strings.

If you have numeric values that you could treat as either strings or numbers (such as YEAR, MONTH, and DAY for partition
key columns), define them as the smallest applicable integer types. For example, YEAR can be SMALLI NT, MONTH and
DAY can be TI NYI NT. Although you might not see any difference in the way partitioned tables or text files are laid out
on disk, using numeric types will save space in binary formats such as Parquet, and in memory when doing queries,
particularly resource-intensive queries such as joins.

Partition, but do not over-partition.

Partitioning is an important aspect of performance tuning for Impala. Follow the procedures in Partitioning for Impala
Tables on page 646 to set up partitioning for your biggest, most intensively queried tables.

If you are moving to Impala from a traditional database system, or just getting started in the Big Data field, you might
not have enough data volume to take advantage of Impala parallel queries with your existing partitioning scheme. For
example, if you have only a few tens of megabytes of data per day, partitioning by YEAR, MONTH, and DAY columns
might be too granular. Most of your cluster might be sitting idle during queries that target a single day, or each node
might have very little work to do. Consider reducing the number of partition key columns so that each partition directory
contains several gigabytes worth of data.

For example, consider a Parquet table where each data file is 1 HDFS block, with a maximum block size of 1 GB. (In
Impala 2.0 and later, the default Parquet block size is reduced to 256 MB. For this exercise, let's assume you have
bumped the size back up to 1 GB by setting the query option PARQUET_FI LE_SI ZE=1g.) if you have a 10-node cluster,
you need 10 data files (up to 10 GB) to give each node some work to do for a query. But each core on each machine
can process a separate data block in parallel. With 16-core machines on a 10-node cluster, a query could process up
to 160 GB fully in parallel. If there are only a few data files per partition, not only are most cluster nodes sitting idle
during queries, so are most cores on those machines.

You can reduce the Parquet block size to as low as 128 MB or 64 MB to increase the number of files per partition and
improve parallelism. But also consider reducing the level of partitioning so that analytic queries have enough data to
work with.

Always compute stats after loading data.

Impala makes extensive use of statistics about data in the overall table and in each column, to help plan
resource-intensive operations such as join queries and inserting into partitioned Parquet tables. Because this information
is only available after data is loaded, run the COMPUTE STATS statement on a table after loading or replacing data in
a table or partition.

Having accurate statistics can make the difference between a successful operation, or one that fails due to an
out-of-memory error or a timeout. When you encounter performance or capacity issues, always use the SHOWV STATS
statement to check if the statistics are present and up-to-date for all tables in the query.

When doing a join query, Impala consults the statistics for each joined table to determine their relative sizes and to
estimate the number of rows produced in each join stage. When doing an | NSERT into a Parquet table, Impala consults
the statistics for the source table to determine how to distribute the work of constructing the data files for each
partition.

See COMPUTE STATS Statement on page 254 for the syntax of the COVPUTE STATS statement, and Table and Column
Statistics on page 600 for all the performance considerations for table and column statistics.

Verify sensible execution plans with EXPLAIN and SUMMARY.

Before executing a resource-intensive query, use the EXPLAI N statement to get an overview of how Impala intends
to parallelize the query and distribute the work. If you see that the query plan is inefficient, you can take tuning steps
such as changing file formats, using partitioned tables, running the COVPUTE STATS statement, or adding query hints.
For information about all of these techniques, see Tuning Impala for Performance on page 590.

After you run a query, you can see performance-related information about how it actually ran by issuing the SUMVARY
commandini npal a- shel | . Priorto Impala 1.4, you would use the PROFI LE command, but its highly technical output
was only useful for the most experienced users. SUVMARY, new in Impala 1.4, summarizes the most useful information
for all stages of execution, for all nodes rather than splitting out figures for each node.

Setting Up Apache Impala Using the Command Line

Impala is an open-source add-on to the Cloudera Enterprise Core that returns rapid responses to queries.

What is Included in an Impala Installation

Impala is made up of a set of components that can be installed on multiple nodes throughout your cluster. The key
installation step for performance is to install the i npal ad daemon (which does most of the query processing work)
on all DataNodes in the cluster.

The Impala package installs these binaries:

e inpal ad - The Impala daemon. Plans and executes queries against HDFS, HBase, and Amazon S3 data. Run one
impalad process on each node in the cluster that has a DataNode.

e st at est or ed - Name service that tracks location and status of all i npal ad instances in the cluster. Run one
instance of this daemon on a node in your cluster. Most production deployments run this daemon on the namenode.

e cat al ogd - Metadata coordination service that broadcasts changes from Impala DDL and DML statements to all
affected Impala nodes, so that new tables, newly loaded data, and so on are immediately visible to queries
submitted through any Impala node. (Prior to Impala 1.2, you had to run the REFRESHor | NVALI DATE METADATA
statement on each node to synchronize changed metadata. Now those statements are only required if you perform
the DDL or DML through an external mechanism such as Hive or by uploading data to the Amazon S3 filesystem.)
Run one instance of this daemon on a node in your cluster, preferably on the same host as the st at est or ed
daemon.

e inpal a-shel | - Command-line interface for issuing queries to the Impala daemon. You install this on one or
more hosts anywhere on your network, not necessarily DataNodes or even within the same cluster as Impala. It
can connect remotely to any instance of the Impala daemon.

Before doing the installation, ensure that you have all necessary prerequisites. See Impala Requirements on page 23
for details.

Installing Impala from the Command Line

Before installing Impala manually, make sure all applicable nodes have the appropriate hardware configuration, levels
of operating system and CDH, and any other software prerequisites. See Impala Requirements on page 23 for details.

You can install Impala across many hosts or on one host:

¢ Installing Impala across multiple machines creates a distributed configuration. For best performance, install Impala
on all DataNodes.

¢ Installing Impala on a single machine produces a pseudo-distributed cluster.
To install Impala on a host:

1. Install CDH, including Hive, as described in Installing and Deploying Unmanaged CDH Using the Command Line.

2. Configure the Hive metastore to use an external database as a metastore. Impala uses this same database for its
own table metadata. You can choose either a MySQL or PostgreSQL database as the metastore. The process for
configuring each type of database is described in the CDH Installation Guide).

Cloudera recommends setting up a Hive metastore service rather than connecting directly to the metastore
database; this configuration is required when running Impala under CDH 4.1. Make sure the

/etc/inpal a/ conf/ hive-site. xnl file contains the following setting, substituting the appropriate hostname
for metastore_server_host:

<property>

<name>hi ve. met ast or e. uri s</ nane>

<value>thrift://metastore_server host:9083</val ue>

</ property>

<property>

<name>hi ve. net ast ore. cl i ent. socket. ti meout </ nane>

<val ue>3600</ val ue>

<description>MetaStore Client socket timeout in seconds</description>
</ property>

3. (Optional) If you installed the full Hive component on any host, you can verify that the metastore is configured
properly by starting the Hive console and querying for the list of available tables. Once you confirm that the console
starts, exit the console to continue the installation:

$ hive

Hi ve history file=/tnp/root/hive_job_log_root_201207272011_678722950. t xt
hi ve> show t abl es

tabl el

tabl e2

hive> quit;

4. Confirm that your package management command is aware of the Impala repository settings, as described in
Impala Requirements on page 23. (For CDH 4, this is a different repository than for CDH.) You might need to
download a repo or list file into a system directory underneath / et c.

5. Use one of the following sets of commands to install the Impala package:

For RHEL, Oracle Linux, or CentOS systems:

$ sudo yuminstall inpala # Binaries for daenobns
$ sudo yuminstall inpal a-server # Service start/stop script
$ sudo yuminstall inpala-state-store # Service start/stop script
$ sudo yuminstall inpal a-catal og # Service start/stop script
For SUSE systems:
$ sudo zypper install inpala # Binaries for daenons
$ sudo zypper install inpala-server # Service start/stop script
$ sudo zypper install inpala-state-store # Service start/stop script
$ sudo zypper install inpala-catalog # Service start/stop script
For Debian or Ubuntu systems:
$ sudo apt-get install inpala # Binaries for daenons
$ sudo apt-get install inpala-server # Service start/stop script
$ sudo apt-get install inpala-state-store # Service start/stop script
$ sudo apt-get install inpala-catalog # Service start/stop script

E,i Note: Cloudera recommends that you not install Impala on any HDFS NameNode. Installing
Impala on NameNodes provides no additional data locality, and executing queries with such a
configuration might cause memory contention and negatively impact the HDFS NameNode.

6. Copy theclient hi ve-site.xm ,core-site.xm ,bhdfs-site.xm ,andhbase-site.xm configuration files
to the Impala configuration directory, which defaults to/ et c/ i npal a/ conf . Create this directory if it does not
already exist.

7. Use one of the following commands to install i npal a- shel | on the machines from which you want to issue
queries. You caninstalli mpal a- shel I onanysupported machine that can connect to DataNodes that are running
i mpal ad.

For RHEL/CentOS systems:

$ sudo yuminstall inpal a-shell
For SUSE systems:
$ sudo zypper install inpala-shell

For Debian/Ubuntu systems:

$ sudo apt-get install inpala-shell

8. Complete any required or recommended configuration, as described in Post-Installation Configuration for Impala
on page 36. Some of these configuration changes are mandatory.

Once installation and configuration are complete, see Starting Impala on page 32 for how to activate the software on
the appropriate nodes in your cluster.

If this is your first time setting up and using Impala in this cluster, run through some of the exercises in Impala Tutorials
on page 56 to verify that you can do basic operations such as creating tables and querying them.

Modifying Impala Startup Options

The configuration options for the Impala-related daemons let you choose which hosts and ports to use for the services
that run on a single host, specify directories for logging, control resource usage and security, and specify other aspects
of the Impala software.

Configuring Impala Startup Options through the Command Line

When you run Impala in a non-Cloudera Manager environment, the Impala server, statestore, and catalog services
start up using values provided in a defaults file, / et ¢/ def aul t /i npal a.

This file includes information about many resources used by Impala. Most of the defaults included in this file should
be effective in most cases. For example, typically you would not change the definition of the CLASSPATH variable, but
you would always set the address used by the statestore server. Some of the content you might modify includes:

| MPALA_STATE_STORE_HOST=127.0.0. 1
| MPALA_STATE_STORE_PORT=24000

I MPALA_BACKEND_PORT=22000

| MPALA_LOG DI R=/ var /| og/i rrpal a

| MPALA_CATALOG_SERVI CE_HOST=.

| MPALA_STATE_STORE_HOST=. .

export | MPALA _STATE_STORE_ARGS=${| MPALA STATE_STORE_ARGS: - \
-1 og_dir=%{| MPALA LOG DI R} -state_store_port=%${1 MPALA STATE_STORE_PORT}}
| MPALA_SERVER ARGS=" \
-1 og_dir=${1 MPALA_LOG DI R} \
-cat al og_servi ce_host =${ | MPALA_CATALOG_SERVI CE_HOST} \
-state_store_port=%${1 MPALA STATE STORE_PORT} \
-state_store_host=${1 MPALA_STATE_STORE_HOST} \
- be_port =${ | MPALA_BACKEND PORT}"
export ENABLE_CORE_DUMPS=${ ENABLE_COREDUMPS: - f al se}

To use alternate values, edit the defaults file, then restart all the Impala-related services so that the changes take
effect. Restart the Impala server using the following commands:

$ sudo service inpala-server restart
St oppi ng | mpal a Server: [O]
Starting Inpala Server: [OK]

Restart the Impala statestore using the following commands:

$ sudo service inpal a-state-store restart

Stopping Inpala State Store Server: [O]
Starting Inpala State Store Server: [O]
Restart the Impala catalog service using the following commands:

$ sudo service inpala-catalog restart

St oppi ng I npal a Cat al og Server: [O]
Starting Inpala Catal og Server: [OK]

Some common settings to change include:

e Statestore address. Where practical, put the statestore on a separate host not running the i npal ad daemon. In
that recommended configuration, the i npal ad daemon cannot refer to the statestore server using the loopback
address. If the statestore is hosted on a machine with an IP address of 192.168.0.27, change:

| MPALA_STATE_STORE_HOST=127.0.0.1

to:

| MPALA_STATE_STORE_HOST=192. 168. 0. 27

e Catalog server address (including both the hostname and the port number). Update the value of the
| MPALA_CATALOG_SERVI CE_HOST variable. Cloudera recommends the catalog server be on the same host as
the statestore. In that recommended configuration, the i npal ad daemon cannot refer to the catalog server using

the loopback address. If the catalog service is hosted on a machine with an IP address of 192.168.0.27, add the
following line:

| MPALA_CATALOG _SERVI CE_HOST=192. 168. 0. 27: 26000

The/ et c/ def aul t /i npal a defaults file currently does not define an | MPALA_CATALOG_ARGS environment
variable, but if you add one it will be recognized by the service startup/shutdown script. Add a definition for this
variable to/ et c/ def aul t /i npal a and add the option - cat al og_ser vi ce_host =host nane. If the port is
different than the default 26000, also add the option - cat al og_ser vi ce_port =port.

Memory limits. You can limit the amount of memory available to Impala. For example, to allow Impala to use no
more than 70% of system memory, change:

export | MPALA SERVER ARGS=${| MPALA SERVER ARGS: - \
-1 og_dir=${I MPALA_LOG DIR} \
-state_store_port=${| MPALA STATE_STORE_PORT} \
-state_st ore_host =${1 MPALA_STATE_STORE_HOST} \
-be_port =${ | MPALA_BACKEND PORT}}

to:

export | MPALA_SERVER ARGS=${| MPALA_SERVER ARGS: - \

-1 og_dir=%{| MPALA LOG DIR} -state_store_port ${I MPALA STATE_STORE_PORT} \
-state_store_host =${| MPALA_STATE_STORE - HOST} \
-be_port =${| MPALA_BACKEND PORT} -mem|init=70%

You can specify the memory limit using absolute notation such as 500mor 2G or as a percentage of physical
memory such as 60%

E’; Note: Queries that exceed the specified memory limit are aborted. Percentage limits are based
on the physical memory of the machine and do not consider cgroups.

e Core dump enablement. To enable core dumps on systems not managed by Cloudera Manager, change:
export ENABLE_CORE_DUMPS=${ ENABLE_COREDUMPS: - f al se}
to:
export ENABLE_CORE_DUMPS=${ ENABLE_COREDUMPS: - t r ue}

On systems managed by Cloudera Manager, enable the Enable Core Dump setting for the Impala service.

E’; Note:

¢ The location of core dump files may vary according to your operating system configuration.

e Other security settings may prevent Impala from writing core dumps even when this option
is enabled.

e On systems managed by Cloudera Manager, the default location for core dumps is on a
temporary filesystem, which can lead to out-of-space issues if the core dumps are large,
frequent, or not removed promptly. To specify an alternative location for the core dumps,
filter the Impala configuration settings to find the cor e_dunp_di r option, which is available
in Cloudera Manager 5.4.3 and higher. This option lets you specify a different directory for
core dumps for each of the Impala-related daemons.

e Authorization using the open source Sentry plugin. Specify the - ser ver _nane and
-authori zation_policy_fil eoptionsaspartofthel MPALA SERVER ARGSand| MPALA STATE_STORE_ARGS
settings to enable the core Impala support for authentication. See Starting the impalad Daemon with Sentry
Authorization Enabled on page 118 for details.

e Auditing for successful or blocked Impala queries, another aspect of security. Specify the
-audit_event _| og_di r=di rect ory_pat h option and optionally the
-max_audi t _event _| og_fil e_si ze=nunber _of _queriesand-abort_on_fail ed_audit_event options
as part of the | MPALA_SERVER _ARGS settings, for each Impala node, to enable and customize auditing. See
Auditing Impala Operations on page 106 for details.

e Password protection for the Impala web Ul, which listens on port 25000 by default. This feature involves adding
some or all of the - - webserver _password_file,--webserver _aut henti cati on_donai n, and
--webserver _certificate fil e optionstothel MPALA SERVER ARGS and | MPALA STATE STORE ARGS
settings. See Security Guidelines for Impala on page 109 for details.

¢ Another setting you might add to | MPALA_SERVER_ARGS is a comma-separated list of query options and values:

-defaul t _query_opti ons=' opti on=val ue, opti on=val ue, . ..

These options control the behavior of queries performed by thisi npal ad instance. The option values you specify
here override the default values for Impala query options, as shown by the SET statement in i npal a- shel | .

e During troubleshooting, Cloudera Support might direct you to change other values, particularly for
| MPALA_SERVER_ARGS, to work around issues or gather debugging information.

E’; Note:

These startup options for the i npal ad daemon are different from the command-line options for the
i mpal a- shel | command. For the i npal a- shel | options, see impala-shell Configuration Options
on page 580.

Checking the Values of Impala Configuration Options

You can check the current runtime value of all these settings through the Impala web interface, available by default
athttp://inpal a_host nane: 25000/ var z for thei npal ad daemon, htt p: //i npal a_host nane: 25010/ var z
for the st at est or ed daemon, or htt p: / /i npal a_host nane: 25020/ var z for the cat al ogd daemon. In the
Cloudera Manager interface, you can see the link to the appropriate service_name Web Ul page when you look at the
status page for a specific daemon on a specific host.

Startup Options for impalad Daemon

The i npal ad daemon implements the main Impala service, which performs query processing and reads and writes
the data files. Some of the noteworthy options are:

e Thefe_service_threads option specifies the maximum number of concurrent client connections allowed. The
default value is 64 with which 64 queries can run simultaneously.

If you have more clients trying to connect to Impala than the value of this setting, the later arriving clients have
to wait until previous clients disconnect. You can increase this value to allow more client connections. However,
alarge value means more threads to be maintained even if most of the connections are idle, and it could negatively
impact query latency. Client applications should use the connection pool to avoid the need for large number of
sessions.

Startup Options for statestored Daemon

The st at est or ed daemon implements the Impala statestore service, which monitors the availability of Impala services
across the cluster, and handles situations such as nodes becoming unavailable or becoming available again.

Startup Options for catalogd Daemon

The cat al ogd daemon implements the Impala catalog service, which broadcasts metadata changes to all the Impala
nodes when Impala creates a table, inserts data, or performs other kinds of DDL and DML operations.

Use - -1 oad_cat al og_i n_backgr ound option to control when the metadata of a table is loaded.

o Ifsettofal se, the metadata of a table is loaded when it is referenced for the first time. This means that the first
run of a particular query can be slower than subsequent runs. Starting in Impala 2.2, the default for
| oad_cat al og_i n_background isf al se.

e Ifsettotrue,the catalog service attempts to load metadata for a table even if no query needed that metadata.
So metadata will possibly be already loaded when the first query that would need it is run. However, for the
following reasons, we recommend not to set the optiontotr ue.

— Background load can interfere with query-specific metadata loading. This can happen on startup or after
invalidating metadata, with a duration depending on the amount of metadata, and can lead to a seemingly
random long running queries that are difficult to diagnose.

— Impala may load metadata for tables that are possibly never used, potentially increasing catalog size and
consequently memory usage for both catalog service and Impala Daemon.

Starting Impala
To activate Impala if it is installed but not yet started:

1. Set any necessary configuration options for the Impala services. See Modifying Impala Startup Options on page
29 for details.

2. Start one instance of the Impala statestore. The statestore helps Impala to distribute work efficiently, and to
continue running in the event of availability problems for other Impala nodes. If the statestore becomes unavailable,
Impala continues to function.

3. Start one instance of the Impala catalog service.

4. Start the main Impala service on one or more DataNodes, ideally on all DataNodes to maximize local processing
and avoid network traffic due to remote reads.

Once Impala is running, you can conduct interactive experiments using the instructions in Impala Tutorials on page 56
and try Using the Impala Shell (impala-shell Command) on page 580.

Starting Impala from the Command Line

To start the Impala state store and Impala from the command line or a script, you can either use the ser vi ce command
or you can start the daemons directly through the i npal ad, st at est or ed, and cat al ogd executables.

Start the Impala statestore and then start i npal ad instances. You can modify the values the service initialization
scripts use when starting the statestore and Impala by editing / et ¢/ def aul t /i npal a.

Start the statestore service using a command similar to the following:

$ sudo service inpal a-state-store start

Start the catalog service using a command similar to the following:

$ sudo service inpal a-catalog start

Start the Impala service on each DataNode using a command similar to the following:

$ sudo service inpal a-server start

E,i Note:

In CDH 5.7 / Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore
database. Java UDFs are also persisted, if they were created with the new CREATE FUNCTI ON syntax
for Java UDFs, where the Java function argument and return types are omitted. Java-based UDFs
created with the old CREATE FUNCTI ON syntax do not persist across restarts because they are held
in the memory of the cat al ogd daemon. Until you re-create such Java UDFs using the new CREATE
FUNCTI ONsyntax, you must reload those Java-based UDFs by running the original CREATE FUNCTI ON
statements again each time you restart the cat al ogd daemon. Prior to CDH 5.7 / Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

If any of the services fail to start, review:

e Reviewing Impala Logs on page 726
e Troubleshooting Impala on page 729

Installing Impala with Cloudera Manager

Before installing Impala through the Cloudera Manager interface, make sure all applicable nodes have the appropriate
hardware configuration and levels of operating system and CDH. See Impala Requirements on page 23 for details.

For information on installing Impala in a Cloudera Manager-managed environment, see
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_install_impala.htm|

Managing your Impala installation through Cloudera Manager has a number of advantages. For example, when you
make configuration changes to CDH components using Cloudera Manager, it automatically applies changes to the
copies of configuration files, such as hi ve- si t e. xnl , that Impala keeps under / et ¢/ i npal a/ conf . It also sets up
the Hive Metastore service that is required for Impala.

In some cases, depending on the level of Impala, CDH, and Cloudera Manager, you might need to add particular
component configuration details in some of the free-form option fields on the Impala configuration pages within
Cloudera Manager. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera Manager 5, they are
called Advanced Configuration Snippet.

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_install_impala.html

Installing Impala from the Command Line

Before installing Impala manually, make sure all applicable nodes have the appropriate hardware configuration, levels
of operating system and CDH, and any other software prerequisites. See Impala Requirements on page 23 for details.

You can install Impala across many hosts or on one host:

¢ Installing Impala across multiple machines creates a distributed configuration. For best performance, install Impala
on all DataNodes.
¢ Installing Impala on a single machine produces a pseudo-distributed cluster.

To install Impala on a host:

1. Install CDH as described in the Installation section of the CDH 5 Installation Guide.

2. Install the Hive metastore somewhere in your cluster, as described in the Hive Installation topic in the CDH 5
Installation Guide. As part of this process, you configure the Hive metastore to use an external database as a
metastore. Impala uses this same database for its own table metadata. You can choose either a MySQL or PostgreSQL
database as the metastore. The process for configuring each type of database is described in the CDH Installation
Guide).

Cloudera recommends setting up a Hive metastore service rather than connecting directly to the metastore
database; this configuration is required when running Impala under CDH 4.1. Make sure the

[etc/inpal a/ conf/ hi ve-site.xnl file contains the following setting, substituting the appropriate hostname
for metastore_server_host:

<property>

<nane>hi ve. met ast or e. uri s</ name>
<value>thrift://nmetastore_server_host: 9083</val ue>

</ property>

<property>

<nane>hi ve. met astore. cli ent. socket. ti meout </ name>

<val ue>3600</ val ue>

<description>MetaStore Client socket timeout in seconds</description>
</ property>

3. (Optional) If you installed the full Hive component on any host, you can verify that the metastore is configured
properly by starting the Hive console and querying for the list of available tables. Once you confirm that the console
starts, exit the console to continue the installation:

$ hive

H ve history file=/tnp/root/hive_job_|log_root_ 201207272011 _678722950. t xt
hi ve> show t abl es;

tabl el

tabl e2

hi ve> quit;

4. Confirm that your package management command is aware of the Impala repository settings, as described in
Impala Requirements on page 23. (For CDH 4, this is a different repository than for CDH.) You might need to
download a repo or list file into a system directory underneath / et c.

5. Use one of the following sets of commands to install the Impala package:

For RHEL, Oracle Linux, or CentOS systems:

$ sudo yuminstall inpala # Binaries for daenons

$ sudo yuminstall inpal a-server # Service start/stop script
$ sudo yuminstall inpala-state-store # Service start/stop script
$ sudo yuminstall inpal a-catal og # Service start/stop script

http://www.cloudera.com/documentation/enterprise/latest/topics/installation.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hive_installation.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hive_installation.html

For SUSE systems:

$ sudo zypper install inpala # Binaries for daenons

$ sudo zypper install inpala-server # Service start/stop script

$ sudo zypper install inpala-state-store # Service start/stop script

$ sudo zypper install inpal a-catal og # Service start/stop script
For Debian or Ubuntu systems:

$ sudo apt-get install inpala # Binaries for daenons

$ sudo apt-get install inpala-server # Service start/stop script

$ sudo apt-get install inpala-state-store # Service start/stop script

$ sudo apt-get install inpala-catal og # Service start/stop script

E,’ Note: Cloudera recommends that you not install Impala on any HDFS NameNode. Installing
Impala on NameNodes provides no additional data locality, and executing queries with such a
configuration might cause memory contention and negatively impact the HDFS NameNode.

6. Copy theclient hi ve-site.xm ,core-site.xm ,bhdfs-site.xm,bandhbase-site.xm configuration files
to the Impala configuration directory, which defaults to/ et ¢/ i npal a/ conf . Create this directory if it does not
already exist.

7. Use one of the following commands to install i npal a- shel | on the machines from which you want to issue
queries. You caninstalli mpal a- shel I onanysupported machine that can connect to DataNodes that are running
i mpal ad.

For RHEL/CentOS systems:

$ sudo yuminstall inpala-shell
For SUSE systems:
$ sudo zypper install inpala-shell

For Debian/Ubuntu systems:

$ sudo apt-get install inpala-shell

8. Complete any required or recommended configuration, as described in Post-Installation Configuration for Impala
on page 36. Some of these configuration changes are mandatory.

Once installation and configuration are complete, see Starting Impala on page 32 for how to activate the software on
the appropriate nodes in your cluster.

If this is your first time setting up and using Impala in this cluster, run through some of the exercises in Impala Tutorials
on page 56 to verify that you can do basic operations such as creating tables and querying them.

Managing Impala

This section explains how to configure Impala to accept connections from applications that use popular programming
APls:

e Post-Installation Configuration for Impala on page 36
¢ Configuring Impala to Work with ODBC on page 37
e Configuring Impala to Work with JDBC on page 40

This type of configuration is especially useful when using Impala in combination with Business Intelligence tools, which
use these standard interfaces to query different kinds of database and Big Data systems.

You can also configure these other aspects of Impala:

* |mpala Security on page 109
e Modifying Impala Startup Options on page 29

Post-Installation Configuration for Impala

This section describes the mandatory and recommended configuration settings for Impala. If Impala is installed using
Cloudera Manager, some of these configurations are completed automatically; you must still configure short-circuit
reads manually. If you installed Impala without Cloudera Manager, or if you want to customize your environment,
consider making the changes described in this topic.

In some cases, depending on the level of Impala, CDH, and Cloudera Manager, you might need to add particular
component configuration details in one of the free-form fields on the Impala configuration pages within Cloudera
Manager. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera Manager 5, they are called
Advanced Configuration Snippet.

¢ You must enable short-circuit reads, whether or not Impala was installed through Cloudera Manager. This setting
goes in the Impala configuration settings, not the Hadoop-wide settings.

¢ Ifyouinstalled Impalain an environment that is not managed by Cloudera Manager, you must enable block location
tracking, and you can optionally enable native checksumming for optimal performance.

¢ If you deployed Impala using Cloudera Manager see Testing Impala Performance on page 624 to confirm proper
configuration.

Mandatory: Short-Circuit Reads

Enabling short-circuit reads allows Impala to read local data directly from the file system. This removes the need to
communicate through the DataNodes, improving performance. This setting also minimizes the number of additional
copies of data. Short-circuit reads requires | i bhadoop. so (the Hadoop Native Library) to be accessible to both the
server and the client. | i bhadoop. so is not available if you have installed from a tarball. You must install from an

. rpm . deb, or parcel to use short-circuit local reads.

E,’ Note: If you use Cloudera Manager, you can enable short-circuit reads through a checkbox in the
user interface and that setting takes effect for Impala as well.

To configure DataNodes for short-circuit reads:

1. Copytheclientcore-site.xm andhdf s-site.xn configuration files from the Hadoop configuration directory
to the Impala configuration directory. The default Impala configuration location is / et ¢/ i npal a/ conf .

2. On all Impala nodes, configure the following properties in Impala's copy of hdf s- si t e. xm as shown:

<property>
<nane>dfs. client.read. shortcircuit</nanme>

<val ue>true</ val ue>
</ property>

<property>
<nane>df s. domai n. socket . pat h</ name>
<val ue>/ var/run/ hdf s- socket s/ dn</ val ue>
</ property>
<property>
<name>dfs.client.file-bl ock-storage-locations.tinmeout.mllis</name>
<val ue>10000</ val ue>
</ property>

3. If/ var/ run/ hadoop- hdf s/ is group-writable, make sure its group is r oot .

E,’ Note: If you are also going to enable block location tracking, you can skip copying configuration

files and restarting DataNodes and go straight to Optional: Block Location Tracking. Configuring
short-circuit reads and block location tracking require the same process of copying files and
restarting services, so you can complete that process once when you have completed all
configuration changes. Whether you copy files and restart services now or during configuring
block location tracking, short-circuit reads are not enabled until you complete those final steps.

4. After applying these changes, restart all DataNodes.

Mandatory: Block Location Tracking

Enabling block location metadata allows Impala to know which disk data blocks are located on, allowing better utilization
of the underlying disks. Impala will not start unless this setting is enabled.

To enable block location tracking:

1. For each DataNode, adding the following to the hdf s- si t e. xni file:

<property>
<nane>df s. dat anode. hdf s- bl ocks- net adat a. enabl ed</ nanme>
<val ue>true</ val ue>

</ property>

2. Copytheclientcore-site. xm andhdf s-site.xnl configuration files from the Hadoop configuration directory
to the Impala configuration directory. The default Impala configuration location is / et ¢/ i npal a/ conf.

3. After applying these changes, restart all DataNodes.

Optional: Native Checksumming

Enabling native checksumming causes Impala to use an optimized native library for computing checksumes, if that library
is available.

To enable native checksumming:

If you installed CDH from packages, the native checksumming library is installed and setup correctly. In such a case,
no additional steps are required. Conversely, if you installed by other means, such as with tarballs, native checksumming
may not be available due to missing shared objects. Finding the message "Unabl e to | oad nati ve- hadoop
library for your platform.. using builtin-java classes where applicabl e"inthe Impalalogs
indicates native checksumming may be unavailable. To enable native checksumming, you must build and install

| i bhadoop. so (the Hadoop Native Library).

Configuring Impala to Work with ODBC

Third-party products can be designed to integrate with Impala using ODBC. For the best experience, ensure any
third-party product you intend to use is supported. Verifying support includes checking that the versions of Impala,

ODBGC, the operating system, and the third-party product have all been approved for use together. Before configuring
your systems to use ODBC, download a connector. You may need to sign in and accept license agreements before
accessing the pages required for downloading ODBC connectors.

Downloading the ODBC Driver

Important: As of late 2015, most business intelligence applications are certified with the 2.x ODBC
drivers. Although the instructions on this page cover both the 2.x and 1.x drivers, expect to use the
2.x drivers exclusively for most ODBC applications connecting to Impala.

See the database drivers section on the Cloudera downloads web page to download and install the driver.

Configuring the ODBC Port

Versions 2.5 and 2.0 of the Cloudera ODBC Connector, currently certified for some but not all Bl applications, use the
HiveServer2 protocol, corresponding to Impala port 21050. Impala supports Kerberos authentication with all the
supported versions of the driver, and requires ODBC 2.05.13 for Impala or higher for LDAP username/password
authentication.

Version 1.x of the Cloudera ODBC Connector uses the original HiveServerl protocol, corresponding to Impala port
21000.

Example of Setting Up an ODBC Application for Impala

To illustrate the outline of the setup process, here is a transcript of a session to set up all required drivers and a business
intelligence application that uses the ODBC driver, under Mac OS X. Each . dny file runs a GUI-based installer, first for
the underlying IODBC driver needed for non-Windows systems, then for the Cloudera ODBC Connector, and finally for
the Bl tool itself.

$1s -1
Cl ouder a- ODBC-Dri ver-for-1Impal a-1nstal | - Gui de. pdf
Bl _Tool _Install er. dng
i odbc-sdk-3.52. 7- macosx- 10. 5. dng
Cl ouder al npal aODBC. dnyg
$ open iodbc-sdk-3.52. 7-macosx- 10. dng
Install the 1 ODBC driver using its installer
$ open d ouder al mpal aCDBC. dng
Install the C oudera ODBC Connector using its installer
$ installer_dir=$(pwd)
§ ::d [opt/ cl ouder a/ i npal aodbc
s -1
Cl oudera ODBC Driver for Inpala Install Cuide. pdf
Readne. t xt
Set up
lib
Err or Messages
Rel ease Notes. t xt

Tool s

$ cd Setup

$1s

odbc. i ni odbci nst.ini

$ cp odbc.ini ~/.odbc.ini

$ vi ~/.odbc.ini

$ cat ~/.odbc.ini

[ODBC]

Specify any gl obal ODBC configuration here such as ODBC tracing.

[ODBC Dat a Sour ces]
Sanpl e Cl oudera I npala DSN=Cl oudera ODBC Driver for Inpala

[Sanpl e Cl oudera I npal a DSN|
Description: DSN Description.

This key is not necessary and is only to give a description of the data source.
Descri pti on=Cl oudera ODBC Driver for |nmpala DSN

https://www.cloudera.com/downloads.html
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/Downloads

Driver: The |ocation where the ODBC driver is installed to.
Driver=/opt/cl ouderalinpal aodbc/ i b/universal/libcl ouderai npal aodbc. dylib

The Driver Uni codeEncodi ng setting is only used for SinbaDM
Wien set to 1, SinmbaDMruns in UTF-16 node.

When set to 2, SinmbaDMruns in UTF-8 node.

#Dr i ver Uni codeEncodi ng=2

Val ues for HOST, PORT, KrbFQDN, and KrbServi ceNane shoul d be set here.
They can al so be specified on the connection string.

HOST=host nane. sanpl e. exanpl e. com

PORT=21050

Schena=def aul t

The aut hentication nmechani sm

0 - No authentication (NCSASL)

1 - Kerberos authentication (SASL)

2 - Username authentication (SASL)

3 - Usernane/ password aut hentication (SASL)
4 - Username/ password aut hentication with SSL (SASL)
5 - No authentication with SSL (NOSASL)

6 - Username/ password aut hentication (NOSASL)
Aut hMech=0

Kerberos rel ated settings.

Kr bFQDN=

Kr bReal n¥

Kr bSer vi ceNane=

User nane/ password aut hentication with SSL settings.

Ul D=

PWD

CAl ssuedCert NanesM smat ch=1

Trust edCert s=/ opt/cl ouder a/i npal aodbc/ | i b/ uni versal /cacerts. pem

Specify the proxy user ID to use.
#Del egat i onUl D=

General settings

TSasl Tr ansport Buf Si ze=1000

RowsFet chedPer Bl ock=10000

Socket Ti meout =0

St ri ngCol utmLengt h=32767

UseNat i veQuery=0

$ pwd

/ opt/ cl ouder a/ i npal aodbc/ Set up

$ cd Sinstaller_dir

$ open Bl _Tool _Installer.dng

Install the Bl tool using its installer
$ Is /Applications | grep BI_Tool

Bl _Tool . app

$ open -a BI_Tool . app

In the Bl tool, connect to a data source using port 21050

Notes about JDBC and ODBC Interaction with Impala SQL Features

Most Impala SQL features work equivalently through the i nmpal a- shel | interpreter of the JDBC or ODBC APIs. The
following are some exceptions to keep in mind when switching between the interactive shell and applications using
the APIs:

E,i Note: If your JDBC or ODBC application connects to Impala through a load balancer such as hapr oxy,
be cautious about reusing the connections. If the load balancer has set up connection timeout values,
either check the connection frequently so that it never sits idle longer than the load balancer timeout
value, or check the connection validity before using it and create a new one if the connection has
been closed.

Configuring Impala to Work with JDBC

Impala supports the standard JDBC interface, allowing access from commercial Business Intelligence tools and custom
software written in Java or other programming languages. The JDBC driver allows you to access Impala from a Java
program that you write, or a Business Intelligence or similar tool that uses JDBC to communicate with various database
products.

Setting up a JDBC connection to Impala involves the following steps:

e Verifying the communication port where the Impala daemons in your cluster are listening for incoming JDBC
requests.

¢ Installing the JDBC driver on every system that runs the JDBC-enabled application.

¢ Specifying a connection string for the JDBC application to access one of the servers running the i npal ad daemon,
with the appropriate security settings.

Configuring the JDBC Port

The default port used by JDBC 2.0 and later (as well as ODBC 2.x) is 21050. Impala server accepts JDBC connections
through this same port 21050 by default. Make sure this port is available for communication with other hosts on your
network, for example, that it is not blocked by firewall software. If your JDBC client software connects to a different
port, specify that alternative port number with the - - hs2_port option when starting i mpal ad. See Starting Impala
on page 32 for details about Impala startup options. See Ports Used by Impala on page 738 for information about all
ports used for communication between Impala and clients or between Impala components.

Choosing the JDBC Driver

In Impala 2.0 and later, you have the choice between the Cloudera JDBC Connector and the Hive 0.13 JDBC driver.
Cloudera recommends using the Cloudera JDBC Connector where practical.

If you are already using JDBC applications with an earlier Impala release, you must update your JDBC driver to one of
these choices, because the Hive 0.12 driver that was formerly the only choice is not compatible with Impala 2.0 and
later.

Both the Cloudera JDBC 2.5 Connector and the Hive JDBC driver provide a substantial speed increase for JDBC applications
with Impala 2.0 and higher, for queries that return large result sets.

Enabling Impala JDBC Support on Client Systems

Using the Cloudera JDBC Connector (recommended)

You download and install the Cloudera JDBC 2.5 connector on any Linux, Windows, or Mac system where you intend
to run JDBC-enabled applications. From the Cloudera Connectors download page, you choose the appropriate protocol
(JDBC or ODBC) and target product (Impala or Hive). The ease of downloading and installing on a wide variety of systems
makes this connector a convenient choice for organizations with heterogeneous environments.

Using the Hive JDBC Driver

You install the Hive JDBC driver (hi ve-j dbc package) through the Linux package manager, on hosts within the CDH
cluster. The driver consists of several Java JAR files. The same driver can be used by Impala and Hive.

To get the JAR files, install the Hive JDBC driver on each host in the cluster that will run JDBC applications. Follow the
instructions for Installing the Hive JDBC Driver on Clients in CDH.

E’; Note: The latest JDBC driver, corresponding to Hive 0.13, provides substantial performance

improvements for Impala queries that return large result sets. Impala 2.0 and later are compatible
with the Hive 0.13 driver. If you already have an older JDBC driver installed, and are running Impala
2.0 or higher, consider upgrading to the latest Hive JDBC driver for best performance with JDBC
applications.

http://www.cloudera.com/documentation/other/connectors/impala-jdbc/latest.html

If you are using JDBC-enabled applications on hosts outside the CDH cluster, you cannot use the CDH install procedure
on the non-CDH hosts. Install the JDBC driver on at least one CDH host using the preceding procedure. Then download
the JAR files to each client machine that will use JDBC with Impala:

commons- | oggi ng- X. X. X. j ar
hadoop- comon. j ar
hi ve- common- X. XX. X- cdhX. X. X. j ar
hi ve-j dbc- X. XX. X-cdhX. X. X.j ar
hi ve- met ast or e- X. XX. X-cdhX. X. X. j ar
hi ve-servi ce- X. XX. X-cdhX. X. X. j ar
httpclient-X X X.jar
httpcore-X X X. jar
I'i bf b303-X. X. X. j ar
libthrift-X X X jar

I og4j - X. X. XX. j ar
slf4j-api-X X X.jar
sl f4j-1o0gX XX-X. X. X.jar

To enable JDBC support for Impala on the system where you run the JDBC application:

1. Download the JAR files listed above to each client machine.

E’; Note: For Maven users, see this sample github page for an example of the dependencies you
could add to a pomfile instead of downloading the individual JARs.

2. Store the JAR files in a location of your choosing, ideally a directory already referenced in your CLASSPATH setting.
For example:

e On Linux, you might use a location such as/opt/j ars/.
¢ On Windows, you might use a subdirectory underneath C: \ Program Fi | es.

3. To successfully load the Impala JDBC driver, client programs must be able to locate the associated JAR files. This
often means setting the CLASSPATH for the client process to include the JARs. Consult the documentation for
your JDBC client for more details on how to install new JDBC drivers, but some examples of how to set CLASSPATH
variables include:

e On Linux, if you extracted the JARs to/ opt / j ar s/, you might issue the following command to prepend the
JAR files path to an existing classpath:

export CLASSPATH=/opt/jars/*.jar: $CLASSPATH

e On Windows, use the System Properties control panel item to modify the Environment Variables for your
system. Modify the environment variables to include the path to which you extracted the files.

E,’ Note: If the existing CLASSPATH on your client machine refers to some older version of the
Hive JARs, ensure that the new JARs are the first ones listed. Either put the new JAR files
earlier in the listings, or delete the other references to Hive JAR files.

Establishing JDBC Connections

The JDBC driver class depends on which driver you select.

E,i Note: If your JDBC or ODBC application connects to Impala through a load balancer such as hapr oxy,
be cautious about reusing the connections. If the load balancer has set up connection timeout values,
either check the connection frequently so that it never sits idle longer than the load balancer timeout
value, or check the connection validity before using it and create a new one if the connection has
been closed.

https://github.com/onefoursix/Cloudera-Impala-JDBC-Example

Using the Cloudera JDBC Connector (recommended)

Depending on the level of the JDBC API your application is targeting, you can use the following fully-qualified class
names (FQCNs):

e comcloudera.inpal a.jdbc4l. Driver
e com cl oudera.inpal a.jdbc4l. Dat aSour ce

e com cl oudera.inpal a.jdbc4.Driver
e com cl oudera. i npal a. j dbc4. Dat aSour ce

e com cl oudera.inpal a.jdbc3. Driver
e com cl oudera. i npal a. j dbc3. Dat aSour ce

The connection string has the following format:
jdbc:inpala://Host:Port[/Schema]; Propertyl=Val ue; Property2=Val ue;. ..

The port value is typically 21050 for Impala.

For full details about the classes and the connection string (especially the property values available for the connection
string), download the appropriate driver documentation for your platform from the Impala JDBC Connector download

page.

Using the Hive JDBC Driver

For example, with the Hive JDBC driver, the class name is or g. apache. hi ve. j dbc. Hi veDri ver. Once you have
configured Impala to work with JDBC, you can establish connections between the two. To do so for a cluster that does
not use Kerberos authentication, use a connection string of the form j dbc: hi ve2: // host: port/; aut h=noSasl .
For example, you might use:

j dbc: hive2://nyhost. exanpl e. com 21050/ ; aut h=noSasl

To connect to an instance of Impala that requires Kerberos authentication, use a connection string of the form
jdbc: hive2://host:port/;principal =princi pal _nane. The principal must be the same user principal you
used when starting Impala. For example, you might use:

j dbc: hive2:// nyhost. exanpl e. com 21050/ ; pri nci pal =i npal a/ nyhost . exanpl e. com@{2. EXAMPLE. COM

To connect to an instance of Impala that requires LDAP authentication, use a connection string of the form
jdbc: hive2://host: port/db_nane; user=Il dap_useri d; passwor d=I dap_passwor d. For example, you might
use:

jdbc: hive2://nyhost. exanpl e. com 21050/ t est _db; user =fr ed; passwor d=xyz123

E,i Note:

Prior to CDH 5.7 / Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos
authentication and SSL encryption. If your cluster is running an older release that has this restriction,
to use both of these security features with Impala through a JDBC application, use the Cloudera JDBC
Connector as the JDBC driver.

Notes about JDBC and ODBC Interaction with Impala SQL Features

Most Impala SQL features work equivalently through the i npal a- shel | interpreter of the JDBC or ODBC APIs. The
following are some exceptions to keep in mind when switching between the interactive shell and applications using
the APIs:

e Complex type considerations:

http://www.cloudera.com/content/cloudera/en/downloads/connectors/impala/jdbc/impala-jdbc-v2-5-5.html
http://www.cloudera.com/content/cloudera/en/downloads/connectors/impala/jdbc/impala-jdbc-v2-5-5.html
http://www.cloudera.com/content/www/en-us/downloads.html
http://www.cloudera.com/content/www/en-us/downloads.html

— Queries involving the complex types (ARRAY, STRUCT, and MAP) require notation that might not be available
in all levels of JDBC and ODBC drivers. If you have trouble querying such a table due to the driver level or
inability to edit the queries used by the application, you can create a view that exposes a “flattened” version
of the complex columns and point the application at the view. See Complex Types (CDH 5.5 or higher only)
on page 174 for details.

— The complex types available in CDH 5.5 / Impala 2.3 and higher are supported by the JDBC get Col umms()
API. Both MAP and ARRAY are reported as the JDBC SQL Type ARRAY, because this is the closest matching Java
SQL type. This behavior is consistent with Hive. STRUCT types are reported as the JDBC SQL Type STRUCT.

To be consistent with Hive's behavior, the TYPE_NAME field is populated with the primitive type name for
scalar types, and with the fullt 0Sqgl () for complex types. The resulting type names are somewhat inconsistent,
because nested types are printed differently than top-level types. For example, the following list shows how
t oSQL() for Impala types are translated to TYPE_NAME values:

DECI MAL(10, 10) becomes DECI MAL

CHAR(10) becomes CHAR

VARCHAR(10) becomes VARCHAR

ARRAY<DECI MAL(10, 10) > becones ARRAY<DECI MAL(10, 10) >
ARRAY<CHAR(10) > becones ARRAY<CHAR(10) >
ARRAY<VARCHAR(10) > becomes ARRAY<VARCHAR(10) >

Kudu Considerations for DML Statements

Currently, Impala | NSERT, UPDATE, or other DML statements issued through the JDBC interface against a Kudu table
do not return JDBC error codes for conditions such as duplicate primary key columns. Therefore, for applications that
issue a high volume of DML statements, prefer to use the Kudu Java API directly rather than a JDBC application.

Upgrading Impala

Upgrading Impala involves stopping Impala services, using your operating system's package management tool to
upgrade Impala to the latest version, and then restarting Impala services.

E,i Note:

e Each version of CDH 5 has an associated version of Impala.

e When you upgrade Impala, also upgrade Cloudera Manager if necessary. Cloudera Manager is
continually updated with configuration settings for features introduced in the latest Impala
releases.

e Make sure you are using the appropriate CDH 5 repositories shown on the CDH Version and
Packaging Information page, then follow the procedures throughout the rest of this section.

e Every time you upgrade to a new major or minor Impala release, see Incompatible Changes and
Limitations in Apache Impala in the Release Notes for any changes needed in your source code,
startup scripts, and so on.

¢ Also check Known Issues and Workarounds in Impala in the Release Notes for any issues or
limitations that require workarounds.

Upgrading Impala through Cloudera Manager - Parcels

Parcels are an alternative binary distribution format available in Cloudera Manager 4.5 and higher.

Important: In CDH 5, there is not a separate Impala parcel; Impala is part of the main CDH 5 parcel.
Each level of CDH 5 has a corresponding version of Impala, and you upgrade Impala by upgrading CDH.
See the CDH 5 upgrade instructions and choose the instructions for parcels. The remainder of this
section only covers parcel upgrades for Impala under CDH 4.

To upgrade Impala for CDH 4 in a Cloudera Managed environment, using parcels:

1. If you originally installed using packages and now are switching to parcels, remove all the Impala-related packages
first. You can check which packages are installed using one of the following commands, depending on your operating

system:

rpm-qa # RHEL, Oracle Linux, CentGS, Debian
dpkg --get-selections # Debi an

and then remove the packages using one of the following commands:

sudo yum renove pkg_nanes # RHEL, Oracle Linux, CentGS
sudo zypper renove pkg_names # SLES
sudo apt-get purge pkg_nanmes # Ubuntu, Debian

2. Connect to the Cloudera Manager Admin Console.

3. Go to the Hosts > Parcels tab. You should see a parcel with a newer version of Impala that you can upgrade to.
4. Click Download, then Distribute. (The button changes as each step completes.)

5. Click Activate.

6. When prompted, click Restart to restart the Impala service.

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_upgrading_cdh.html

Upgrading Impala through Cloudera Manager - Packages

To upgrade Impala in a Cloudera Managed environment, using packages:

. Connect to the Cloudera Manager Admin Console.
. In the Services tab, click the Impala service.
. Click Actions and click Stop.

A WN =

. Use one of the following sets of commands to update Impala on each Impala node in your cluster:

For RHEL, Oracle Linux, or CentOS systems:

$ sudo yum update inpal a
$ sudo yum updat e hadoop-1zo-cdh4 # Optional; if this package is already installed

For SUSE systems:

$ sudo zypper update inpal a
$ sudo zypper update hadoop-1zo-cdh4 # Optional; if this package is already installed

For Debian or Ubuntu systems:

$ sudo apt-get install inpala
$ sudo apt-get install hadoop-1zo-cdh4 # Optional; if this package is already installed

5. Use one of the following sets of commands to update Impala shell on each node on which it is installed:

For RHEL, Oracle Linux, or CentOS systems:
$ sudo yum updat e inpal a-shel |
For SUSE systems:
$ sudo zypper update inpal a-shell
For Debian or Ubuntu systems:

$ sudo apt-get install inpala-shell

6. Connect to the Cloudera Manager Admin Console.
7. In the Services tab, click the Impala service.
8. Click Actions and click Start.

Upgrading Impala from the Command Line

To upgrade Impala on a cluster by using the command-line, run these Linux commands on the appropriate hosts in
your cluster:

1. Stop Impala services.

a. Stopi npal ad on each Impala node in your cluster:
$ sudo service inpal a-server stop
b. Stop any instances of the state store in your cluster:

$ sudo service inpal a-state-store stop

c. Stop any instances of the catalog service in your cluster:

$ sudo service inpal a-catal og stop

2. Check if there are new recommended or required configuration settings to put into place in the configuration
files, typically under / et c/ i npal a/ conf . See Post-Installation Configuration for Impala on page 36 for settings
related to performance and scalability.

3. Use one of the following sets of commands to update Impala on each Impala node in your cluster:

For RHEL, Oracle Linux, or CentOS systems:

$ sudo yum update inpal a-server

$ sudo yum update hadoop-1|zo-cdh4 # Optional; if this package is already installed

$ sudo yumupdate inpal a-catalog # Newin Inpala 1.2; do yuminstall when upgrading from
1.1.

For SUSE systems:

$ sudo zypper update inpal a-server

$ sudo zypper update hadoop-1|zo-cdh4 # Optional; if this package is already installed
$ sudo zypper update inpal a-catalog # Newin Inpala 1.2; do zypper install when upgradi ng
from1. 1.

For Debian or Ubuntu systems:

$ sudo apt-get install inpala-server
$ sudo apt-get install hadoop-lzo-cdh4 # Optional; if this package is already installed
$ sudo apt-get install inpala-catalog # Newin Inpala 1.2.

4. Use one of the following sets of commands to update Impala shell on each node on which it is installed:

For RHEL, Oracle Linux, or CentOS systems:
$ sudo yum updat e inpal a-shel |
For SUSE systems:
$ sudo zypper update inpal a-shell
For Debian or Ubuntu systems:
$ sudo apt-get install inpala-shell
5. Depending on which release of Impala you are upgrading from, you might find that the symbolic links

/etcl/inpal al conf and/usr/Ilib/inpal a/ sbi nare missing. If so, see Known Issues and Workarounds in
Impala for the procedure to work around this problem.

6. Restart Impala services:

a. Restart the Impala state store service on the desired nodes in your cluster. Expect to see a process named
st at est or ed if the service started successfully.

$ sudo service inpal a-state-store start

$ ps ax | grep [s]tatestored

6819 ? Sl 0: 07 /usr/lib/inpalalshin/statestored -1og_dir=/var/log/inpal a
-state_store_port=24000

Restart the state store service before the Impala server service to avoid “Not connected” errors when you
runi npal a- shel I .

b. Restart the Impala catalog service on whichever host it runs on in your cluster. Expect to see a process named
cat al ogd if the service started successfully.

$ sudo service inpala-catalog restart
$ ps ax | grep [c]atal ogd
6068 ? Sl 4:06 /usr/lib/inpalal/sbin/catal ogd

c. Restart the Impala daemon service on each node in your cluster. Expect to see a process named i npal ad if
the service started successfully.

$ sudo service inpal a-server start

$ ps ax | grep [i]npal ad
7936 ? Sl 0: 12 /usr/lib/inpal a/shin/inpalad -1og_dir=/var/log/inpal a

-state_store_port=24000
-state_store_host=127.0.0.1 -be_port=22000

E,’ Note:

If the services did not start successfully (even though the sudo ser vi ce command might display
[OK]), check for errors in the Impala log file, typically in/ var /| og/ i npal a.

Converting Legacy UDFs During Upgrade to CDH 5.12 or Higher

In CDH 5.7 / Impala 2.5 and higher, new syntax is available for creating Java-based UDFs. UDFs created with the new
syntax persist across Impala restarts, and are more compatible with Hive UDFs. Because the replication features in
CDH 5.12 and higher only work with the new-style syntax, convert any older Java UDFs to use the new syntax at the
same time you upgrade to CDH 5.12 or higher.

Follow these steps to convert old-style Java UDFs to the new persistent kind:
e Use SHOW FUNCTI ONS to identify all UDFs and UDAs.
* For each function, use SHOW CREATE FUNCTI ON and save the statement in a script file.

e ForJava UDFs, change the output of SHOW CREATE FUNCTI ONto use the new CREATE FUNCTI ONsyntax (without
argument types), which makes the UDF persistent.

e For each function, drop it and re-create it, using the new CREATE FUNCTI ON syntax for all Java UDFs.

Upgrade Considerations

Handling Large Rows During Upgrade to CDH 5.13 / Impala 2.10 or Higher

In CDH 5.13 / Impala 2.10 and higher, the handling of memory management for large column values is different than
in previous releases. Some queries that succeeded previously might now fail immediately with an error message. The
--read_si ze option no longer needs to be increased from its default of 8 MB for queries against tables with huge
column values. Instead, the query option MAX_ROW SI ZE lets you fine-tune this value at the level of individual queries
or sessions. The default for MAX_ROW SI ZE is 512 KB. If your queries process rows with column values totalling more
than 512 KB, you might need to take action to avoid problems after upgrading.

Follow these steps to verify if your deployment needs any special setup to deal with the new way of dealing with large
rows:

1. Check if your i npal ad daemons are already running with a larger-than-normal value for the - - r ead_si ze
configuration setting.

2. Examine all tables to find if any have STRI NGvalues that are hundreds of kilobytes or more in length. This
information is available under the Max Si ze column in the output from the SHOW TABLE STATS statement,
after the COMPUTE STATS statement has been run on the table. In the following example, the S1 column with a
maximum length of 700006 could cause an issue by itself, or if a combination of values from the S1, S2, and S3
columns exceeded the 512 KB MAX_ROW SI ZE value.

show col umm stats big_strings;

toeme oo Fommm e - Fommm e - . +
| Colum | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
toeme oo Fommm e o e Fommm - - - +
x	BIG NT	30000	-1	8	8
s1	STRING	30000	-1	700006	392625
s2	STRING	30000	-1	10532	9232.6669921875
s3	STRING	30000	-1	103	87.66670227050781
Fomm e m e - - Fom e e oo - o e e e e o oo Fom e e oo - B S Fom e e e e e oo +

3. For each candidate table, run a query to materialize the largest string values from the largest columns all at once.
Check if the query fails with a message suggesting to set the MAX_ROW SI ZE query option.

sel ect count(distinct sl1l, s2, s3) fromlittle_strings;

e +
| count(distinct sl1l, s2, s3) |
™ +
| 30000 [
e +

sel ect count(distinct sl1, s2, s3) frombig_strings;
WARNI NGS: Row of size 692.13 KB could not be naterialized in plan node with id 1.
I ncrease the max_row size query option (currently 512.00 KB) to process |arger rows.

If any of your tables are affected, make sure the MAX_ROW SI ZE is set large enough to allow all queries against the
affected tables to deal with the large column values:

e InSQL scripts run by i npal a- shel | with the - g or - f options, or in interactive i npal a- shel | sessions, issue
a statement SET MAX_ROW SI ZE=I ar ge_enough_si ze before the relevant queries:

$ inmpal a-shell -i localhost -qg \
'set max_row_size=1nmb; select count(distinct sl, s2, s3) from big_strings'

e |f large column values are common to many of your tables and it is not practical to set MAX_ROW SI ZE only for a
limited number of queries or scripts, use the - - def aul t _query_opt i ons configuration setting for all your
i npal ad daemons, and include the larger MAX_ROW SI ZE setting as part of the argument to that setting. For
example:

i mpal ad --default_query_options='"max_row_si ze=1gb; appx_count _di sti nct =true'

e If your deployment uses a non-default value for the - - r ead_si ze configuration setting, remove that setting and
let Impala use the default. A high value for - - r ead_si ze could cause higher memory consumption in CDH 5.13
/ Impala 2.10 and higher than in previous versions. The - - r ead_si ze setting still controls the HDFS 1/0 read size
(which is rarely if ever necessary to change), but no longer affects the spill-to-disk buffer size.

Impala Roles with SELECT or INSERT Privilege Receive REFRESH Privilege During the Upgrade

Due to the Sentry and Impala fine grained privileges feature in CDH 5.16.0, if a role has the SELECT or | NSERT privilege
on an object in Impala before upgrading to CDH 5.16.0, that role will automatically get the REFRESH privilege during
the upgrade.

Default Setting Changes

Upgrading Impala

Release Changed Setting Default Value
CDH 5.15 & CDH 6.1 / Impala 2.12 conpact _cat al og_t opi c true
CDH 5.15 / Impala 2.12 max_cached_fil e_handl es 20000

Apache Impala Guide | 49

Starting Impala

To activate Impala if it is installed but not yet started:

1. Set any necessary configuration options for the Impala services. See Modifying Impala Startup Options on page
29 for details.

2. Start one instance of the Impala statestore. The statestore helps Impala to distribute work efficiently, and to
continue running in the event of availability problems for other Impala nodes. If the statestore becomes unavailable,
Impala continues to function.

3. Start one instance of the Impala catalog service.
4. Start the main Impala daemon services.

Once Impala is running, you can conduct interactive experiments using the instructions in Impala Tutorials on page 56
and try Using the Impala Shell (impala-shell Command) on page 580.

Starting Impala through Cloudera Manager

If you installed Impala with Cloudera Manager, use Cloudera Manager to start and stop services. The Cloudera Manager
GUIlis a convenient way to check that all services are running, to set configuration options using form fields in a browser,
and to spot potential issues such as low disk space before they become serious. Cloudera Manager automatically starts
all the Impala-related services as a group, in the correct order. See the Cloudera Manager Documentation for details.

Note:

In CDH 5.7 / Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore
database. Java UDFs are also persisted, if they were created with the new CREATE FUNCTI ON syntax
for Java UDFs, where the Java function argument and return types are omitted. Java-based UDFs
created with the old CREATE FUNCTI ON syntax do not persist across restarts because they are held
in the memory of the cat al ogd daemon. Until you re-create such Java UDFs using the new CREATE
FUNCTI ONsyntax, you must reload those Java-based UDFs by running the original CREATE FUNCTI ON
statements again each time you restart the cat al ogd daemon. Prior to CDH 5.7 / Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

Starting Impala from the Command Line

To start the Impala state store and Impala from the command line or a script, you can either use the ser vi ce command
or you can start the daemons directly through the i npal ad, st at est or ed, and cat al ogd executables.

Start the Impala statestore and then start i npal ad instances. You can modify the values the service initialization
scripts use when starting the statestore and Impala by editing / et ¢/ def aul t /i npal a.

Start the statestore service using a command similar to the following:

$ sudo service inpal a-state-store start

Start the catalog service using a command similar to the following:

$ sudo service inpal a-catal og start

Start the Impala daemon services using a command similar to the following:

$ sudo service inpal a-server start

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_start_stop_service.html

E,i Note:

In CDH 5.7 / Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore
database. Java UDFs are also persisted, if they were created with the new CREATE FUNCTI ON syntax
for Java UDFs, where the Java function argument and return types are omitted. Java-based UDFs
created with the old CREATE FUNCTI ONsyntax do not persist across restarts because they are held
in the memory of the cat al ogd daemon. Until you re-create such Java UDFs using the new CREATE
FUNCTI ONsyntax, you must reload those Java-based UDFs by running the original CREATE FUNCTI ON
statements again each time you restart the cat al ogd daemon. Prior to CDH 5.7 / Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

If any of the services fail to start, review:

e Reviewing Impala Logs on page 726
e Troubleshooting Impala on page 729

Modifying Impala Startup Options

The configuration options for the Impala-related daemons let you choose which hosts and ports to use for the services
that run on a single host, specify directories for logging, control resource usage and security, and specify other aspects
of the Impala software.

Configuring Impala Startup Options through Cloudera Manager

If you manage your cluster through Cloudera Manager, configure the settings for all the Impala-related daemons by
navigating to this page: Clusters > Impala > Configuration > View and Edit. See the Cloudera Manager documentation
for instructions about how to configure Impala through Cloudera Manager.

If the Cloudera Manager interface does not yet have a form field for a newly added option, or if you need to use special
options for debugging and troubleshooting, the Advanced option page for each daemon includes one or more fields
where you can enter option names directly. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera
Manager 5, they are called Advanced Configuration Snippet. There is also a free-form field for query options, on the
top-level Impala Daemon options page.

Configuring Impala Startup Options through the Command Line

When you run Impala in a non-Cloudera Manager environment, the Impala server, statestore, and catalog services
start up using values provided in a defaults file, / et ¢/ def aul t /i npal a.

This file includes information about many resources used by Impala. Most of the defaults included in this file should
be effective in most cases. For example, typically you would not change the definition of the CLASSPATH variable, but
you would always set the address used by the statestore server. Some of the content you might modify includes:

| MPALA_STATE_STORE_HOST=127.0.0. 1
| MPALA_STATE_STORE_PORT=24000

| MPALA_BACKEND PORT=22000

| MPALA_LOG DI R=/ var /1 og/ i rrpal a

| MPALA_CATALOG_SERVI CE_HOST=.

| MPALA_STATE_STORE_HOST=. .

export | MPALA_STATE_STORE_ARGS=${| MPALA STATE_STORE_ARGS: - \
-1 og_di r=%{| I\/PALA_LOG DIR} -state_store_port=${1 MPALA STATE_STORE_PCRT}}
| MPALA_SERVER_ARGS=" \
-1 og_dir=${I MPALA_ LOG DIR} \
- cat al og_ser vi ce_host =${1 MPALA_CATALOG_SERVI CE_HOST} \
-state_store_port=%${1 MPALA STATE STORE_PORT} \
-stat e_st ore_host =${1 MPALA_STATE_STORE_HOST} \
- be_port =${ | MPALA_BACKEND PORT}"
export ENABLE_CORE_DUMPS=${ ENABLE_COREDUMPS: - f al se}

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_impala_service.html

To use alternate values, edit the defaults file, then restart all the Impala-related services so that the changes take
effect. Restart the Impala server using the following commands:

$ sudo service inpal a-server restart
St oppi ng | npal a Server: [O]
Starting I npala Server: [&K

Restart the Impala statestore using the following commands:

$ sudo service inpala-state-store restart

Stopping Inpala State Store Server: [O]
Starting Inpala State Store Server: [OK]
Restart the Impala catalog service using the following commands:

$ sudo service inpal a-catal og restart

St oppi ng I npal a Cat al og Server: [O]
Starting Inpala Catal og Server: [O]

Some common settings to change include:

e Statestore address. Where practical, put the statestore on a separate host not running the i npal ad daemon. In
that recommended configuration, the i npal ad daemon cannot refer to the statestore server using the loopback
address. If the statestore is hosted on a machine with an IP address of 192.168.0.27, change:

| MPALA STATE STORE HOST=127.0.0. 1
to:

| MPALA_STATE_STORE_HOST=192. 168. 0. 27

e Catalog server address (including both the hostname and the port number). Update the value of the
| MPALA CATALOG SERVI CE_HOST variable. Cloudera recommends the catalog server be on the same host as
the statestore. In that recommended configuration, the i npal ad daemon cannot refer to the catalog server using

the loopback address. If the catalog service is hosted on a machine with an IP address of 192.168.0.27, add the
following line:

I MPALA_CATALOG_SERVI CE_HOST=192. 168. 0. 27: 26000

The / et ¢/ def aul t /i npal a defaults file currently does not define an | MPALA_CATALOG_ARGS environment
variable, but if you add one it will be recognized by the service startup/shutdown script. Add a definition for this
variable to/ et ¢/ def aul t /i npal a and add the option - cat al og_ser vi ce_host =host nane. If the port is
different than the default 26000, also add the option - cat al og_servi ce_port =port.

Memory limits. You can limit the amount of memory available to Impala. For example, to allow Impala to use no
more than 70% of system memory, change:

export | MPALA SERVER ARGS=${| MPALA SERVER_ARGS: - \
-1 og_di r=${I MPALA_LOG DI R} \
-state_store_port=${1 MPALA_STATE_STORE_PCRT} \
-state_store_host =${| MPALA_STATE_STORE_HOST} \
- be_port =${| MPALA_BACKEND_PORT}}

to:

export | MPALA SERVER ARGS=${| MPALA_ SERVER ARGS: - \
-1 og_di r=${1 MPALA LOG DIR} -state_store_port=${| MPALA STATE_STORE_PORT} \
-state_store_host =${1 MPALA_STATE_STORE_HOST} \
-be_port=${| MPALA_BACKEND PORT} -mem|imt=70%

You can specify the memory limit using absolute notation such as 500mor 2G or as a percentage of physical
memory such as 60%

E,i Note: Queries that exceed the specified memory limit are aborted. Percentage limits are based
on the physical memory of the machine and do not consider cgroups.

e Core dump enablement. To enable core dumps on systems not managed by Cloudera Manager, change:
export ENABLE_CORE_DUMPS=${ ENABLE_COREDUMPS: - f al se}
to:
export ENABLE_CORE_DUMPS=${ ENABLE_COREDUMPS: -t r ue}

On systems managed by Cloudera Manager, enable the Enable Core Dump setting for the Impala service.

E’; Note:

e The location of core dump files may vary according to your operating system configuration.

e Other security settings may prevent Impala from writing core dumps even when this option
is enabled.

e On systems managed by Cloudera Manager, the default location for core dumps is on a
temporary filesystem, which can lead to out-of-space issues if the core dumps are large,
frequent, or not removed promptly. To specify an alternative location for the core dumps,
filter the Impala configuration settings to find the cor e_dunp_di r option, which is available
in Cloudera Manager 5.4.3 and higher. This option lets you specify a different directory for
core dumps for each of the Impala-related daemons.

e Authorization using the open source Sentry plugin. Specify the - ser ver _nane and
-aut horization_policy_fil eoptionsaspartofthel MPALA SERVER ARGSand | MPALA_STATE_STORE_ARGS
settings to enable the core Impala support for authentication. See Starting the impalad Daemon with Sentry
Authorization Enabled on page 118 for details.

¢ Auditing for successful or blocked Impala queries, another aspect of security. Specify the
-audit _event _| og_dir=di rectory_pat h option and optionally the
-max_audi t _event | og_fil e_size=nunber_of queri esand-abort_on_fail ed_audit_event options
as part of the | MPALA_SERVER _ARGS settings, for each Impala node, to enable and customize auditing. See
Auditing Impala Operations on page 106 for details.

e Password protection for the Impala web Ul, which listens on port 25000 by default. This feature involves adding
some or all of the - - webser ver _password_fil e, --webserver _aut henti cati on_donai n, and
--webserver _certificate fil e optionstothel MPALA SERVER ARGS and | MPALA STATE_STORE_ARGS
settings. See Security Guidelines for Impala on page 109 for details.

e Another setting you might add to | MPALA_ SERVER ARGS is a comma-separated list of query options and values:
-defaul t_query_options='opti on=val ue, opti on=val ue,..."

These options control the behavior of queries performed by this i npal ad instance. The option values you specify
here override the default values for Impala query options, as shown by the SET statement ini npal a- shel I .

e During troubleshooting, Cloudera Support might direct you to change other values, particularly for
| MPALA SERVER_ARGS, to work around issues or gather debugging information.

E,i Note:

These startup options for the i npal ad daemon are different from the command-line options for the
i mpal a- shel | command. For the i npal a- shel | options, see impala-shell Configuration Options
on page 580.

Checking the Values of Impala Configuration Options

You can check the current runtime value of all these settings through the Impala web interface, available by default
athttp://inpal a_host nane: 25000/ var z for thei npal ad daemon, htt p: //i npal a_host nane: 25010/ var z
for the st at est or ed daemon, or htt p: / /i npal a_host nane: 25020/ var z for the cat al ogd daemon. In the
Cloudera Manager interface, you can see the link to the appropriate service_name Web Ul page when you look at the
status page for a specific daemon on a specific host.

Startup Options for impalad Daemon

The i npal ad daemon implements the main Impala service, which performs query processing and reads and writes
the data files.

Startup Options for statestored Daemon

The st at est or ed daemon implements the Impala statestore service, which monitors the availability of Impala services
across the cluster, and handles situations such as nodes becoming unavailable or becoming available again.

Startup Options for catalogd Daemon

The cat al ogd daemon implements the Impala Catalog service, which broadcasts metadata changes to all the Impala
nodes when Impala creates a table, inserts data, or performs other kinds of DDL and DML operations.

Use - -1 oad_cat al og_i n_backgr ound option to control when the metadata of a table is loaded.

e |fsettofal se, the metadata of a table is loaded when it is referenced for the first time. This means that the first
run of a particular query can be slower than subsequent runs. Starting in Impala 2.2, the default for
| oad_cat al og_i n_backgroundisfal se.

e Ifsettotrue, the catalog service attempts to load metadata for a table even if no query needed that metadata.
So metadata will possibly be already loaded when the first query that would need it is run. However, for the
following reasons, we recommend not to set the optiontotr ue.

— Background load can interfere with query-specific metadata loading. This can happen on startup or after
invalidating metadata, with a duration depending on the amount of metadata, and can lead to a seemingly
random long running queries that are difficult to diagnose.

— Impala may load metadata for tables that are possibly never used, potentially increasing catalog size and
consequently memory usage for both catalog service and Impala Daemon.

Startup Options for Automatic Invalidation of Metadata

E,’ Note: This is a preview feature in Impala 3.1 / CDH 5.16 and is not generally available.

To keep the size of metadata bounded, cat al ogd periodically scans all the tables and invalidates those not recently
used. There are two types of configurations in cat al ogd.

e Time-based invalidation with the - -i nval i dat e_t abl es_ti neout _s flag: Cat al ogd invalidates tables that
are not recently used in the specified time period (in seconds). This flag needs to be applied to both i npal ad and
cat al ogd.

e Memory-based invalidation with the - - i nval i dat e_t abl es_on_nenory_pr essur e flag: When the memory
pressure reaches 60% of JVM heap size after a Java garbage collection in cat al ogd, Impala invalidates 10% of
the least recently used tables. This flag needs to be applied to both i npal ad and cat al ogd.

Automatic invalidation of metadata provides more stability with lower chances of running out of memory, but the
feature could potentially cause performance issues and may require tuning.

Impala Tutorials

This section includes tutorial scenarios that demonstrate how to begin using Impala once the software is installed. It
focuses on techniques for loading data, because once you have some data in tables and can query that data, you can
quickly progress to more advanced Impala features.

E,i Note:

Where practical, the tutorials take you from “ground zero” to having the desired Impala tables and
data. In some cases, you might need to download additional files from outside sources, set up additional
software components, modify commands or scripts to fit your own configuration, or substitute your
own sample data.

Before trying these tutorial lessons, install Impala using one of these procedures:

¢ If you already have some CDH environment set up and just need to add Impala to it, follow the installation process
described in Setting Up Apache Impala Using the Command Line on page 27. Make sure to also install the Hive
metastore service if you do not already have Hive configured.

e To set up Impala and all its prerequisites at once, in a minimal configuration that you can use for small-scale
experiments, set up the Cloudera QuickStart VM, which includes CDH and Impala on CentOS. Use this single-node
VM to try out basic SQL functionality, not anything related to performance and scalability. For more information,
see the Cloudera QuickStart VM.

Tutorials for Getting Started

These tutorials demonstrate the basics of using Impala. They are intended for first-time users, and for trying out Impala
on any new cluster to make sure the major components are working correctly.

Explore a New Impala Instance

This tutorial demonstrates techniques for finding your way around the tables and databases of an unfamiliar (possibly
empty) Impala instance.

When you connect to an Impala instance for the first time, you use the SHOW DATABASES and SHOW TABLES statements
to view the most common types of objects. Also, call the ver si on() function to confirm which version of Impala you
are running; the version number is important when consulting documentation and dealing with support issues.

A completely empty Impala instance contains no tables, but still has two databases:

e def aul t, where new tables are created when you do not specify any other database.
e _inpal a_builtins,asystem database used to hold all the built-in functions.

The following example shows how to see the available databases, and the tables in each. If the list of databases or
tables is long, you can use wildcard notation to locate specific databases or tables based on their names.

$ inpal a-shell -i local host --quiet
Starting Inpala Shell w thout Kerberos authentication
Wel come to the Inpala shell. Press TAB twice to see a |ist of avail abl e comands.

Copyright (c) 2012 Coudera, Inc. Al rights reserved.

(Shell build version: Inpala Shell v...
[l ocal host:21000] > select version();

| inpalad version ...
| Built on ...

http://www.cloudera.com/content/support/en/downloads/quickstart_vms.html

_impala_builtins
ctas

di

d2

d3

def aul t

expl ai n_pl ans
external _table
file_formats

tpc
o e e e e e aa oo +
[l ocal host:21000] > sel ect current_dat abase();
o e e e e e e oo +
| current_dat abase() |
o e e e e e e e oo +
| default |
o e e e e e e e oo +
[l ocal host:21000] > show tabl es;
Fomm - +
| name |
B +
| ex_t |
| t1 I
. +

[l ocal host:21000] > show tables in d3;

[l ocal host:21000] > show tables in tpc;

i +
| nane |
o +
city
cust oner

cust oner _addr ess

cust oner _denogr aphi cs
househol d_denogr aphi cs
item

pronoti on

store

store2

store_sal es
ticket_view

tinme_dim
tpc_tables
B e +
[l ocal host:21000] > show tables in tpc like 'custoner*';
- +
| name |
B T +
| custoner |

| custoner_address
| custoner_denographics |
oo +

Once you know what tables and databases are available, you descend into a database with the USE statement. To
understand the structure of each table, you use the DESCRI BE command. Once inside a database, you can issue
statements such as | NSERT and SELECT that operate on particular tables.

The following example explores a database named TPC whose name we learned in the previous example. It shows
how to filter the table names within a database based on a search string, examine the columns of a table, and run
queries to examine the characteristics of the table data. For example, for an unfamiliar table you might want to know
the number of rows, the number of different values for a column, and other properties such as whether the column

contains any NULL values. When sampling the actual data values from a table, use a LI M T clause to avoid excessive
output if the table contains more rows or distinct values than you expect.

[l ocal host:21000] > use tpc;
[l ocal host:21000] > show tables |ike '*view';

e +
| name |
. +
| ticket_view |
. +
[l ocal host: 21000] > descrlbe cnty
e
| name | type | comrent
. oo - N +
id	int	
name	string	
countrycode	string	
district	string	
population	int	
. oo - N +		
[l ocal host: 21000] > select count(*) fromcity;		
e,		
count(*)		
- +
| O I
. +
[l ocal host:21000] > desc custoner
L T R +
| name | type | comment
T N S +
c_customner_sk i nt
c_custoner_id string
c_current _cdeno_sk i nt
c_current _hdermo_sk i nt
c_current_addr_sk i nt
c_first_shipto_date_sk i nt
c_first_sal es_date_sk i nt
c_salutation string
c_first_nane string
c_l ast _nane string
c_preferred_cust_flag string
c_birth_day i nt
c_birth_nonth i nt
c_birth_year i nt
c_birth_country string
c_login string
c_enuni |l _address string
c_last_review date string
o e e e e e e e e Fom e e oo - B R +
[l ocal host:21000] > select count(*) from custoner
S +
| count(*) |
B +
| 100000
S +

[l ocal host:21000] > select distinct c_salutation fromcustormer limt 10

When you graduate from read-only exploration, you use statements such as CREATE DATABASE and CREATE TABLE
to set up your own database objects.

The following example demonstrates creating a new database holding a new table. Although the last example ended
inside the TPC database, the new EXPERI MENTS database is not nested inside TPC; all databases are arranged in a
single top-level list.

[l ocal host:21000] > create dat abase experinents;
[l ocal host:21000] > show dat abases;

_inmpala_builtins
ctas

di

d2

d3

defaul t
experinments

expl ai n_pl ans
external _table
file_formats

tpc
o e m e e e e e eeeeoo o +
[l ocal host:21000] > show dat abases |i ke 'exp*';
o e e oo +
| name |
o e e e m o +

| experinents |
| explain_plans |

The following example creates a new table, T1. To illustrate a common mistake, it creates this table inside the wrong
database, the TPCdatabase where the previous example ended. The ALTER TABLE statement lets you move the table
to the intended database, EXPERI MENTS, as part of a rename operation. The USE statement is always needed to switch
to a new database, and the cur r ent _dat abase() function confirms which database the session is in, to avoid these
kinds of mistakes.

[l ocal host:21000] > create table t1 (x int);

[l ocal host:21000] > show tabl es;
o e e meeeeea e +

cust oner _address

cust oner _denogr aphi cs
househol d_denogr aphi cs
item

pronoti on

store

store2

store_sal es

tl

ticket_view

time_dim

tpc_tabl es

| current_dat abase() |

[l ocal host:21000] > alter table t1 renane to experinments.t1;
[l ocal host: 21000] > use experinents;
[l ocal host:21000] > show tabl es;

+

I
| nane |

+o-mm - +

| t1]

+o-mm - +

[l ocal host:21000] > sel ect current_dat abase();
U +

| current_database() |

e e e e e e e e -

| experinents |

e +

For your initial experiments with tables, you can use ones with just a few columns and a few rows, and text-format
data files.

E,’ Note: As you graduate to more realistic scenarios, you will use more elaborate tables with many

columns, features such as partitioning, and file formats such as Parquet. When dealing with realistic
data volumes, you will bring in data using LOAD DATAor| NSERT ... SELECT statements to operate
on millions or billions of rows at once.

The following example sets up a couple of simple tables with a few rows, and performs queries involving sorting,
aggregate functions and joins.

[l ocal host:21000] > insert into t1l values (1), (3), (2), (4);
[l ocal host:21000] > select x fromtl order by x desc;

+-- -+
| x|
+-- -+
| 4|
| 3|
| 2|
[1]
+--- 4+
[l ocal host:21000] > select min(x), max(x), sumx), avg(x) fromt1l,
oo - o oo - o +
| min(x) | max(x) | sum(x) | avg(x) |
oo - R oo - R +
| 1 | 4 | 10 | 2.5 |
oo - . oo - . +
[l ocal host:21000] > create table t2 (id int, word string);
[l ocal host:21000] > insert into t2 values (1, "one"), (3, "three"), (5, 'five');
[l ocal host:21000] > select word fromtl join t2 on (tl.x =t2.id);
R +
| word |
Fomm +
one |
| three |
Fommmm - +

After completing this tutorial, you should now know:

e How to tell which version of Impala is running on your system.

¢ How to find the names of databases in an Impala instance, either displaying the full list or searching for specific
names.

¢ How to find the names of tables in an Impala database, either displaying the full list or searching for specific names.
¢ How to switch between databases and check which database you are currently in.

e How to learn the column names and types of a table.

e How to create databases and tables, insert small amounts of test data, and run simple queries.

Load CSV Data from Local Files

This scenario illustrates how to create some very small tables, suitable for first-time users to experiment with Impala
SQL features. TAB1 and TAB2 are loaded with data from files in HDFS. A subset of data is copied from TAB1 into TAB3.

Populate HDFS with the data you want to query. To begin this process, create one or more new subdirectories underneath
your user directory in HDFS. The data for each table resides in a separate subdirectory. Substitute your own username
for user nane where appropriate. This example uses the - p option with the nkdi r operation to create any necessary
parent directories if they do not already exist.

$ whoami

user nane

$ hdfs dfs -1s /user
Found 3 itens

dr wxr - Xr - X - username username 0 2013-04-22 18:54 /user/usernane
dr wxr wx- - - - mapred mapr ed 0 2013-03-15 20: 11 /user/history
dr wxr - Xr - X - hue super gr oup 0 2013-03-15 20: 10 /user/ hive

$ hdfs dfs -nkdir -p /user/usernanme/ sanpl e_data/tabl /user/usernane/sanpl e_data/tab2

Here is some sample data, for two tables named TAB1 and TAB2.
Copy the following content to . csv files in your local filesystem:

tabl. csv:

1,true, 123. 123, 2012- 10- 24 08: 55: 00

2,fal se, 1243. 5, 2012- 10- 25 13: 40: 00

3, fal se, 24453. 325, 2008- 08- 22 09: 33: 21. 123
4, f

5t

al se, 243423. 325, 2007- 05- 12 22: 32: 21. 33454
rue, 243. 325, 1953- 04-22 09: 11: 33

tab2. csv:

1,true, 12789. 123
2,fal se, 1243.5

3, fal se, 24453. 325

4, fal se, 2423. 3254
5,true, 243. 325

60, f al se, 243565423. 325
70, true, 243. 325

80, f al se, 243423. 325
90, true, 243. 325

Put each . csv file into a separate HDFS directory using commands like the following, which use paths available in the
Impala Demo VM:

$ hdfs dfs -put tabl.csv /user/usernanme/sanpl e_datal/tabl

$ hdfs dfs -lIs /user/usernane/sanpl e_data/tabl

Found 1 itens

STWr--T-- 1 usernanme usernane 192 2013-04-02 20: 08
/user/ username/ sanpl e_dat a/tabl/tabl. csv

$ hdfs dfs -put tab2.csv /user/usernane/ sanpl e_data/tab2

$ hdfs dfs -ls /user/usernanme/ sanpl e_datal/tab2

Found 1 itens

STWr--1-- 1 usernane user nanme 158 2013-04-02 20: 09

[user/ username/ sanpl e_dat a/ t ab2/ t ab2. csv

The name of each data file is not significant. In fact, when Impala examines the contents of the data directory for the
first time, it considers all files in the directory to make up the data of the table, regardless of how many files there are
or what the files are named.

To understand what paths are available within your own HDFS filesystem and what the permissions are for the various
directories and files, issue hdf s df s -1s / and work your way down the tree doing - | s operations for the various
directories.

Use the i npal a- shel | command to create tables, either interactively or through a SQL script.

The following example shows creating three tables. For each table, the example shows creating columns with various
attributes such as Boolean or integer types. The example also includes commands that provide information about how
the data is formatted, such as rows terminating with commas, which makes sense in the case of importing data from
a. csv file. Where we already have . csv files containing data in the HDFS directory tree, we specify the location of
the directory containing the appropriate . csv file. Impala considers all the data from all the files in that directory to
represent the data for the table.

DROP TABLE | F EXI STS tabi;
-- The EXTERNAL cl ause neans the data is |ocated outside the central |ocation
-- for Inpala data files and is preserved when the associated Inpala table is dropped.
-- W expect the data to already exist in the directory specified by the LOCATI ON cl ause.
CREATE EXTERNAL TABLE tabl
(

id |NT,

col _1 BOCLEAN,

col _2 DOUBLE,

col _3 TI MESTAWP

)
ROW FORVAT DELI M TED FI ELDS TERM NATED BY ', '
LOCATI ON '/ user/ user nane/ sanpl e_dat a/tabl';

DROP TABLE | F EXI STS tab2;
-- TAB2 is an external table, simlar to TABI.
CREATE EXTERNAL TABLE t ab2

id INT,
col _1 BOCLEAN,
col "2 DOUBLE

)
ROW FORMAT DELI M TED FI ELDS TERM NATED BY ',
LOCATI ON '/ user/ user nane/ sanpl e_dat a/t ab2' ;

DROP TABLE | F EXI STS t ab3;

-- Leaving out the EXTERNAL cl ause neans the data will be managed
-- in the central Inpala data directory tree. Rather than readi ng
-- existing data files when the table is created, we load the

-- data after creating the table.

CREATE TABLE t ab3

(
id |NT,
col _1 BOCLEAN,
col _2 DOUBLE,
nmont h | NT,
day | NT

)
ROW FORVAT DELIM TED FI ELDS TERM NATED BY ', ';

E,’ Note: Getting through these CREATE TABLE statements successfully is an important validation step
to confirm everything is configured correctly with the Hive metastore and HDFS permissions. If you
receive any errors during the CREATE TABLE statements:

e Make sure you followed the installation instructions closely, in Setting Up Apache Impala Using
the Command Line on page 27.

¢ Make sure the hi ve. net ast or e. war ehouse. di r property points to a directory that Impala
can write to. The ownership should be hi ve: hi ve,and thei npal a user should also be a member
of the hi ve group.

e Ifthe value of hi ve. net ast or e. war ehouse. di r is different in the Cloudera Manager dialogs
and in the Hive shell, you might need to designate the hosts runningi npal ad with the “gateway”
role for Hive, and deploy the client configuration files to those hosts.

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_roles.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_roles.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_client_config.html

Point an Impala Table at Existing Data Files

A convenient way to set up data for Impala to access is to use an external table, where the data already exists in a set
of HDFS files and you just point the Impala table at the directory containing those files. For example, you might run in
i mpal a-shel | a*. sql file with contents similar to the following, to create an Impala table that accesses an existing
data file used by Hive.

The following examples set up 2 tables, referencing the paths and sample data from the sample TPC-DS kit for Impala.
For historical reasons, the data physically resides in an HDFS directory tree under/ user / hi ve, although this particular
data is entirely managed by Impala rather than Hive. When we create an external table, we specify the directory
containing one or more data files, and Impala queries the combined content of all the files inside that directory. Here
is how we examine the directories and files within the HDFS filesystem:

$ cd ~/usernane/ dat asets

$./tpcds-setup. sh

... Downl oads and unzips the kit, builds the data and loads it into HDFS ...

$ hdfs dfs -Is /user/hivel/tpcds/custoner

Found 1 itens

STWr--1-- 1 usernanme supergroup 13209372 2013-03-22 18: 09

/user/ hi vel/tpcds/ cust oner/ cust omer . dat

$ hdfs dfs -cat /user/hive/tpcds/customer/custoner.dat | nore

1| AAAAAAAABAAAAAAA| 980124| 7135| 32946| 2452238| 2452208| M . | Javi er | Lewi s| Y] 9] 12| 1936] CH LE| | Javi e
r. Lewi s@FAxI nZEvOx. or g| 2452508|

2| AAAAAAAACAAAAAAA| 819667| 1461| 31655|] 2452318| 2452288| Dr . | Any| Moses| Y| 9] 4| 1966| TO] | Any. Moses@
Ovk9Kj HH. con| 2452318|

3| AAAAAAAADAAAAAAA| 1473522| 6247| 48572| 2449130| 2449100| M ss| Lat i sha] Hami | ton| N 18] 9] 1979| Nl UF] |
Lati sha. Ham | t on@/. con 2452313|

4| AAAAAAAAEAAAAAAA| 1703214| 3986| 39558| 2450030] 2450000] Dr . | M chael | Wit e| N 7| 6] 1983 MEXICJ | M ¢
hael . White@ . or g| 2452361

5| AAAAAAAAFAAAAAAA| 953372| 4470| 36368| 2449438| 2449408| Sir | Robert | Moran| N 8| 5| 1956| FI JI | | Robert .
Mor an@h. edu| 2452469

Here is a SQL script to set up Impala tables pointing to some of these data files in HDFS. (The script in the VM sets up
tables like this through Hive; ignore those tables for purposes of this demonstration.) Save the following as
cust oner _set up. sql :

-- store_sales fact table and surrounding di mension tables only

create database tpcds;
use tpcds;

drop table if exists custoner;
create external table customer

(
c_customer _sk int,
c_custoner_id string,
c_current _cdenmp_sk int,
c_current _hdermo_sk int,
c_current_ addr sk int,
c_first_shipto_date sk int,
c_first_sales_date sk int,
c_salutation string,
c_first_name string,
c¢_last_name string,
c_preferred_cust_flag string,
c¢_birth_day int,
¢_birth_nonth int,
c¢_birth_year int,
c_birth_country string,
c_login string,
c_enmi |l _address string,
c_last_review date string

)

row format delinmted fields term nated by "|'

|

ocation '/user/hive/tpcds/customner'

drop table if exists custoner_address;

create external table custoner_address

ca_address_sk int,
ca_address_id string,
ca_street nunber string,
ca_street _nane string,
ca_street_type string,
ca_suite_nunber string,
ca_city string,
ca_county string,
ca_state string,
ca_zip string,
ca_country string,
ca_gn _of fset float,
ca_l ocation_type string

ow format delinmted fields term nated by '|’
ocation '/user/hive/tpcds/custoner_address';

)
r
|

We would run this script with a command such as:

i mpal a-shell -i local host -f custoner_setup. sql

Describe the Impala Table

Now that you have updated the database metadata that Impala caches, you can confirm that the expected tables are
accessible by Impala and examine the attributes of one of the tables. We created these tables in the database named
def aul t . If the tables were in a database other than the default, we would issue acommand use db_nane to switch
to that database before examining or querying its tables. We could also qualify the name of a table by prepending the
database name, for example def aul t . cust oner and def aul t . cust oner _nane.

[i mpal a- host: 21000] > show dat abases
Query finished, fetching results ...
defaul t

Returned 1 row(s) in 0.00s

[i mpal a- host: 21000] > show t abl es
Query finished, fetching results ...
cust onmer

cust oner _addr ess

Returned 2 row(s) in 0.00s

[i mpal a- host: 21000] > descri be custoner_address
e e o e Femm ek +
| nane | type | conmment |
o e a e o e e Femm ek +

ca_address_sk i nt

ca_address_id string

ca_street _nunber string

ca_street _nane string

ca_street _type string

ca_suite_nunber string

ca_city string

ca_county string

ca_state string

ca_zip string

ca_country string

ca_gm _of fset fl oat

ca_l ocation_type string
o e e e o e e Femm ek +

Returned 13 row(s) in 0.01

Query the Impala Table

You can query data contained in the tables. Impala coordinates the query execution across a single node or multiple
nodes depending on your configuration, without the overhead of running MapReduce jobs to perform the intermediate
processing.

There are a variety of ways to execute queries on Impala:

e Using the i npal a- shel | command in interactive mode:

$ inpal a-shell -i inpal a-host

Connected to | ocal host: 21000

[i mpal a- host: 21000] > sel ect count(*) from custoner_address;
50000

Returned 1 row(s) in 0.37s

¢ Passing a set of commands contained in a file:

$ inpal a-shell -i inpala-host -f nyquery. sql
Connected to | ocal host: 21000
50000

Returned 1 row(s) in 0.19s

e Passing a single command to the i npal a- shel | command. The query is executed, the results are returned, and
the shell exits. Make sure to quote the command, preferably with single quotation marks to avoid shell expansion
of characters such as *.

$ inpal a-shell -i inpala-host -q 'select count(*) from custoner_address’
Connected to | ocal host: 21000
50000

Returned 1 row(s) in 0.29s

Data Loading and Querying Examples

This section describes how to create some sample tables and load data into them. These tables can then be queried
using the Impala shell.

Loading Data
Loading data involves:

e Establishing a data set. The example below uses . csv files.
e Creating tables to which to load data.
* Loading the data into the tables you created.

Sample Queries

To run these sample queries, create a SQL query file query. sql , copy and paste each query into the query file, and
then run the query file using the shell. For example, torun query. sgl oni npal a- host, you might use the command:

i mpal a-shell.sh -i inpala-host -f query.sql

The examples and results below assume you have loaded the sample data into the tables as described above.
Example: Examining Contents of Tables

Let's start by verifying that the tables do contain the data we expect. Because Impala often deals with tables containing
millions or billions of rows, when examining tables of unknown size, include the LI M T clause to avoid huge amounts
of unnecessary output, as in the final query. (If your interactive query starts displaying an unexpected volume of data,
press Ctrl - Cini npal a- shel | to cancel the query.)

SELECT * FROM t abl;
SELECT * FROM t ab2;
SELECT * FROMtab2 LIMT 5;

Results:

| 1 | true | 123.123 | 2012-10-24 08:55: 00
| 2 | false | 1243.5 | 2012-10-25 13:40: 00
| 3 | false | 24453.325 | 2008-08-22 09: 33:21. 123000000
| 4 | false | 243423.325 | 2007-05-12 22:32:21. 334540000
| 5 | true | 243.325 | 1953-04-22 09:11: 33
S B o e e e e e e e e e e e e
S S +
| id] col_1 | col_2
T S +
1 true 12789. 123
2 fal se 1243.5
3 fal se | 24453.325
4 fal se 2423. 3254
5 true 243. 325
60 | false | 243565423. 325
70 | true 243. 325
80 | false | 243423.325
90 | true 243. 325
S S +
S [+
| id] col_1 | col_2 |
T [U +
| 1 | true | 12789.123
| 2 | false | 1243.5
| 3 | false | 24453.325
| 4 | false | 2423.3254
| 5 | true | 243.325
S [+

Example: Aggregate and Join

SELECT tabl.col _1, MAX(tab2.col _2), M N(tab2.col _2)
FROM t ab2 JO N tabl USI NG (id)

GROUP BY col _1 ORDER BY 1 LIMT 5

Results:

S RS- teceecaasaeae s S +

| col_1 | max(tab2.col _2) | min(tab2.col _2) |
tecomaan SRR SRS +

| false | 24453.325 | 1243.5 |

| true | 12789.123 | 243.325 |

S R oo oo +

Example: Subquery, Aggregate and Joins

SELECT t ab2. *
FROM t ab2
(SELECT tabl.col _1, MAX(tab2.col _2) AS nmax_col 2
FROM t ab2, tabl
WHERE tabl.id = tab2.id
GROUP BY col _1) subqueryl
WHERE subqueryl. max_col 2 = tab2.col _2

Results:

o e e e oo o e e e oo +
| id] col_1 | col_2 [
S o e e oo oo +

1 | true | 12789.123 |
| 3 | false | 24453.325

Example: INSERT Query

| NSERT OVERWRI TE TABLE t ab3
SELECT id, col 1, col 2, NMONTH(col 3), DAYOFMONTH(col 3)
FROM t abl WHERE YEAR(col 3) = 2012;

Query TAB3 to check the result:

SELECT * FROM t abs3;

Results:

T [S, Fom e - [+
| id]| col_1 | col_2 | month | day |
. Fom e e o - [Hom e - - +
| T | true | 123.123 | 10 | 24 |
| 2 | false | 1243.5 | 10 | 25 |
R T T s e +--m-- +

Advanced Tutorials

These tutorials walk you through advanced scenarios or specialized features.

Attaching an External Partitioned Table to an HDFS Directory Structure

This tutorial shows how you might set up a directory tree in HDFS, put data files into the lowest-level subdirectories,
and then use an Impala external table to query the data files from their original locations.

The tutorial uses a table with web log data, with separate subdirectories for the year, month, day, and host. For
simplicity, we use a tiny amount of CSV data, loading the same data into each partition.

First, we make an Impala partitioned table for CSV data, and look at the underlying HDFS directory structure to
understand the directory structure to re-create elsewhere in HDFS. The columnsfi el d1,fi el d2,andfi el d3
correspond to the contents of the CSV data files. The year, nont h, day, and host columns are all represented as
subdirectories within the table structure, and are not part of the CSV files. We use STRI NGfor each of these columns
so that we can produce consistent subdirectory names, with leading zeros for a consistent length.

create database external _partitions
use external _partitions;
create table logs (fieldl string, field2 string, field3 string)

partitioned by (year string, nonth string , day string, host string)

row format delimted fields termnated by ',"';
insert into logs partition (year="2013", nonth="07", day="28", host="host1") val ues
("foo","foo","foo");
insert into logs partition (year="2013", nonth="07", day="28", host="host2") val ues
("foo","foo","foo");
insert into logs partition (year="2013", nonth="07", day="29", host="host1") val ues
("foo","foo","foo");
insert into logs partition (year="2013", nonth="07", day="29", host="host2") val ues
("foo","foo","foo");
insert into logs partition (year="2013", nonth="08", day="01", host="host1") val ues
("foo","foo","foo");

Back in the Linux shell, we examine the HDFS directory structure. (Your Impala data directory might be in a different
location; for historical reasons, it is sometimes under the HDFS path / user/ hi ve/ war ehouse.) We use the hdf s

df s -1 s command to examine the nested subdirectories corresponding to each partitioning column, with separate
subdirectories at each level (with = in their names) representing the different values for each partitioning column.
When we get to the lowest level of subdirectory, we use the hdf s df s -cat command to examine the data file and
see CSV-formatted data produced by the | NSERT statement in Impala.

$ hdfs dfs -Is /user/inpal a/ war ehouse/ external _partitions.db
Found 1 itens

dr wxr wxr wt - impala hive 0 2013-08-07 12: 24

/user/inpal a/ war ehouse/ external _partitions. db/| ogs

$ hdfs dfs -Is /user/inpal a/ warehouse/ external _partitions. db/l ogs

Found 1 itens

dr wxr - Xr - X - impala hive 0 2013-08-07 12: 24

/user/inpal a/ war ehouse/ external _partitions. db/| ogs/year=2013

$ hdfs dfs -1s /user/inpal a/ warehouse/ external _partitions.db/l ogs/year=2013
Found 2 itens

dr wxr - Xr - X - impala hive 0 2013-08-07 12:23
/user/inpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07
dr wxr - Xr - X - impala hive 0 2013-08-07 12: 24

[user/inpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=08
$ hdfs dfs -1s /user/inpal a/ war ehouse/ external _partitions. db/| ogs/year=2013/ mont h=07
Found 2 itens

dr wxr - Xr - X - impala hive 0 2013-08-07 12:22
/user/inpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=28
dr wxr - Xr - X - impala hive 0 2013-08-07 12:23

[user/inpal a/ war ehouse/ ext ernal _partitions. db/ | ogs/year=2013/ nont h=07/ day=29
$ hdfs dfs -Is

/user /i npal a/ war ehouse/ ext ernal _partitions. db/ | ogs/year=2013/ nont h=07/ day=28
Found 2 itens

dr wxr - Xr - x - inpala hive 0 2013-08-07 12:21
/user /i nmpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=28/ host =host 1
dr wxr - Xr - x - inpala hive 0 2013-08-07 12:22

/user /i nmpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=28/ host =host 2
$ hdfs dfs -Is

/user /i nmpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ mont h=07/ day=28/ host =host 1
Found 1 itens

STWr--1-- 3 impal a hive 12 2013-08-07 12:21

[user/inpal a/ war ehouse/ ext ernal _partiti

ons. db/ | ogs/ year =2013/ nont h=07/ day=28/ host =host 1/ 3981726974111751120- - 8907184999369517436_822630111_dat a. 0
$ hdfs dfs -cat

/user/inpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=28/\

host =host 1/ 3981726974111751120- -8 907184999369517436_822630111_data. 0

f oo, f oo, fooO

Still in the Linux shell, we use hdf s df s - nkdi r to create several data directories outside the HDFS directory tree
that Impala controls (/ user /i npal a/ war ehouse in this example, maybe different in your case). Depending on your
configuration, you might need to log in as a user with permission to write into this HDFS directory tree; for example,
the commands shown here were run while logged in as the hdf s user.

hdfs dfs -nkdi
hdfs dfs -nkdi

$ r user /i npal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=28/ host =host 1
$ r
$ hdfs dfs -nkdir
$ r
$ r

p/

p /user/inpal a/ data/l ogs/year=2013/ nont h=07/ day=28/ host =host 2

p /user/inpal a/data/l ogs/year=2013/ nont h=07/ day=28/ host =host 1
hdfs dfs -nkdi p/
hdfs dfs -nkdi p/

user/inpal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=29/ host =host 1
user /i npal a/ dat a/ | ogs/ year =2013/ nont h=08/ day=01/ host =host 1

We make a tiny CSV file, with values different than in the | NSERT statements used earlier, and put a copy within each
subdirectory that we will use as an Impala partition.

$ cat >dummy_| og_dat a

bar, baz, bl et ch

$ hdfs dfs -nkdir -p

/user/inpal a/ dat a/ external _partitions/year=2013/ nont h=08/ day=01/ host =host 1

$ hdfs dfs -nmkdir -p

/user/inpal a/ dat a/ external _partitions/year=2013/ nont h=07/ day=28/ host =host 1

$ hdfs dfs -nmkdir -p

/user/inpal a/ dat a/ external _partitions/year=2013/ nont h=07/ day=28/ host =host 2

$ hdfs dfs -nmkdir -p

/user/inpal a/ dat a/ external _partitions/year=2013/ nont h=07/ day=29/ host =host 1

$ hdfs dfs -put dummy_| og_data /user/inpal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=28/ host =host 1
$ hdfs dfs -put dummy_| og_data /user/inpal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=28/ host =host 2
$ hdfs df s -put dummy_| og_data /user/i npal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=29/ host =host 1
$ hdfs dfs -put dummy_| og_data /user/inpal a/ dat a/l ogs/ year =2013/ mont h=08/ day=01/ host =host 1

Back in the i npal a- shel | interpreter, we move the original Impala-managed table aside, and create a new external
table with a LOCATI ON clause pointing to the directory under which we have set up all the partition subdirectories
and data files.

use external _partitions;

alter table logs renanme to | ogs_original;

create external table logs (fieldl string, field2 string, field3 string)
partitioned by (year string, nonth string, day string, host string)
row format delimted fields term nated by ',
| ocation '/user/inpal a/data/l ogs';

Because partition subdirectories and data files come and go during the data lifecycle, you must identify each of the
partitions through an ALTER TABLE statement before Impala recognizes the data files they contain.

alter table logs add partition (year="2013", nont h="07", day="28", host ="host 1")

alter table log_type add partition (year="2013", nont h="07", day="28", host ="host 2");
alter table log_type add partition (year="2013", nont h="07", day="29", host ="host 1");
alter table log_type add partition (year="2013", nont h="08", day="01", host ="host 1");

We issue a REFRESHstatement for the table, always a safe practice when data files have been manually added, removed,
or changed. Then the data is ready to be queried. The SELECT * statement illustrates that the data from our trivial
CSV file was recognized in each of the partitions where we copied it. Although in this case there are only a few rows,
we include a LI M T clause on this test query just in case there is more data than we expect.

refresh | og_type;
select * fromlog_type limt 100;

S RS Foemmaaaa L L e tecomaan L e tecomnan +
| fieldl | field2 | field3 | year | nonth | day | host |
S RS Foemmaaaa S RS R tecoeaan Feaana tecoaman +
bar	baz	bletch	2013	07	28	host1l
bar	baz	bletch	2013	08	01	host1l
bar	baz	bletch	2013	07	29	host1l
bar	baz	bletch	2013	07	28	host2
ommmmmn - o ommmme - oo - ommmm- +o-m-- ommmm- +

Switching Back and Forth Between Impala and Hive

Sometimes, you might find it convenient to switch to the Hive shell to perform some data loading or transformation
operation, particularly on file formats such as RCFile, SequenceFile, and Avro that Impala currently can query but not
write to.

Whenever you create, drop, or alter a table or other kind of object through Hive, the next time you switch back to the
i mpal a- shel | interpreter, issue a one-time | NVALI DATE METADATA statement so that Impala recognizes the new
or changed object.

Whenever you load, insert, or change data in an existing table through Hive (or even through manual HDFS operations
such as the hdf s command), the next time you switch back to the i npal a- shel | interpreter, issue a one-time
REFRESH t abl e_nane statement so that Impala recognizes the new or changed data.

For examples showing how this process works for the REFRESH statement, look at the examples of creating RCFile and
SequenceFile tables in Impala, loading data through Hive, and then querying the data through Impala. See Using the
RCFile File Format with Impala Tables on page 682 and Using the SequencefFile File Format with Impala Tables on page
684 for those examples.

For examples showing how this process works for the | NVALI DATE METADATA statement, look at the example of
creating and loading an Avro table in Hive, and then querying the data through Impala. See Using the Avro File Format
with Impala Tables on page 677 for that example.

Note:

Originally, Impala did not support UDFs, but this feature is available in Impala starting in Impala 1.2.
Some | NSERT ... SELECT transformations that you originally did through Hive can now be done
through Impala. See User-Defined Functions (UDFs) on page 555 for details.

Prior to Impala 1.2, the REFRESHand | NVALI DATE METADATA statements needed to be issued on
each Impala node to which you connected and issued queries. In Impala 1.2 and higher, when you
issue either of those statements on any Impala node, the results are broadcast to all the Impala nodes
in the cluster, making it truly a one-step operation after each round of DDL or ETL operations in Hive.

Cross Joins and Cartesian Products with the CROSS JOIN Operator

Originally, Impala restricted join queries so that they had to include at least one equality comparison between the
columns of the tables on each side of the join operator. With the huge tables typically processed by Impala, any
miscoded query that produced a full Cartesian product as a result set could consume a huge amount of cluster resources.

In Impala 1.2.2 and higher, this restriction is lifted when you use the CROSS JO Noperator in the query. You still
cannot remove all WHERE clauses from a query like SELECT * FROM t1 JO N t 2 to produce all combinations of
rows from both tables. But you can use the CROSS JO N operator to explicitly request such a Cartesian product.
Typically, this operation is applicable for smaller tables, where the result set still fits within the memory of a single
Impala node.

The following example sets up data for use in a series of comic books where characters battle each other. At first, we
use an equijoin query, which only allows characters from the same time period and the same planet to meet.

[1 ocal host: 21000]
[1 ocal host: 21000]
[1 ocal host: 21000]

> create table heroes (nanme string, era string, planet string);
> create table villains (nane string, era string, planet string);
> insert into heroes val ues
> ("Tesla','20th century',' Earth'),
> (' Pythagoras', ' Antiquity', ' Earth'),
> (' Zopzar','Far Future','Mars');
Inserted 3 rows in 2.28s
[l ocal host:21000] > insert into villains values
> ("Caligula ,"Antiquity', ' Earth'),
> ("John Dillinger',"'20th century','Earth')
> ("Xibulor','Far Future','\Venus');
Inserted 3 rows in 1.93s
[l ocal host:21000] > sel ect concat (heroes.nane,' vs. ',villains.name) as battle
> from heroes join villains
> where heroes.era = villains.era and heroes. pl anet = villains. pl anet;

| Tesla vs. John Dillinger |
| Pythagoras vs. Caligula |

Returned 2 row(s) in 0.47s

Readers demanded more action, so we added elements of time travel and space travel so that any hero could face
any villain. Prior to Impala 1.2.2, this type of query was impossible because all joins had to reference matching values
between the two tables:

[l ocal host:21000] > -- Cartesian product not possible in Inpala 1.1.
> sel ect concat (heroes.name,' vs. ',villains.nanme) as battle from
heroes join villains;
ERROR: Not | npl enent edExcepti on: Join between 'heroes' and 'villains' requires at |east
one conjunctive equality predicate between the two tables

With Impala 1.2.2, we rewrite the query slightly to use CROSS JO Nrather than JO N, and now the result set includes
all combinations:

[l ocal host:21000] > -- Cartesian product available in Inpala 1.2.2 with the CROSS JO N
synt ax.

> sel ect concat(heroes.name,’ vs. ',villains.nane) as battle from
heroes cross join villains;
o m e e e e meeeeaoaaos +
| battle |
o e e e e e e eeeoaoaaos +
Tesla vs. Caligula
Tesla vs. John Dillinger

Tesla vs. Xibul or

Pyt hagoras vs. Caligul a

Pyt hagoras vs. John Dillinger
Pyt hagoras vs. Xi bul or

Zopzar vs. Caligula

Zopzar vs. John Dillinger
Zopzar vs. Xibul or

Returned 9 row(s) in 0.33s

The full combination of rows from both tables is known as the Cartesian product. This type of result set is often used
for creating grid data structures. You can also filter the result set by including WHERE clauses that do not explicitly
compare columns between the two tables. The following example shows how you might produce a list of combinations
of year and quarter for use in a chart, and then a shorter list with only selected quarters.

[l ocal host:21000] > create table x_axis (x int);

[l ocal host:21000] > create table y_axis (y int);

[l ocal host:21000] > insert into x_axis values (1),(2),(3),(4);

Inserted 4 rows in 2.14s

[l ocal host:21000] > insert into y_axis values (2010), (2011), (2012), (2013), (2014);
Inserted 5 rows in 1.32s

[l ocal host:21000] > select y as year, x as quarter fromx_axis cross join y_axis;

Returned 20 row(s) in 0.38s
[l ocal host:21000] > select y as year, x as quarter fromx_axis cross join y_axis where

N

o

[y

w
_

2012	3
2013	3
2014	3

Returned 10 row(s) in 0.39s

Dealing with Parquet Files with Unknown Schema

As data pipelines start to include more aspects such as NoSQL or loosely specified schemas, you might encounter
situations where you have data files (particularly in Parquet format) where you do not know the precise table definition.
This tutorial shows how you can build an Impala table around data that comes from non-Impala or even non-SQL
sources, where you do not have control of the table layout and might not be familiar with the characteristics of the
data.

The data used in this tutorial represents airline on-time arrival statistics, from October 1987 through April 2008. See
the details on the 2009 ASA Data Expo web site. You can also see the explanations of the columns; for purposes of this
exercise, wait until after following the tutorial before examining the schema, to better simulate a real-life situation
where you cannot rely on assumptions and assertions about the ranges and representations of data values.

Download the Data Files into HDFS

First, we download and unpack the data files. There are 8 files totalling 1.4 GB.

$ wget -Oairlines_parquet.tar.gz https://home. apache. org/ ~arodoni/airlines_parquet.tar.gz
$ wget https://home. apache. org/ ~arodoni/airlines_parquet.tar.gz.sha512

$ shasum-a 512 -c airlines_parquet.tar.gz.shab12

airlines_parquet.tar.gz: K

$ tar xvzf airlines_parquet.tar.gz
$ cd airlines_parquet/

$ du -kch *.parq

253M 4345e5eef 217aalb- c8f 16177f 35fd983_1150363067_dat a. 0. par q
14M 4345e5eef 217aalb- c8f 16177f 35f 9831150363067 _dat a. 1. parq
253M 4345e5eef 217aalb- c8f 16177f 35f d984 501176748_dat a. 0. par q
64M 4345e5eef 217aalb- c8f 16177f 35f d984 501176748 dat a. 1. parq
184M 4345e5eef 217aalb- c8f 16177f 35f d985_ 1199995767 _dat a. 0. par q
241M 4345e5eef 217aalb- c8f 16177f 35f d986_2086627597 dat a. 0. parq
212M 4345e5eef 217aalb- c8f 16177f 35f d987_1048668565_dat a. 0. par q
152M 4345e5eef 217aalb- c8f 16177f 35f d988_ 1432111844 dat a. 0. parq
1.4G total

Next, we put the Parquet data files in HDFS, all together in a single directory, with permissions on the directory and
the files so that the i npal a user will be able to read them.

After unpacking, we saw the largest Parquet file was 253 MB. When copying Parquet files into HDFS for Impala to use,
for maximum query performance, make sure that each file resides in a single HDFS data block. Therefore, we pick a
size larger than any single file and specify that as the block size, using the argument - Ddf s. bl ock. si ze=253mon
the hdfs dfs - put command.

$ sudo -u hdfs hdfs dfs -nkdir -p /user/inpal a/staging/airlines

$ sudo -u hdfs hdfs dfs -Ddfs. bl ock. si ze=253m -put *.parq /user/inpal a/ staging/airlines
$ sudo -u hdfs hdfs dfs -1s /user/inpal a/ stagi ng

Found 1 itens

$ sudo -u hdfs hdfs dfs -Is /user/inpal a/staging/airlines
Found 8 itens
Create Database and Tables

With the files in an accessible location in HDFS, you create a database table that uses the data in those files:

http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/the-data.html

e The CREATE EXTERNAL syntax and the LOCATI ON attribute point Impala at the appropriate HDFS directory.

e Thell KE PARQUET 'path_to_any_parquet_file' clause meanswe skip the list of column names and types;
Impala automatically gets the column names and data types straight from the data files. (Currently, this technique
only works for Parquet files.)

e Ignore the warning about lack of READ_WRI TE access to the files in HDFS; the i mpal a user can read the files,
which will be sufficient for us to experiment with queries and perform some copy and transform operations into
other tables.

$ inpal a-shel |
> CREATE DATABASE airlines_dat a;
USE airlines_data;
CREATE EXTERNAL TABLE airlines_external

LI KE PARQUET
"hdf s: stagi ng/airlines/4345e5eef 217aalb-c8f 16177f 35f d983_1150363067_dat a. 0. parq’

STORED AS PARQUET LOCATI ON ' hdfs: staging/airlines';
WARNI NGS: | npal a does not have READ WRI TE access to path
"hdf s: // myhost . com 8020/ user /i npal a/ st agi ng'

Examine Physical and Logical Schema

With the table created, we examine its physical and logical characteristics to confirm that the data is really there and
in a format and shape that we can work with.

e The SHOW TABLE STATS statement gives a very high-level summary of the table, showing how many files and
how much total data it contains. Also, it confirms that the table is expecting all the associated data files to be in
Parquet format. (The ability to work with all kinds of HDFS data files in different formats means that it is possible
to have a mismatch between the format of the data files, and the format that the table expects the data files to
be in.)

e The SHOW FI LES statement confirms that the data in the table has the expected number, names, and sizes of
the original Parquet files.

e The DESCRI BE statement (or its abbreviation DESC) confirms the names and types of the columns that Impala
automatically created after reading that metadata from the Parquet file.

e The DESCRI BE FORMATTED statement prints out some extra detail along with the column definitions. The pieces
we care about for this exercise are:

The containing database for the table.
The location of the associated data files in HDFS.

The table is an external table so Impala will not delete the HDFS files when we finish the experiments and
drop the table.

The table is set up to work exclusively with files in the Parquet format.

> SHOW TABLE STATS airlines_external;

toeema - RIS Fommma o Fommmmmmemeaaas T Fommmemaa T +
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | |ncrenental
stats |
Fome oo Fomm e [S oo F o e e e +
| -1 | 8 | 1.34GB | NOT CACHED | NOT CACHED | PARQUET | false

I
Foeme o a - RIS Fommma o . T Fommmemaa T +

> SHOW FILES IN airlines_external;

S B SRR [SRR +
| path
| size | partition |
R R R N N S S - +
| /user/inmpal al staging/airlines/4345e5eef217aalb-c8f 16177f 35f d983_1150363067_dat a. 0. parq
| 252.99MB
| /user/inmpal alstaging/airlines/4345e5eef217aalb-c8f16177f 35f d983_1150363067_dat a. 1. parq
| 13.43MB
| /user/inpal a/staging/airlines/4345e5eef217aalb-c8f16177f 35f d984_501176748_dat a. 0. parq
| 252.84MB

I
| /user/inpal a/stagi ng/airlines/4345e5eef 217aalb-c8f 16177f 35f d984_501176748_dat a. 1. parq
| 63.92MB | |

| /user/inpal a/staging/airlines/4345e5eef 217aalb-c8f 16177f 35f d985_1199995767_dat a

| 183.64MB

| /user/inpal a/staging/airlines/4345e5eef 217aalb-c8f 16177f 35f d986_2086627597_dat a

| 240.04MB

| /user/inpal a/staging/airlines/4345e5eef 217aalb-c8f 16177f 35f d987_1048668565_dat a

| 211.35MB

| /user/inpal a/staging/airlines/4345e5eef 217aalb-c8f 16177f 35fd988_1432111844 dat a
I

| 151.46MB

day

dayof week
dep_time
crs_dep_time
arr_time
crs_arr_time
carrier
flight_num

tail _num
actual _el apsed_tinme
crs_el apsed_tinme
airtime

arrdel ay

depdel ay

origin

dest

di st ance

taxi _in

taxi _out
cancel | ed
cancel | ati on_code
di verted
carrier_del ay
weat her _del ay
nas_del ay
security_del ay

| ate_aircraft_del ay

i'# Detail ed Tabl e Information

| Database
| Owner:

i'Location:
| Table Type:

i'# Storage | nformation

| SerDe Library:

nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred

NULL

airlines_

i mpal a

f rom Par quet
from Par quet
from Par quet
from Par quet
from Par quet
from Par quet
from Par quet
from Par quet
from Par quet
from Par quet
f rom Par quet
from Par quet
f rom Par quet
from Par quet
f rom Par quet
from Par quet
f rom Par quet
from Par quet
f rom Par quet
from Par quet
f rom Par quet
from Par quet
f rom Par quet
from Par quet
f rom Par quet
from Par quet
f rom Par quet
from Par quet
f rom Par quet

dat a

POOODPDDDODDDDODDODDDDDDDD®DDDDDDMD

/user/inpal a/ staging/airlines

EXTERNAL_

NULL

TABLE

or g. apache. hadoop. hi ve. gl . i 0. parquet . serde. Par quet H veSer De

| I'nput Format:

or g. apache. hadoop. hi ve. gl . i 0. par quet . Mapr edPar quet | nput For ma

| Cut put For mat :

or g. apache. hadoop. hi ve. gl . i 0. par quet . Mapr edPar quet Qut put For mat

Analyze Data

Now that we are confident that the connections are solid between the Impala table and the underlying Parquet files,
we run some initial queries to understand the characteristics of the data: the overall number of rows, and the ranges
and how many different values are in certain columns.

> SELECT COUNT(*) FROM airlines_external;

S +
| count(*) |
S +
| 123534969 |
S +

The NDV() function returns a number of distinct values, which, for performance reasons, is an estimate when there
are lots of different values in the column, but is precise when the cardinality is less than 16 K. Use NDV() function for
this kind of exploration rather than COUNT(DI STI NCT col nane), because Impala can evaluate multiple NDV()
functions in a single query, but only a single instance of COUNT DI STI NCT.

> SEI ECT NDV(carrier), NDV(flight_num, NDV(tail_num,
NDV(origin), NDV(dest) FROM airlines_external;
+

LT Tty S RS [+
| ndv(carrier) | ndv(flight_nunm) | ndv(tail_nunm) | ndv(origin) | ndv(dest) |
S

| 29 | 8463 | 3 | 342 | 349 |
e e e e o n o e a e o m e e oo n S o e e o +

> SELECT tail _num COUNT(*) AS howrany FROM airlines_external

GROUP BY tail _num
T [+

oo e +
| NULL | 123122001 |
| 715 | 1

| 0 | 406405 |
| 112 | 6562 |
o e o e - +

> SELECT DI STI NCT dest FROM airlines_external
WHERE dest NOT I N (SELECT origin FROM airlines_external);

Fomm o +
| dest |
R, +
| CBM |
| SKA |
| LAR |
| RCA |
| LBF |
R, +

> SELECT DI STI NCT dest FROM airlines_external
VWHERE dest NOT I N (SELECT DI STINCT origin FROM airlines_external);

Fomm o +
| dest |
R, +
| CBM |
| SKA |
| LAR |
| RCA |
| LBF |
R, +

> SELECT DI STINCT origin FROM airlines_external
VWHERE origin NOT IN (SELECT DI STINCT dest FROM airlines_external);
Fetched 0 rowms) in 2.63

With the above queries, we see that there are modest numbers of different airlines, flight numbers, and origin and
destination airports. Two things jump out from this query: the number of t ai | _numvalues is much smaller than we
might have expected, and there are more destination airports than origin airports. Let's dig further. What we find is
that most t ai | _numvalues are NULL. It looks like this was an experimental column that wasn't filled in accurately.

We make a mental note that if we use this data as a starting point, we'll ignore this column. We also find that certain
airports are represented in the ORI G Ncolumn but not the DEST column; now we know that we cannot rely on the
assumption that those sets of airport codes are identical.

E,i Note: The first SELECT DI STI NCT DEST query takes almost 40 seconds. We expect all queries on

such a small data set, less than 2 GB, to take a few seconds at most. The reason is because the
expression NOT | N (SELECT origin FROM airlines_external) produces an intermediate
result set of 123 million rows, then runs 123 million comparisons on each data node against the tiny
set of destination airports. The way the NOT | Noperator works internally means that this intermediate
result set with 123 million rows might be transmitted across the network to each data node in the
cluster. Applying another DI STI NCT inside the NOT | Nsubquery means that the intermediate result
set is only 340 items, resulting in much less network traffic and fewer comparison operations. The
more efficient query with the added DI STI NCT is approximately 7 times as fast.

Next, we try doing a simple calculation, with results broken down by year. This reveals that some years have no data
inthe ai rti nme column. That means we might be able to use that column in queries involving certain date ranges, but
we cannot count on it to always be reliable. The question of whether a column contains any NULL values, and if so
what is their number, proportion, and distribution, comes up again and again when doing initial exploration of a data
set.

> SELECT year, SUMairtine) FROM airlines_external
GROUP BY year ORDER BY year DESC,
Fomm o SR +

| year | sum(airtinme) |

2008 | 713050445
2007 748015545
2006 | 720372850
2005 | 708204026
2004 | 714276973
2003 | 665706940
2002 549761849
2001 590867745
2000 | 583537683
1999 | 561219227
1998 | 538050663
1997 536991229
1996 | 519440044
1995 | 513364265

1994 NULL
1993 NULL
1992 NULL
1991 NULL
1990 NULL
1989 NULL
1988 NULL
1987 NULL
R o +

With the notion of NULL values in mind, let's come back to the t ai | _numcolumn that we discovered had a lot of
NULLs. Let's quantify the NULL and non-NULL values in that column for better understanding. First, we just count the
overall number of rows versus the non-NULL values in that column. That initial result gives the appearance of relatively
few non-NULL values, but we can break it down more clearly in a single query. Once we have the COUNT(*) and the
COUNT(col name) numbers, we can encode that initial query in a W THclause, then run a follow-on query that performs
multiple arithmetic operations on those values. Seeing that only one-third of one percent of all rows have non-NULL
values for the t ai | _numcolumn clearly illustrates that column is not of much use.

> SELECT COUNT(*) AS 'rows', COUNT(tail_num) AS 'non-null tail nunbers'
FROM ai rl i nes_external;

| rows | non-null tail nunbers |

>WTH t1 AS
(SELECT COUNT(*) AS 'rows', COUNT(tail_num) AS 'nonnull’
FROM ai rl i nes_ext ernal)

SELECT “rows™, "nonnull”, “rows™ - “nonnull™ AS 'nulls',
("nonnull™ / “rows™) * 100 AS 'percentage non-nul |’

FROM t 1;

S E R S o e e e e e e oo +
| rows | nonnull | nulls | percentage non-null |
S B R S o e e e e e oo +
| 123534969 | 412968 | 123122001 | 0.3342923897119365 |
S B R S o e e e e e e oo +

By examining other columns using these techniques, we can form a mental picture of the way data is distributed
throughout the table, and which columns are most significant for query purposes. For this tutorial, we focus mostly
on the fields likely to hold discrete values, rather than columns such as act ual _el apsed_t i me whose names suggest
they hold measurements. We would dig deeper into those columns once we had a clear picture of which questions
were worthwhile to ask, and what kinds of trends we might look for. For the final piece of initial exploration, let's look
attheyear column. Asimple GROUP BY query shows that it has a well-defined range, a manageable number of distinct
values, and relatively even distribution of rows across the different years.

> SELECT M N(year), MAX(year), NDV(year) FROM airlines_external;
S R Fomm e +
| min(year) | max(year) | ndv(year) |
+ +

> SELECT year, COUNT(*) howrany FROM airlines_external
GROUP BY year ORDER BY year DESC;
Fomm o Fomm e m o +

| year | howmrany |
+

2008 7009728
2007 7453215
2006 7141922
2005 7140596
2004 7129270
2003 6488540
2002 5271359
2001 5967780
2000 5683047
1999 5527884
1998 5384721
1997 5411843
1996 5351983
1995 5327435
1994 5180048
1993 5070501
1992 5092157
1991 5076925
1990 5270893
1989 5041200
1988 5202096
1987 1311826

We could go quite far with the data in this initial raw format, just as we downloaded it from the web. If the data set
proved to be useful and worth persisting in Impala for extensive queries, we might want to copy it to an internal table,
letting Impala manage the data files and perhaps reorganizing a little for higher efficiency. In this next stage of the
tutorial, we copy the original data into a partitioned table, still in Parquet format. Partitioning based on the year
column lets us run queries with clauses such as WHERE year = 2001 or WHERE year BETWEEN 1989 AND 1999,
which can dramatically cut down on I/O by ignoring all the data from years outside the desired range. Rather than
reading all the data and then deciding which rows are in the matching years, Impala can zero in on only the data files
from specific year partitions. To do this, Impala physically reorganizes the data files, putting the rows from each year
into data files in a separate HDFS directory for each year value. Along the way, we'll also get rid of thet ai | _num
column that proved to be almost entirely NULL.

The first step is to create a new table with a layout very similar to the original ai r | i nes_ext er nal table. We'll do
that by reverse-engineering a CREATE TABLE statement for the first table, then tweaking it slightly to include a
PARTI TI ON BY clause for year, and excluding thet ai | _numcolumn. The SHOW CREATE TABLE statement gives us
the starting point.

Although we could edit that output into a new SQL statement, all the ASCII box characters make such editing
inconvenient. To get a more stripped-down CREATE TABLE to start with, we restart the i npal a- shel | command
with the - B option, which turns off the box-drawing behavior.

$ inpal a-shell -i localhost -B -d airlines_data,;

> SHOW CREATE TABLE airlines_external;
" CREATE EXTERNAL TABLE airlines_data.airlines_external (
year | NT COWENT 'inferred from optional int32 year',
month I NT COMMENT 'inferred from optional int32 nonth',
day |INT COWENT 'inferred from optional int32 day',
dayof week I NT COWENT 'inferred from optional int32 dayofweek',
dep_time I NT COWENT 'inferred from optional int32 dep_tine',
crs_dep_tinme INT COMWENT 'inferred from optional int32 crs_dep_tine',
arr_time | NT COWENT 'inferred from optional int32 arr_tinme',
crs_arr_tinme INT COMENT 'inferred from optional int32 crs_arr_tine',
carrier STRING COMMENT 'inferred from optional binary carrier',
flight_num | NT COMENT '"inferred from optional int32 flight_num,
tail _num | NT COMENT 'inferred from optional int32 tail_nuni,
actual _el apsed_tinme INT COMENT 'inferred from optional int32 actual _el apsed_tine'
crs_elapsed_time |NT COWENT 'inferred from optional int32 crs_el apsed_tine',
airtinme INT COWENT 'inferred from optional int32 airtine',
"
"

arrdelay I NT COWENT 'inferred from optional int32 arrdelay',

depdel ay INT COWENT 'inferred from optional int32 depdelay',

origin STRING COWENT 'inferred from optional binary origin',

dest STRING COMMENT 'inferred from optional binary dest',

di stance I NT COMVENT 'inferred from optional int32 distance',

taxi _in INT COMENT 'inferred from optional int32 taxi_in',

taxi _out I NT COWENT 'inferred from optional int32 taxi_out"',

cancell ed I NT COWENT 'inferred from optional int32 cancelled',

cancel | ati on_code STRING COMMENT 'inferred from optional binary cancellation_code',
diverted I NT COWENT 'inferred from optional int32 diverted',

carrier_delay INT COWENT 'inferred from optional int32 carrier_delay',
weat her _del ay | NT COWENT 'inferred from optional int32 weather_del ay',

nas_delay I NT COWENT 'inferred from optional int32 nas_delay',

security_delay |NT COWMENT '"inferred from optional int32 security_delay',
late_aircraft_delay INT COMWMENT 'inferred from optional int32 |ate_aircraft_del ay'

)

STORED AS PARQUET

LOCATI ON ' hdfs://al730. exanpl e. com 8020/ user/i npal a/ stagi ng/ airlines'

TBLPROPERTI ES (' nunFiles' =" 0", 'COLUVWN_STATS ACCURATE ='fal se',
"transient _|astDdl Ti ne' = 1439425228', 'nunRows'='-1', 'total Size' = 0",
‘rawbDat aSi ze'='-1")"

After copying and pasting the CREATE TABLE statement into a text editor for fine-tuning, we quit and restart
i mpal a- shel | without the - B option, to switch back to regular output.

Next we run the CREATE TABLE statement that we adapted from the SHOW CREATE TABLE output. We kept the
STORED AS PARQUET clause because we want to rearrange the data somewhat but still keep it in the high-performance
Parquet format. The LOCATI ONand TBLPROPERTI ES clauses are not relevant for this new table, so we edit those out.
Because we are going to partition the new table based on the year column, we move that column name (and its type)
into a new PARTI TI ONED BY clause.

> CREATE TABLE airlines_data.airlines
(rmont h | NT,
day | NT,
dayof week | NT,
dep_time |NT,
crs_dep_time |NT,
arr_time |NT,
crs_arr_time |NT,
carrier STRI NG
flight_num I NT,
actual _el apsed_tinme |NT,

crs_elapsed_time | NT,

airtinme |NT,

arrdel ay | NT,

depdel ay | NT,

origin STRI NG

dest STRI NG

di st ance | NT,

taxi _in INT,

taxi _out | NT,

cancel | ed | NT,

cancel | ati on_code STRI NG

di verted | NT,

carrier_delay |NT,

weat her _del ay | NT,

nas_del ay | NT,

security_delay INT,

late_aircraft_delay INT)
PARTI TTONED BY (year | NT)
STORED AS PARQUET

1

Next, we copy all the rows from the original table into this new one with an | NSERT statement. (We edited the CREATE
TABLE statement to make an | NSERT statement with the column names in the same order.) The only change is to add
a PARTI TI ON(year) clause, and move the year column to the very end of the SELECT list of the | NSERT statement.
Specifying PARTI TI ON(year), rather than a fixed value such as PARTI TI ON(year =2000) , means that Impala figures
out the partition value for each row based on the value of the very last column in the SELECT list. This is the first SQL
statement that legitimately takes any substantial time, because the rows from different years are shuffled around the
cluster; the rows that go into each partition are collected on one node, before being written to one or more new data
files.

> INSERT INTO airlines_data.airlines
PARTI TI ON (year)
SELECT
nmont h,
day,
dayof week,
dep_tine,
crs_dep_tine,
arr_time,
crs_arr_tine,
carrier,
flight_num
act ual _el apsed_ti ne,
crs_el apsed_ti ne,
airtinme,
arrdel ay,
depdel ay,
origin,
dest,
di st ance,
taxi _in,
taxi _out,
cancel | ed,
cancel | ati on_code,
di verted,
carrier_del ay,
weat her _del ay,
nas_del ay,
security_del ay,
| ate_aircraft_del ay,
year
FROM airlines_data.airlines_external

Once partitioning or join queries come into play, it's important to have statistics that Impala can use to optimize queries
on the corresponding tables. The COMPUTE | NCREMENTAL STATS statement is the way to collect statistics for

partitioned tables. Then the SHOW TABLE STATS statement confirms that the statistics are in place for each partition,
and also illustrates how many files and how much raw data is in each partition.

> COMPUTE | NCREMENTAL STATS airlines

o mm e aa o - +
| summary |
o m e aa oo +
| Updated 22 partition(s) and 27 colum(s). |
oo m e aa o - +

> SHOW TABLE STATS airlines;
| year | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
Incremental stats | Location
I

4 e A e e A A e e +
— — T T

A e e +

| 1987 | 1311826 | 1 | 11.75MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1987

| 1988 | 5202096 | 1 | 44.04MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1988

| 1989 | 5041200 | 1 | 46.07MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost. com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1989

| 1990 | 5270893 | 1 | 46.25MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1990

| 1991 | 5076925 | 1 | 46.77MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_data. db/airlines/year=1991

| 1992 | 5092157 | 1 | 48.21MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1992

| 1993 | 5070501 | 1 | 47.46MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year=1993

| 1994 | 5180048 | 1 | 47.47MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1994

| 1995 | 5327435 | 1 | 62.40MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1995

| 1996 | 5351983 | 1 | 62.93MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1996

| 1997 | 5411843 | 1 | 65.05MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1997

| 1998 | 5384721 | 1 | 62.21MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1998

| 1999 | 5527884 | 1 | 65.10MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year=1999

| 2000 | 5683047 | 1 | 67.68MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2000

| 2001 | 5967780 | 1 | 74.03MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/airl i nes/year=2001

| 2002 | 5271359 | 1 | 74.00MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2002

| 2003 | 6488540 | 1 | 99.35MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2003

| 2004 | 7129270 | 1 | 123.29MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai r| i nes/ year =2004

| 2005 | 7140596 | 1 | 120.72MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2005

| 2006 | 7141922 | 1 | 121.88MB | NOT CACHED | NOT CACHED | PARQUET |
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2006
| 2007 | 7453215 | 1 | 130.87MB | NOT CACHED | NOT CACHED | PARQUET
true
hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2007
| 2008 | 7009728 | 1 | 123.14MB | NOT CACHED | NOT CACHED | PARQUET
true
hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2008
| Total | 123534969 | 22 | 1.55GB | OB [| |
I
I

At this point, we sanity check the partitioning we did. All the partitions have exactly one file, which is on the low side.
A query that includes a clause WHERE year =2004 will only read a single data block; that data block will be read and
processed by a single data node; therefore, for a query targeting a single year, all the other nodes in the cluster will
sitidle while all the work happens on a single machine. It's even possible that by chance (depending on HDFS replication
factor and the way data blocks are distributed across the cluster), that multiple year partitions selected by a filter such
as WHERE year BETWEEN 1999 AND 2001 could all be read and processed by the same data node. The more data
files each partition has, the more parallelism you can get and the less probability of “hotspots” occurring on particular
nodes, therefore a bigger performance boost by having a big cluster.

However, the more data files, the less data goes in each one. The overhead of dividing the work in a parallel query
might not be worth it if each node is only reading a few megabytes. 50 or 100 megabytes is a decent size for a Parquet
data block; 9 or 37 megabytes is on the small side. Which is to say, the data distribution we ended up with based on
this partitioning scheme is on the borderline between sensible (reasonably large files) and suboptimal (few files in
each partition). The way to see how well it works in practice is to run the same queries against the original flat table
and the new partitioned table, and compare times.

Spoiler: in this case, with my particular 4-node cluster with its specific distribution of data blocks and my particular
exploratory queries, queries against the partitioned table do consistently run faster than the same queries against the
unpartitioned table. But | could not be sure that would be the case without some real measurements. Here are some
queries | ran to draw that conclusion, first against ai r | i nes_ext er nal (no partitioning), then against Al RLI NES
(partitioned by year). The Al RLI NES queries are consistently faster. Changing the volume of data, changing the size
of the cluster, running queries that did or didn't refer to the partition key columns, or other factors could change the
results to favor one table layout or the other.

E’; Note: If you find the volume of each partition is only in the low tens of megabytes, consider lowering

the granularity of partitioning. For example, instead of partitioning by year, month, and day, partition
by year and month or even just by year. The ideal layout to distribute work efficiently in a parallel
query is many tens or even hundreds of megabytes per Parquet file, and the number of Parquet files
in each partition somewhat higher than the number of data nodes.

> SELECT SUM airtinme) FROM airlines_external;
+

> SELECT SUMairtinme) FROM airlines;
+

> SELECT SUM airtinme) FROM airlines_external WHERE year = 2005;
+

> SELECT SUMairtime) FROM airlines WHERE year = 2005;
+

| 708204026 |

Now we can finally analyze this data set that from the raw data files and we didn't know what columns they contained.
Let's see whether the ai rt i nme of a flight tends to be different depending on the day of the week. We can see that
the average is a little higher on day number 6; perhaps Saturday is a busy flying day and planes have to circle for longer
at the destination airport before landing.

> SELECT dayof week, AVG airtinme) FROM airlines
GROUP BY dayof week ORDER BY dayof week;
. S +

| 102. 1560425016671
| 102. 1582931538807
| 102.2170009256653
| 102.37477661846 |
| 102.2697358763511 |
| 105. 3627448363705
| 103. 4144351202054

To see if the apparent trend holds up over time, let's do the same breakdown by day of week, but also split up by year.
Now we can see that day number 6 consistently has a higher average air time in each year. We can also see that the
average air time increased over time across the board. And the presence of NULL for this column in years 1987 to 1994
shows that queries involving this column need to be restricted to a date range of 1995 and higher.

> SELECT year, dayofweek, AVGairtine) FROM airlines

GROUP BY year, dayofweek ORDER BY year DESC, dayof week;
tomm oo - Fommmee e B +
| year | dayofweek | avg(airtine) [
tomm oo - Fommmee e Femm e eeaaana +

2008 | 1 103. 1821651651355

2008 2 103. 2149301386094

2008 | 3 103. 0585076622796

2008 4 103. 4671383539038

2008 | 5 103. 5575385182659

2008 6 107. 4006306562128

2008 | 7 104. 8648851041755

2007 1 102. 2196114337825

2007 | 2 101. 9317791906348

2007 3 102. 0964767689043

2007 4 102. 6215927201686

2007 5 102. 4289399000661

2007 6 105. 1477448215756

2007 7 103. 6305945644095

1996 1 99. 33860750862108

1996 | 2 99. 54225446396656

1996 3 99. 41129336113134

1996 | 4 99. 5110373340348

1996 5 99. 22120745027595

1996 6 101. 1717447111921

1996 7 99. 95410136133704

1995 | 1 96. 93779698300494

1995 2 96. 93458674589712

1995 | 3 97.00972311337051

1995 4 96. 90843832024412

1995 | 5 96. 78382115425562

1995 6 98. 70872826057003

1995 | 7 97.85570478374616

1994 1 NULL

1994 2 NULL

1994 3 NULL

1987 5 NULL

1987 | 6 NULL

7

NULL

Impala Administration

As an administrator, you monitor Impala's use of resources and take action when necessary to keep Impala running
smoothly and avoid conflicts with other Hadoop components running on the same cluster. When you detect that an
issue has happened or could happen in the future, you reconfigure Impala or other components such as HDFS or even
the hardware of the cluster itself to resolve or avoid problems.

Related tasks:

As an administrator, you can expect to perform installation, upgrade, and configuration tasks for Impala on all machines
in a cluster. See Setting Up Apache Impala Using the Command Line on page 27, Upgrading Impala on page 44, and
Managing Impala on page 36 for details.

For security tasks typically performed by administrators, see Impala Security on page 109.

Administrators also decide how to allocate cluster resources so that all Hadoop components can run smoothly together.
For Impala, this task primarily involves:

¢ Deciding how many Impala queries can run concurrently and with how much memory, through the admission
control feature. See Admission Control and Query Queuing on page 83 for details.

¢ Dividing cluster resources such as memory between Impala and other components, using YARN for overall resource
management, and Llama to mediate resource requests from Impala to YARN. See Resource Management for
Impala on page 91 for details.

Admission Control and Query Queuing

Admission control is an Impala feature that imposes limits on concurrent SQL queries, to avoid resource usage spikes
and out-of-memory conditions on busy CDH clusters. It is a form of “throttling”. New queries are accepted and executed
until certain conditions are met, such as too many queries or too much total memory used across the cluster. When
one of these thresholds is reached, incoming queries wait to begin execution. These queries are queued and are
admitted (that is, begin executing) when the resources become available.

In addition to the threshold values for currently executing queries, you can place limits on the maximum number of
queries that are queued (waiting) and a limit on the amount of time they might wait before returning with an error.
These queue settings let you ensure that queries do not wait indefinitely, so that you can detect and correct “starvation”
scenarios.

Queries, DML statements, and some DDL statements, including CREATE TABLE AS SELECT and COMPUTE STATS
are affected by admission control.

Enable this feature if your cluster is underutilized at some times and overutilized at others. Overutilization is indicated
by performance bottlenecks and queries being cancelled due to out-of-memory conditions, when those same queries
are successful and perform well during times with less concurrent load. Admission control works as a safeguard to
avoid out-of-memory conditions during heavy concurrent usage.

E’; Note:

The use of the Llama component for integrated resource management within YARN is no longer
supported with CDH 5.5 / Impala 2.3 and higher. The Llama support code is removed entirely in CDH
5.10 / Impala 2.8 and higher.

For clusters running Impala alongside other data management components, you define static service
pools to define the resources available to Impala and other components. Then within the area allocated
for Impala, you can create dynamic service pools, each with its own settings for the Impala admission
control feature.

Overview of Impala Admission Control

On a busy CDH cluster, you might find there is an optimal number of Impala queries that run concurrently. For example,
when the |/0O capacity is fully utilized by I/O-intensive queries, you might not find any throughput benefit in running
more concurrent queries. By allowing some queries to run at full speed while others wait, rather than having all queries
contend for resources and run slowly, admission control can result in higher overall throughput.

For another example, consider a memory-bound workload such as many large joins or aggregation queries. Each such
query could briefly use many gigabytes of memory to process intermediate results. Because Impala by default cancels
queries that exceed the specified memory limit, running multiple large-scale queries at once might require re-running
some queries that are cancelled. In this case, admission control improves the reliability and stability of the overall
workload by only allowing as many concurrent queries as the overall memory of the cluster can accommodate.

The admission control feature lets you set an upper limit on the number of concurrent Impala queries and on the
memory used by those queries. Any additional queries are queued until the earlier ones finish, rather than being
cancelled or running slowly and causing contention. As other queries finish, the queued queries are allowed to proceed.

In CDH 5.7 / Impala 2.5 and higher, you can specify these limits and thresholds for each pool rather than globally. That
way, you can balance the resource usage and throughput between steady well-defined workloads, rare resource-intensive
queries, and ad hoc exploratory queries.

For more details on the internal workings of admission control, see How Impala Schedules and Enforces Limits on
Concurrent Queries on page 85.

Concurrent Queries and Admission Control

One way to limit resource usage through admission control is to set an upper limit on the number of concurrent queries.
This is the initial technique you might use when you do not have extensive information about memory usage for your
workload. This setting can be specified separately for each dynamic resource pool.

You can combine this setting with the memory-based approach described in Memory Limits and Admission Control on
page 84. If either the maximum number of or the expected memory usage of the concurrent queries is exceeded,
subsequent queries are queued until the concurrent workload falls below the threshold again.

See http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_resource_pools.html for information
about all these dynamic resource pool settings, how to use them together, and how to divide different parts of your
workload among different pools.

Memory Limits and Admission Control

Each dynamic resource pool can have an upper limit on the cluster-wide memory used by queries executing in that
pool. This is the technique to use once you have a stable workload with well-understood memory requirements.

Always specify the Default Query Memory Limit for the expected maximum amount of RAM that a query might require
on each host, which is equivalent to setting the MEM_LI M T query option for every query run in that pool. That value
affects the execution of each query, preventing it from overallocating memory on each host, and potentially activating
the spill-to-disk mechanism or cancelling the query when necessary.

Optionally, specify the Max Memory setting, a cluster-wide limit that determines how many queries can be safely run
concurrently, based on the upper memory limit per host multiplied by the number of Impala nodes in the cluster.

For example, consider the following scenario:

e The cluster is running i npal ad daemons on five DataNodes.

¢ A dynamic resource pool has Max Memory set to 100 GB.

¢ The Default Query Memory Limit for the pool is 10 GB. Therefore, any query running in this pool could use up to
50 GB of memory (default query memory limit * number of Impala nodes).

e The maximum number of queries that Impala executes concurrently within this dynamic resource pool is two,
which is the most that could be accomodated within the 100 GB Max Memory cluster-wide limit.

e There is no memory penalty if queries use less memory than the Default Query Memory Limit per-host setting
or the Max Memory cluster-wide limit. These values are only used to estimate how many queries can be run
concurrently within the resource constraints for the pool.

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_resource_pools.html

E,i Note: If you specify Max Memory for an Impala dynamic resource pool, you must also specify the
Default Query Memory Limit. Max Memory relies on the Default Query Memory Limit to produce
a reliable estimate of overall memory consumption for a query.

You can combine the memory-based settings with the upper limit on concurrent queries described in Concurrent
Queries and Admission Control on page 84. If either the maximum number of or the expected memory usage of the
concurrent queries is exceeded, subsequent queries are queued until the concurrent workload falls below the threshold
again.

See http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_resource_pools.html for information
about all these dynamic resource pool settings, how to use them together, and how to divide different parts of your
workload among different pools.

How Impala Admission Control Relates to Other Resource Management Tools

The admission control feature is similar in some ways to the Cloudera Manager static partitioning feature, as well as
the YARN resource management framework. These features can be used separately or together. This section describes
some similarities and differences, to help you decide which combination of resource management features to use for
Impala.

Admission control is a lightweight, decentralized system that is suitable for workloads consisting primarily of Impala
queries and other SQL statements. It sets “soft” limits that smooth out Impala memory usage during times of heavy
load, rather than taking an all-or-nothing approach that cancels jobs that are too resource-intensive.

Because the admission control system does not interact with other Hadoop workloads such as MapReduce jobs, you
might use YARN with static service pools on CDH 5 clusters where resources are shared between Impala and other
Hadoop components. This configuration is recommended when using Impala in a multitenant cluster. Devote a
percentage of cluster resources to Impala, and allocate another percentage for MapReduce and other batch-style
workloads. Let admission control handle the concurrency and memory usage for the Impala work within the cluster,
and let YARN manage the work for other components within the cluster. In this scenario, Impala's resources are not
managed by YARN.

The Impala admission control feature uses the same configuration mechanism as the YARN resource manager to map
users to pools and authenticate them.

Although the Impala admission control feature uses a f ai r - schedul er. xm configuration file behind the scenes,
this file does not depend on which scheduler is used for YARN. You still use this file, and Cloudera Manager can generate
it for you, even when YARN is using the capacity scheduler.

How Impala Schedules and Enforces Limits on Concurrent Queries

The admission control system is decentralized, embedded in each Impala daemon and communicating through the
statestore mechanism. Although the limits you set for memory usage and number of concurrent queries apply
cluster-wide, each Impala daemon makes its own decisions about whether to allow each query to run immediately or
to queue it for a less-busy time. These decisions are fast, meaning the admission control mechanism is low-overhead,
but might be imprecise during times of heavy load across many coordinators. There could be times when the more
queries were queued (in aggregate across the cluster) than the specified limit, or when number of admitted queries
exceeds the expected number. Thus, you typically err on the high side for the size of the queue, because there is not
a big penalty for having a large number of queued queries; and you typically err on the low side for configuring memory
resources, to leave some headroom in case more queries are admitted than expected, without running out of memory
and being cancelled as a result.

To avoid a large backlog of queued requests, you can set an upper limit on the size of the queue for queries that are
queued. When the number of queued queries exceeds this limit, further queries are cancelled rather than being queued.
You can also configure a timeout period per pool, after which queued queries are cancelled, to avoid indefinite waits.
If a cluster reaches this state where queries are cancelled due to too many concurrent requests or long waits for query
execution to begin, that is a signal for an administrator to take action, either by provisioning more resources, scheduling
work on the cluster to smooth out the load, or by doing Impala performance tuning to enable higher throughput.

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_resource_pools.html

How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2)
Most aspects of admission control work transparently with client interfaces such as JDBC and ODBC:

e |f a SQL statement is put into a queue rather than running immediately, the API call blocks until the statement is
dequeued and begins execution. At that point, the client program can request to fetch results, which might also
block until results become available.

e |f a SQL statement is cancelled because it has been queued for too long or because it exceeded the memory limit
during execution, the error is returned to the client program with a descriptive error message.

In Impala 2.0 and higher, you can submit a SQL SET statement from the client application to change the REQUEST POCOL
query option. This option lets you submit queries to different resource pools, as described in REQUEST POOL Query
Option on page 390.

At any time, the set of queued queries could include queries submitted through multiple different Impala daemon
hosts. All the queries submitted through a particular host will be executed in order, so a CREATE TABLE followed by
an | NSERT on the same table would succeed. Queries submitted through different hosts are not guaranteed to be
executed in the order they were received. Therefore, if you are using load-balancing or other round-robin scheduling
where different statements are submitted through different hosts, set up all table structures ahead of time so that
the statements controlled by the queuing system are primarily queries, where order is not significant. Or, if a sequence
of statements needs to happen in strict order (such as an | NSERT followed by a SELECT), submit all those statements
through a single session, while connected to the same Impala daemon host.

Admission control has the following limitations or special behavior when used with JDBC or ODBC applications:

e The other resource-related query options, RESERVATI ON_REQUEST Tl MEQUT and V_CPU_CORES, are no longer
used. Those query options only applied to using Impala with Llama, which is no longer supported.

SQL and Schema Considerations for Admission Control

When queries complete quickly and are tuned for optimal memory usage, there is less chance of performance or
capacity problems during times of heavy load. Before setting up admission control, tune your Impala queries to ensure
that the query plans are efficient and the memory estimates are accurate. Understanding the nature of your workload,
and which queries are the most resource-intensive, helps you to plan how to divide the queries into different pools
and decide what limits to define for each pool.

For large tables, especially those involved in join queries, keep their statistics up to date after loading substantial
amounts of new data or adding new partitions. Use the COVPUTE STATS statement for unpartitioned tables, and
COVPUTE | NCREVMENTAL STATS for partitioned tables.

When you use dynamic resource pools with a Max Memory setting enabled, you typically override the memory
estimates that Impala makes based on the statistics from the COVPUTE STATSstatement. You either setthe VEM LI M T
query option within a particular session to set an upper memory limit for queries within that session, or a default
MEM LI M T setting for all queries processed by the i npal ad instance, or a default MEM LI M T setting for all queries
assigned to a particular dynamic resource pool. By designating a consistent memory limit for a set of similar queries
that use the same resource pool, you avoid unnecessary query queuing or out-of-memory conditions that can arise
during high-concurrency workloads when memory estimates for some queries are inaccurate.

Follow other steps from Tuning Impala for Performance on page 590 to tune your queries.

Configuring Admission Control

The configuration options for admission control range from the simple (a single resource pool with a single set of
options) to the complex (multiple resource pools with different options, each pool handling queries for a different set
of users and groups). Cloudera recommends configuring the settings through the Cloudera Manager user interface.

Important: Although the following options are still present in the Cloudera Manager interface under
o the Admission Control configuration settings dialog, If possible, avoid using them in CDH 5.7 / Impala
2.5 and higher. These settings only apply if you enable admission control but leave dynamic resource
pools disabled. In CDH 5.7 / Impala 2.5 and higher, prefer to set up dynamic resource pools and
customize the settings for each pool, as described in Creating an Impala Dynamic Resource Pool and
Editing Dynamic Resource Pools in
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_resource_pools.html.

Impala Service Flags for Admission Control (Advanced)

The following Impala configuration options let you adjust the settings of the admission control feature. When supplying
the options on the i npal ad command line, prepend the option name with - - .

queue_wai t _tinmeout _ns
Purpose: Maximum amount of time (in milliseconds) that a request waits to be admitted before timing out.

Type:i nt 64
Default: 60000

def aul t _pool _nax_requests

Purpose: Maximum number of concurrent outstanding requests allowed to run before incoming requests are
gueued. Because this limit applies cluster-wide, but each Impala node makes independent decisions to run queries
immediately or queue them, it is a soft limit; the overall number of concurrent queries might be slightly higher
during times of heavy load. A negative value indicates no limit. Ignored if f ai r _schedul er _confi g_pat h and

I I ama_site_pat h are set.

Type:i nt 64
Default: -1, meaning unlimited (prior to CDH 5.7 / Impala 2.5 the default was 200)

def aul t _pool _nax_queued

Purpose: Maximum number of requests allowed to be queued before rejecting requests. Because this limit applies
cluster-wide, but each Impala node makes independent decisions to run queries immediately or queue them, it is
a soft limit; the overall number of queued queries might be slightly higher during times of heavy load. A negative
value or 0 indicates requests are always rejected once the maximum concurrent requests are executing. Ignored if
fair_schedul er_config_pathandl | ama_site_path are set.

Type: i nt 64
Default: unlimited

default _pool _nemlimt

Purpose: Maximum amount of memory (across the entire cluster) that all outstanding requests in this pool can use
before new requests to this pool are queued. Specified in bytes, megabytes, or gigabytes by a number followed by
the suffix b (optional), m or g, either uppercase or lowercase. You can specify floating-point values for megabytes
and gigabytes, to represent fractional numbers such as 1. 5. You can also specify it as a percentage of the physical
memory by specifying the suffix % 0 or no setting indicates no limit. Defaults to bytes if no unit is given. Because
this limit applies cluster-wide, but each Impala node makes independent decisions to run queries immediately or
gueue them, it is a soft limit; the overall memory used by concurrent queries might be slightly higher during times
of heavy load. Ignored if f ai r _schedul er _config_pathandl | ama_site_pat h are set.

E.l Note: Impala relies on the statistics produced by the COMPUTE STATS statement to estimate
memory usage for each query. See COMPUTE STATS Statement on page 254 for guidelines about
how and when to use this statement.

Type: string

Default: " " (empty string, meaning unlimited)

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_resource_pools.html

di sabl e_adni ssi on_contr ol
Purpose: Turns off the admission control feature entirely, regardless of other configuration option settings.

Type: Boolean
Default: f al se

di sabl e_pool _nmax_requests

Purpose: Disables all per-pool limits on the maximum number of running requests.
Type: Boolean
Default: f al se
di sabl e_pool _mem|limts
Purpose: Disables all per-pool mem limits.
Type: Boolean
Default: f al se

fair_schedul er_al |l ocation_path

Purpose: Path to the fair scheduler allocation file (f ai r - schedul er. xni).
Type: string
Default: " " (empty string)

Usage notes: Admission control only uses a small subset of the settings that can go in this file, as described below.
For details about all the Fair Scheduler configuration settings, see the Apache wiki.

I lana_site_path

Purpose: Path to the configuration file used by admission control (I | ana- si t e. xni). If set,
fair_schedul er_al |l ocati on_pat h must also be set.

Type: string
Default: " " (empty string)

Usage notes: Admission control only uses a few of the settings that can go in this file, as described below.

Configuring Admission Control Using Cloudera Manager

In Cloudera Manager, you can configure pools to manage queued Impala queries, and the options for the limit on
number of concurrent queries and how to handle queries that exceed the limit. For details, see Managing Resources
with Cloudera Manager.

Configuring Admission Control Using the Command Line

To configure admission control, use a combination of startup options for the Impala daemon and edit or create the
configuration files f ai r - schedul er. xml and| | ama-site. xm .

For a straightforward configuration using a single resource pool named def aul t, you can specify configuration options
on the command line and skip the f ai r - schedul er. xml and | | ama- si t e. xm configuration files.

For an advanced configuration with multiple resource pools using different settings, set up the f ai r - schedul er . xm
and | | ama-si t e. xm configuration files manually. Provide the paths to each one using the i npal ad command-line
options, - -fai r_schedul er_al | ocati on_pathand--11ama_site_pat h respectively.

The Impala admission control feature only uses the Fair Scheduler configuration settings to determine how to map
users and groups to different resource pools. For example, you might set up different resource pools with separate
memory limits, and maximum number of concurrent and queued queries, for different categories of users within your
organization. For details about all the Fair Scheduler configuration settings, see the Apache wiki.

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_resources.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_resources.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration

The Impala admission control feature only uses a small subset of possible settings from the | | ama- si t e. xni
configuration file:

I'lama. am throttling. maxi mum pl aced. reservati ons. queue_nane

Il ama. am t hrottli ng. maxi num queued. r eservati ons. queue_nane

i mpal a. admi ssi on-control . pool - defaul t - query-opti ons. queue_nane
i mpal a. adm ssi on-control . pool - queue-ti neout - ms. queue_nane

The i npal a. admi ssi on-control . pool - queue-t i meout - ms setting specifies the timeout value for this pool, in
milliseconds. Thei npal a. adni ssi on-control . pool - def aul t - quer y- opt i ons settings designates the default
query options for all queries that run in this pool. Its argument value is a comma-delimited string of 'key=value' pairs,
forexample,’ keyl=val 1, key2=val 2' . Forexample, thisis where you might set a default memory limit for all queries
in the pool, using an argument such as MEM LI M T=5G

The i npal a. adni ssi on- contr ol . * configuration settings are available in CDH 5.7 / Impala 2.5 and higher.
Examples of Admission Control Configurations

Example Admission Control Configurations Using Cloudera Manager

For full instructions about configuring dynamic resource pools through Cloudera Manager, see
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_resource_pools.html.

Example Admission Control Configurations Using Configuration Files

For clusters not managed by Cloudera Manager, here are sample f ai r - schedul er. xm and || ama-site. xm files
that define resource pools r oot . def aul t, r oot . devel opnent, and r oot . product i on. These sample files are
stripped down: in a real deployment they might contain other settings for use with various aspects of the YARN
component. The settings shown here are the significant ones for the Impala admission control feature.

fair-scheduler.xml:

Although Impala does not use the vcor es value, you must still specify it to satisfy YARN requirements for the file
contents.

Each <acl Subni t Apps> tag (other than the one for r oot) contains a comma-separated list of users, then a space,
then a comma-separated list of groups; these are the users and groups allowed to submit Impala statements to the
corresponding resource pool.

If you leave the <acl Submi t Apps> element empty for a pool, nobody can submit directly to that pool; child pools
can specify their own <acl Subnmi t Apps> values to authorize users and groups to submit to those pools.

<al | ocati ons>
<queue name="root">
<acl Submi t Apps> </ acl Subm t Apps>
<queue nane="defaul t">
<maxResour ces>50000 nmb, O vcores</ maxResour ces>
<acl Subm t Apps>*</ acl Subm t Apps>
</ queue>
<queue nane="devel opnent">
<maxResour ces>200000 nb, 0 vcores</ naxResources>
<acl Subm t Apps>user 1, user 2 dev, ops, adm n</ acl Submi t Apps>
</ queue>
<queue nane="production">
<nmaxResour ces>1000000 nb, 0O vcores</ maxResources>
<acl Subm t Apps> ops, adni n</ acl Subni t Apps>
</ queue>
</ queue>
<queuePl acenent Pol i cy>
<rul e name="specified" create="fal se"/>
<rul e name="default" />
</ queuePl acenent Pol i cy>
</ al |l ocati ons>

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_resource_pools.html

llama-site.xml:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration>
<property>
<nanme>| | ama. am throt tli ng. maxi mum pl aced. reservati ons. r oot . def aul t </ nane>
<val ue>10</ val ue>
</ property>
<property>
<nanme>| | ama. am t hrot t| i ng. maxi mum queued. r eservati ons. r oot . def aul t </ nane>
<val ue>50</ val ue>
</ property>
<property>
<nane>i npal a. adni ssi on- control . pool -def aul t - query-options. root. def aul t </ nane>
<val ue>mem | i m t =128m query_ti meout _s=20, max_i o_buf f er s=10</ val ue>
</ property>
<property>
<nane>i mpal a. admi ssi on- control . pool - queue-ti meout - ms. r oot . def aul t </ name>
<val ue>30000</ val ue>
</ property>
<property>
<nanme>| | ama. am throttli ng. maxi mum pl aced. reservati ons. root. devel oprment </ nane>
<val ue>50</ val ue>
</ property>
<property>
<nanme>l | ama. am throt tli ng. maxi mum queued. reservati ons. r oot. devel oprment </ nane>
<val ue>100</ val ue>
</ property>
<property>
<nane>i npal a. admi ssi on- control . pool - def aul t - query-opti ons. root. devel opnent </ name>
<val ue>mem | i m t =256m query_ti meout _s=30, max_i o_buf f er s=10</ val ue>
</ property>
<property>
<nane>i npal a. admi ssi on- control . pool - queue-ti meout - ms. r oot . devel opnent </ name>
<val ue>15000</ val ue>
</ property>
<property>
<nanme>l | ama. am throt tli ng. maxi mum pl aced. reservati ons. r oot. producti on</ name>
<val ue>100</ val ue>
</ property>
<property>
<nanme>| | ama. am t hrot t| i ng. maxi mum queued. reservati ons. r oot. producti on</ name>
<val ue>200</ val ue>
</ property>
<l--
Default query options for the 'root.production' pool
THIS IS A NEWPARAMETER in CDH 5.7 / Inpala 2.5.
Note that the MEM LIMT query option still shows up in here even though it is a
separate box in the U. W do that because it is the nost inportant query option

that people will need (everything else is sonewhat advanced)

MEM LIMT takes a per-node nmenory limt which is specified using one of the
fol | ow ng:
- '<int>[bB]?" -> bytes (default if no unit given)
- '<float>[MM bB)]' -> negabytes
- '<float>[gQbB)]' -> in gigabytes
E.g. ' MEM LI M T=12345' (no unit) means 12345 bytes, and you can append mor ¢
to specify negabytes or gigabytes, though that is not required.
-->
<property>
<nane>i npal a. adni ssi on- control . pool -def aul t - query-options. root. producti on</ name>
<val ue>mem | i m t =386m query_ti meout _s=30, max_i o_buf f er s=10</ val ue>
</ property>
<l--
Def aul t queue tinmeout (nms) for the pool 'root.production’
If this isn't set, the process-wide flag is used.
THIS 1S A NEWPARAMETER in CDH 5.7 / Inpala 2.5
-->
<property>
<nanme>i npal a. admi ssi on-control . pool - queue-ti meout - ns. r oot . producti on</ nane>
<val ue>30000</ val ue>

</ property>
</ confi guration>

Guidelines for Using Admission Control

To see how admission control works for particular queries, examine the profile output for the query. This information
is available through the PROFI LE statement in i npal a- shel | immediately after running a query in the shell, on the
queries page of the Impala debug web Ul, or in the Impala log file (basic information at log level 1, more detailed
information at log level 2). The profile output contains details about the admission decision, such as whether the query
was queued or not and which resource pool it was assigned to. It also includes the estimated and actual memory usage
for the query, so you can fine-tune the configuration for the memory limits of the resource pools.

Where practical, use Cloudera Manager to configure the admission control parameters. The Cloudera Manager GUI is
much simpler than editing the configuration files directly.

Remember that the limits imposed by admission control are “soft” limits. The decentralized nature of this mechanism
means that each Impala node makes its own decisions about whether to allow queries to run immediately or to queue
them. These decisions rely on information passed back and forth between nodes by the statestore service. If a sudden
surge in requests causes more queries than anticipated to run concurrently, then throughput could decrease due to
queries spilling to disk or contending for resources; or queries could be cancelled if they exceed the MEM LI M T setting
while running.

Ini mpal a- shel | , you can also specify which resource pool to direct queries to by setting the REQUEST_POCL query
option.

If you set up different resource pools for different users and groups, consider reusing any classifications you developed
for use with Sentry security. See Enabling Sentry Authorization for Impala on page 115 for details.

For details about all the Fair Scheduler configuration settings, see Fair Scheduler Configuration, in particular the tags
such as <queue> and <acl Submi t Apps> to map users and groups to particular resource pools (queues).

Resource Management for Impala

E’; Note:

The use of the Llama component for integrated resource management within YARN is no longer
supported with CDH 5.5 / Impala 2.3 and higher. The Llama support code is removed entirely in CDH
5.10 / Impala 2.8 and higher.

For clusters running Impala alongside other data management components, you define static service
pools to define the resources available to Impala and other components. Then within the area allocated
for Impala, you can create dynamic service pools, each with its own settings for the Impala admission
control feature.

You can limit the CPU and memory resources used by Impala, to manage and prioritize workloads on clusters that run
jobs from many Hadoop components.

How Resource Limits Are Enforced

e |f Cloudera Manager Static Partitioning is used, it creates a cgroup in which Impala runs. This cgroup limits CPU,
network, and 10 according to the static partitioning policy.

e Limits on memory usage are enforced by Impala's process memory limit (the MEM LI M T query option setting).
The admission control feature checks this setting to decide how many queries can be safely run at the same time.
Then the Impala daemon enforces the limit by activating the spill-to-disk mechanism when necessary, or cancelling
a query altogether if the limit is exceeded at runtime.

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration

impala-shell Query Options for Resource Management

Before issuing SQL statements through the i npal a- shel | interpreter, you can use the SET command to configure
the following parameters related to resource management:

e EXPLAIN_LEVEL Query Option on page 366
e MEM_LIMIT Query Option on page 378

Limitations of Resource Management for Impala

The MEM LI M T query option, and the other resource-related query options, are settable through the ODBC or JDBC
interfaces in Impala 2.0 and higher. This is a former limitation that is now lifted.

How to Configure Resource Management for Impala

Impala includes features that balance and maximize resources in your CDH cluster. This topic describes how you can
enhance a CDH cluster using Impala to improve efficiency.

A typical deployment uses the following.

¢ Creating Static Service Pools
e Using Admission Control

— Setting Per-query Memory Limits
— Creating Dynamic Resource Pools

Creating Static Service Pools

Use Static Service Pools to allocate dedicated resources for Impala and other services to allow for predictable resource
availability.

Static service pools isolate services from one another, so that high load on one service has bounded impact on other
services. You can use Cloudera Manager to configure static service pools that control memory, CPU and Disk I/O.

The following screenshot shows a sample configuration for Static Service Pools in Cloudera Manager:

Static Service Pools (Doc Guster)

Status Configuration

Step 1 of 4: Basic Allocation Setup

Basic

Service Allocation %
H HBase 5 %
& HDFs 5%
4 Impala 50 %
& Kudu 5%
= Solr 5 %
1 YARN 30 %
Total 100 %

e HDFS always needs to have a minimum of 5-10% of the resources.

e Generally, YARN and Impala split the rest of the resources.

— For mostly batch workloads, you might allocate YARN 60%, Impala 30%, and HDFS 10%.

— For mostly ad hoc query workloads, you might allocate Impala 60%, YARN 30%, and HDFS 10%.

Using Admission Control

Within the constraints of the static service pool, you can further subdivide Impala's resources using Admission Control.
You configure Impala Admission Control pools in the Cloudera Manager Dynamic Resource Pools page.

You use Admission Control to divide usage between Dynamic Resource Pools in multitenant use cases. Allocating
resources judiciously allows your most important queries to run faster and more reliably.

E,i Note: In this context, Impala Dynamic Resource Pools are different than the default YARN Dynamic
Resource Pools. You can turn on Dynamic Resource Pools that are exclusively for use by Impala.

Admission Control is enabled by default.
A Dynamic Resource Pool has the following properties:

¢ Max Running Queries: Maximum number of concerrently executing queries in the pool before incoming queries
are queued.

¢ Max Memory Resources: Maximum memory used by queries in the pool before incoming queries are queued.
This value is used at the time of admission and is not enforced at query runtime.

¢ Default Query Memory Limit: Defines the maximum amount of memory a query can allocate on each node. This
is enforced at runtime. If the query attempts to use more memory, it is forced to spill, if possible. Otherwise, it is
cancelled. The total memory that can be used by a query is the MEM LI M T times the number of nodes.

¢ Max Queued Queries: Maximum number of queries that can be queued in the pool before additional queries are
rejected.

¢ Queue Timeout: Specifies how long queries can wait in the queue before they are cancelled with a timeout error.

Setting Per-query Memory Limits

Use per-query memory limits to prevent queries from consuming excessive memory resources that impact other
queries. Cloudera recommends that you set the query memory limits whenever possible.

If you set the Pool Max Mem Resources for a resource pool, Impala attempts to throttle queries if there is not enough
memory to run them within the specified resources.

Only use admission control with maximum memory resources if you can ensure there are query memory limits. Set
the pool Default Query Memory Limit to be certain. You can override this setting with the quer y option, if necessary.

Typically, you set query memory limits using the set MEM LI M T=Xg; query option. When you find the right value
for your business case, memory-based admission control works well. The potential downside is that queries that
attempt to use more memory might perform poorly or even be cancelled.

To find a reasonable default query memory limit:

. Run the workload.

. In Cloudera Manager, go to Impala > Queries.

. Click Select Attributes.

. Select Per Node Peak Memory Usage and click Update.

. Allow the system time to gather information, then click the Show Histogram icon to see the results.

U b WIN =

Per Node Peak Memory Usage

1.2 GiB-1.2 GiB
1.2 GiB - 1.2 GiB
1.2 GiB - 1.2 GiB
1.2 GiB - 1.2 GiB

6. Use the histogram to find a value that accounts for most queries. Queries that require more resources than this
limit should explicitly set the memory limit to ensure they can run to completion.

Impala Administration
Per Node Peak Memory Usage

Legend Statistics

All Entities
Entity Name + Value
784120671a4d3372:8¢11c4e0d9db86b7 1.2G
fd49babc0ed7{92f:48834fabb2f65e98 1.2G
b04b9816004e87fe:930f3861e691d492 1.2G
d64b219a87de7ad0:69b87 3fad401449b 1.2G6
9346058f8912538f.d81b10a70382529b 1.2G

Creating Dynamic Resource Pools

A dynamic resource pool is a named configuration of resources and a policy for scheduling the resources among Impala
queries running in the pool. Dynamic resource pools allow you to schedule and allocate resources to Impala queries
based on a user's access to specific pools and the resources available to those pools.

This example creates both production and development resource pools or queues. It assumes you have 3 worker nodes
with 24GiB of RAM each for an aggregate memory of 72000MiB. This pool configuration allocates the Production queue
twice the memory resources of the Development queue, and a higher number of concurrent queries.

To create a Production dynamic resource pool for Impala:

1. In Cloudera Manager, select Clusters > Dynamic Resource Pool Configuration.
2. Click the Impala Admission Control tab.

3. Click Create Resource Pool.

4. Specify a name and resource limits for the Production pool:

¢ |n the Resource Pool Name field, enter Pr oduct i on.
¢ In the Max Memory field, enter 48000.

¢ In the Default Query Memory Limit field, enter 1600.
¢ In the Max Running Queries field, enter 10.

¢ |nthe Max Queued Queries field, enter 200.

5. Click Create.
6. Click Refresh Dynamic Resource Pools.

The Production queue runs up to 10 queries at once. If the total memory requested by these queries exceeds 48000
MiB, it holds the next query in the queue until the memory is released. It also prevents a query from running if it needs
more memory than is currently available. Admission Control holds the next query if either Max Running Queries is
reached, or the pool Max Memory limit is reached.

Here, Max Memory resources and Default Query Memory Limit throttle throughput to 10 queries, so setting Max
Running Queries might not be necessary, though it does not hurt to do so. Most users set Max Running Queries when
they cannot pick good numbers for memory. Since users can override the query option mem_limit, setting the Max
Running Queries property might make sense.

To create a Development dynamic resource pool for Impala:

1. In Cloudera Manager, select Clusters > Dynamic Resource Pool Configuration.
2. Click the Impala Admission Control tab.

94 | Apache Impala Guide

3. Click Create Resource Pool.
4. Specify a name and resource limits for the Development pool:

¢ Inthe Resource Pool Name field, enter Devel oprent .
¢ In the Max Memory field, enter 24000.

¢ In the Default Query Memory Limit field, enter 8000.
¢ In the Max Running Queries field, enter 1.

¢ |nthe Max Queued Queries field, enter 100.

5. Click Create.
6. Click Refresh Dynamic Resource Pools.

The Development queue runs one query at a time. If the total memory required by the query exceeds 24000 GiB,
the query is rejected and not executed.

Understanding Placement Rules

Placement rules determine how queries are mapped to resource pools. The standard settings are to use a specified
pool when specified; otherwise, use the default pool.

For example, you can use the SET statement to select the pool in which to run a query.
SET REQUEST_POOL=Pr oducti on;
If you do not use a SET statement, queries are run in the default pool.

Setting Access Control on Pools
You can specify that only cetain users and groups are allowed to use the pools you define.
To create a Development dynamic resource pool for Impala:

. In Cloudera Manager, select Clusters > Dynamic Resource Pool Configuration.
. Click the Impala Admission Control tab.

. Click the Edit button for the Production pool.

. Click the Submission Access Control tab.

. Select Allow these users and groups to submit to this pool.

. Enter a comma-separated list of users who can use the pool.

O b WN R

Edit Resource Pool
Production

Configuration Sets Submission Access Control

Fair Scheduler Access Control Lists control who can submit queries to pools.

Allow anyone to submit to this pool

© Allow these users and groups to submit to this pool

austin,hmelville

7. Click Save.

Impala Resource Management Example
Anne Chang is administrator for an enterprise data hub that runs a number of workloads, including Impala.

Anne has a 20-node cluster that uses Cloudera Manager static partitioning. Because of the heavy Impala workload,
Anne needs to make sure Impala gets enough resources. While the best configuration values might not be known in
advance, she decides to start by allocating 50% of resources to Impala. Each node has 128 GiB dedicated to each
impalad. Impala has 2560 GiB in aggregate that can be shared across the resource pools she creates.

Next, Anne studies the workload in more detail. After some research, she might choose to revisit these initial values
for static partitioning.

To figure out how to further allocate Impala’s resources, Anne needs to consider the workloads and users, and determine
their requirements. There are a few main sources of Impala queries:

e Large reporting queries executed by an external process/tool. These are critical business intelligence queries that
are important for business decisions. It is important that they get the resources they need to run. There typically
are not many of these queries at a given time.

e Frequent, small queries generated by a web Ul. These queries scan a limited amount of data and do not require
expensive joins or aggregations. These queries are important, but not as critical, perhaps the client tries resending
the query or the end user refreshes the page.

e Occasionally, expert users might run ad-hoc queries. The queries can vary significantly in their resource
requirements. While Anne wants a good experience for these users, it is hard to control what they do (for example,
submitting inefficient or incorrect queries by mistake). Anne restricts these queries by default and tells users to
reach out to her if they need more resources.

To set up admission control for this workload, Anne first runs the workloads independently, so that she can observe
the workload’s resource usage in Cloudera Manager. If they could not easily be run manually, but had been run in the
past, Anne uses the history information from Cloudera Manager. It can be helpful to use other search criteria (for
example, user) to isolate queries by workload. Anne uses the Cloudera Manager chart for Per-Node Peak Memory
usage to identify the maximum memory requirements for the queries.

From this data, Anne observes the following about the queries in the groups above:

e Llarge reporting queries use up to 32 GiB per node. There are typically 1 or 2 queries running at a time. On one
occasion, she observed that 3 of these queries were running concurrently. Queries can take 3 minutes to complete.

e Web Ul-generated queries use between 100 MiB per node to usually less than 4 GiB per node of memory, but
occasionally as much as 10 GiB per node. Queries take, on average, 5 seconds, and there can be as many as 140
incoming queries per minute.

¢ Anne has little data on ad hoc queries, but some are trivial (approximately 100 MiB per node), others join several
tables (requiring a few GiB per node), and one user submitted a huge cross join of all tables that used all system
resources (that was likely a mistake).

Based on these observations, Anne creates the admission control configuration with the following pools:

XL_Reporting

Property Value
Max Memory 1280 GiB
Default Query Memory Limit 32 GiB
Max Running Queries 2

Queue Timeout 5 minutes

This pool is for large reporting queries. To support running 2 queries at a time, the pool memory resources are set to
1280 GiB (aggregate cluster memory). This is for 2 queries, each with 32 GiB per node, across 20 nodes. Anne sets the
pool’s Default Query Memory Limit to 32 GiB so that no query uses more than 32 GiB on any given node. She sets Max
Running Queries to 2 (though it is not necessary she do so). She increases the pool’s queue timeout to 5 minutes in
case a third query comes in and has to wait. She does not expect more than 3 concurrent queries, and she does not

want them to wait that long anyway, so she does not increase the queue timeout. If the workload increases in the
future, she might choose to adjust the configuration or buy more hardware.

HighThroughput_Ul

Property Value

Max Memory 960 GiB (inferred)
Default Query Memory Limit 4 GiB

Max Running Queries 12

Queue Timeout 5 minutes

This pool is used for the small, high throughput queries generated by the web tool. Anne sets the Default Query Memory
Limit to 4 GiB per node, and sets Max Running Queries to 12. This implies a maximum amount of memory per node
used by the queries in this pool: 48 GiB per node (12 queries * 4 GiB per node memory limit).

Notice that Anne does not set the pool memory resources, but does set the pool’s Default Query Memory Limit. This
is intentional: admission control processes queries faster when a pool uses the Max Running Queries limit instead of
the peak memory resources.

This should be enough memory for most queries, since only a few go over 4 GiB per node. For those that do require
more memory, they can probably still complete with less memory (spilling if necessary). If, on occasion, a query cannot
run with this much memory and it fails, Anne might reconsider this configuration later, or perhaps she does not need
to worry about a few rare failures from this web Ul.

With regard to throughput, since these queries take around 5 seconds and she is allowing 12 concurrent queries, the
pool should be able to handle approximately 144 queries per minute, which is enough for the peak maximum expected
of 140 queries per minute. In case there is a large burst of queries, Anne wants them to queue. The default maximum
size of the queue is already 200, which should be more than large enough. Anne does not need to change it.

Default

Property Value

Max Memory 320GiB
Default Query Memory Limit 4 GiB

Max Running Queries Unlimited
Queue Timeout 60 Seconds

The default pool (which already exists) is a catch all for ad-hoc queries. Anne wants to use the remaining memory not
used by the first two pools, 16 GiB per node (XL_Reporting uses 64 GiB per node, High_Throughput_Ul uses 48 GiB per
node). For the other pools to get the resources they expect, she must still set the Max Memory resources and the
Default Query Memory Limit. She sets the Max Memory resources to 320 GiB (16 * 20). She sets the Default Query
Memory Limit to 4 GiB per node for now. That is somewhat arbitrary, but satisfies some of the ad hoc queries she
observed. If someone writes a bad query by mistake, she does not actually want it using all the system resources. If a
user has a large query to submit, an expert user can override the Default Query Memory Limit (up to 16 GiB per node,
since that is bound by the pool Max Memory resources). If that is still insufficient for this user’s workload, the user
should work with Anne to adjust the settings and perhaps create a dedicated pool for the workload.

Setting Timeout Periods for Daemons, Queries, and Sessions

Depending on how busy your CDH cluster is, you might increase or decrease various timeout values. Increase timeouts
if Impala is cancelling operations prematurely, when the system is responding slower than usual but the operations

are still successful if given extra time. Decrease timeouts if operations are idle or hanging for long periods, and the idle
or hung operations are consuming resources and reducing concurrency.

Increasing the Statestore Timeout

If you have an extensive Impala schema, for example with hundreds of databases, tens of thousands of tables, and so
on, you might encounter timeout errors during startup as the Impala catalog service broadcasts metadata to all the
Impala nodes using the statestore service. To avoid such timeout errors on startup, increase the statestore timeout
value from its default of 10 seconds. Specify the timeout value using the

-stat estore_subscriber _ti neout _seconds option for the statestore service, using the configuration instructions
in Modifying Impala Startup Options on page 29. The symptom of this problem is messages in the i npal ad log such
as:

Connection with state-store | ost
Trying to re-register with state-store

See Scalability Considerations for the Impala Statestore on page 631 for more details about statestore operation and
settings on clusters with a large number of Impala-related objects such as tables and partitions.

Setting the Idle Query and Idle Session Timeouts for impalad

To keep long-running queries or idle sessions from tying up cluster resources, you can set timeout intervals for both
individual queries, and entire sessions.

Note:
The timeout clock for queries and sessions only starts ticking when the query or session is idle.

For queries, this means the query has results ready but is waiting for a client to fetch the data. A query
can run for an arbitrary time without triggering a timeout, because the query is computing results
rather than sitting idle waiting for the results to be fetched. The timeout period is intended to prevent
unclosed queries from consuming resources and taking up slots in the admission count of running
queries, potentially preventing other queries from starting.

For sessions, this means that no query has been submitted for some period of time.

Use the following startup options for the i npal ad daemon to specify timeout values:
e --idle_query_tineout

Specifies the time in seconds after which an idle query is cancelled. This could be a query whose results were all
fetched but was never closed, or one whose results were partially fetched and then the client program stopped
requesting further results. This condition is most likely to occur in a client program using the JDBC or ODBC
interfaces, rather than in the interactive i npal a- shel | interpreter. Once a query is cancelled, the client program
cannot retrieve any further results from the query.

You can reduce the idle query timeout by using the QUERY_TI MEQUT_S query option. Any non-zero value specified
forthe--idl e_query_ti neout startup option serves as an upper limit for the QUERY_TI MEQUT_S query option.
See QUERY_TIMEOUT_S Query Option (CDH 5.2 or higher only) on page 389 about the query option.

A zero value for - -i dl e_query_ti nmeout disables query timeouts.
Cancelled queries remain in the open state but use only the minimal resources.
e --idle_session_tineout

Specifies the time in seconds after which an idle session expires. A session is idle when no activity is occurring for
any of the queries in that session, and the session has not started any new queries. Once a session is expired, you
cannot issue any new query requests to it. The session remains open, but the only operation you can perform is

to close it.

The default value of 0 specifies sessions never expire.

You can override the - -i dl e_sessi on_t i neout value with the IDLE_SESSION_TIMEOQOUT Query Option (CDH
5.15 / Impala 2.12 or higher only) on page 371 at the session level.

For instructions on changing i npal ad startup options, see Modifying Impala Startup Options on page 29.

E,i Note:

Impala checks periodically for idle sessions and queries to cancel. The actual idle time before
cancellation might be up to 50% greater than the specified configuration setting. For example, if the
timeout setting was 60, the session or query might be cancelled after being idle between 60 and 90
seconds.

Setting Timeout and Retries for Thrift Connections to the Backend Client

Impala connections to the backend client are subject to failure in cases when the network is momentarily overloaded.
To avoid failed queries due to transient network problems, you can configure the number of Thrift connection retries
using the following option:

e The--backend_client_connection_numretries option specifies the number of times Impala will try
connecting to the backend client after the first connection attempt fails. By default, i npal ad will attempt three
re-connections before it returns a failure.

You can configure timeouts for sending and receiving data from the backend client. Therefore, if for some reason a
query hangs, instead of waiting indefinitely for a response, Impala will terminate the connection after a configurable
timeout.

e The--backend_client_rpc_timeout _ns option can be used to specify the number of milliseconds Impala
should wait for a response from the backend client before it terminates the connection and signals a failure. The
default value for this property is 300000 milliseconds, or 5 minutes.

Cancelling a Query

Occasionally, an Impala query might run for an unexpectedly long time, tying up resources in the cluster. This section
describes the options to terminate such runaway queries.

Setting a Time Limit on Query Execution

An Impala administrator can set a default value of the EXEC TI ME_LI M T_S query option for a resource pool. If a
user accidentally runs a large query that executes for longer than the limit, it will be automatically terminated after
the time limit expires to free up resources.

You can override the default value per query or per session if you do not want to apply the default EXEC TIME LIMT_S
value to a specific query or a session. See EXEC_TIME_LIMIT_S Query Option (CDH 5.15 / Impala 2.12 or higher only)
on page 366 for the details of the query option.

Interactively Cancelling a Query
You can manually cancel a query in the Impala Web Ul for the i npal ad host (on port 25000 by default):

1. Click /queries.
2. Click Cancel for a query in the queries in flight list.

Various client applications let you interactively cancel queries submitted or monitored through those applications. For
example:

e Press”"Cini npal a-shel | .
¢ Click Cancel from the Watch page in Hue.

Using Impala through a Proxy for High Availability

For most clusters that have multiple users and production availability requirements, you might set up a proxy server
to relay requests to and from Impala.

Currently, the Impala statestore mechanism does not include such proxying and load-balancing features. Set up a
software package of your choice to perform these functions.

E,i Note:

Most considerations for load balancing and high availability apply to the i npal ad daemon. The

st at est or ed and cat al ogd daemons do not have special requirements for high availability, because
problems with those daemons do not result in data loss. If those daemons become unavailable due
to an outage on a particular host, you can stop the Impala service, delete the Impala StateStore and
Impala Catalog Server roles, add the roles on a different host, and restart the Impala service.

Overview of Proxy Usage and Load Balancing for Impala

Using a load-balancing proxy server for Impala has the following advantages:

Applications connect to a single well-known host and port, rather than keeping track of the hosts where the

i npal ad daemon is running.

If any host running the i npal ad daemon becomes unavailable, application connection requests still succeed
because you always connect to the proxy server rather than a specific host running the i npal ad daemon.
The coordinator node for each Impala query potentially requires more memory and CPU cycles than the other
nodes that process the query. The proxy server can schedule queries so that each connection uses a different
coordinator node. This load-balancing technique lets the Impala nodes share this additional work, rather than
concentrating it on a single machine.

The following setup steps are a general outline that apply to any load-balancing proxy software:

1.

Select and download a load-balancing proxy software or other load-balancing hardware appliance. It should only
need to be installed and configured on a single host, typically on an edge node. Pick a host other than the DataNodes
where i npal ad is running, because the intention is to protect against the possibility of one or more of these
DataNodes becoming unavailable.

. Configure the load balancer (typically by editing a configuration file). In particular:

e Set up a port that the load balancer will listen on to relay Impala requests back and forth.

¢ See Choosing the Load-Balancing Algorithm on page 101 for load balancing algorithm options.

e For Kerberized clusters, follow the instructions in Special Proxy Considerations for Clusters Using Kerberos
on page 101.

. If you are using Hue or JDBC-based applications, you typically set up load balancing for both ports 21000 and

21050, because these client applications connect through port 21050 while thei npal a- shel | command connects
through port 21000. See Ports Used by Impala on page 738 for when to use port 21000, 21050, or another value
depending on what type of connections you are load balancing.

. Run the load-balancing proxy server, pointing it at the configuration file that you set up.
. On systems managed by Cloudera Manager, on the page Impala > Configuration > Impala Daemon Default Group,

specify a value for the Impala Daemons Load Balancer field. Specify the address of the load balancer in host : port
format. This setting lets Cloudera Manager route all appropriate Impala-related operations through the proxy
server.

. For any scripts, jobs, or configuration settings for applications that formerly connected to a specific datanode to

run Impala SQL statements, change the connection information (such as the-i optionini npal a- shel |) to point
to the load balancer instead.

E,i Note: The following sections use the HAProxy software as a representative example of a load balancer
that you can use with Impala. For information specifically about using Impala with the F5 BIG-IP load
balancer, see Impala HA with F5 BIG-IP.

Choosing the Load-Balancing Algorithm

Load-balancing software offers a number of algorithms to distribute requests. Each algorithm has its own characteristics
that make it suitable in some situations but not others.

Leastconn

Connects sessions to the coordinator with the fewest connections, to balance the load evenly. Typically used for
workloads consisting of many independent, short-running queries. In configurations with only a few client machines,
this setting can avoid having all requests go to only a small set of coordinators.

Recommended for Impala with F5.
Source IP Persistence

Sessions from the same IP address always go to the same coordinator. A good choice for Impala workloads containing
a mix of queries and DDL statements, such as CREATE TABLE and ALTER TABLE. Because the metadata changes
from a DDL statement take time to propagate across the cluster, prefer to use the Source IP Persistence algorithm
in this case. If you are unable to choose Source IP Persistence, run the DDL and subsequent queries that depend
on the results of the DDL through the same session, for example by running i npal a-shel | -f script_file
to submit several statements through a single session.

Required for setting up high availability with Hue. See Configure Hive and Impala for High Availability for configuring
high availability with Hue.

Round-robin

Distributes connections to all coordinator nodes. Typically not recommended for Impala.
You might need to perform benchmarks and load testing to determine which setting is optimal for your use case.
Always set up using two load-balancing algorithms: Source IP Persistence for Hue and Leastconn for others.
Special Proxy Considerations for Clusters Using Kerberos

In a cluster using Kerberos, applications check host credentials to verify that the host they are connecting to is the
same one that is actually processing the request, to prevent man-in-the-middle attacks.

Once you enable a proxy server in a Kerberized cluster, users will not be able to connect to individual impala daemons
directly from impala-shell.

To clarify that the load-balancing proxy server is legitimate, perform these extra Kerberos setup steps:

1. This section assumes you are starting with a Kerberos-enabled cluster. See Enabling Kerberos Authentication for
Impala on page 124 for instructions for setting up Impala with Kerberos. See the CDH Security Guide for general
steps to set up Kerberos.

2. Choose the host you will use for the proxy server. Based on the Kerberos setup procedure, it should already have
an entry i npal a/ pr oxy_host @ eal min its keytab. If not, go back over the initial Kerberos configuration steps
for the keytab on each host running the i npal ad daemon.

3. For a cluster managed by Cloudera Manager (5.1 or higher), fill in the Impala configuration setting Impala Daemons
Load Balancer with the appropriate host:port combination. Then restart the Impala service. For systems using a
recent level of Cloudera Manager, this is all the configuration you need; you can skip the remaining steps in this
procedure.

4. On systems not managed by Cloudera Manager, or systems using Cloudera Manager earlier than 5.1:

a. Copy the keytab file from the proxy host to all other hosts in the cluster that run the i npal ad daemon. (For
optimal performance, i npal ad should be running on all DataNodes in the cluster.) Put the keytab file in a
secure location on each of these other hosts.

b. Addanentryi npal a/ act ual _host nane@ eal mto the keytab on each host running the i npal ad daemon.

http://www.cloudera.com/documentation/other/reference-architecture/PDF/Impala-HA-with-F5-BIG-IP.pdf
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_kerberos_prin_keytab_deploy.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_kerberos_prin_keytab_deploy.html

c. For each impalad node, merge the existing keytab with the proxy’s keytab using kt uti | , producing a new
keytab file. For example:

I
| : read_kt proxy.keytab
ktutil: read_kt 1 npala.keytab
il: wite_kt proxy_inpal a. keytab
I: quit

E’; Note:

On systems managed by Cloudera Manager 5.1.0 and later, the keytab merging happens
automatically. To verify that Cloudera Manager has merged the keytabs, run the command:

klist -k keytabfile

The command lists the credentials for both pri nci pal and be_pri nci pal on all nodes.

d. Make sure that the i npal a user has permission to read this merged keytab file.

e. Change some configuration settings for each host in the cluster that participates in the load balancing. Follow
the appropriate steps depending on whether you use Cloudera Manager or not:

¢ Inthei npal ad option definition, or the advanced configuration snippet, add:

--princi pal =i npal a/ proxy_host @eal m
--be_pri nci pal =i npal a/ act ual _host @ eal m
--keytab_fil e=path_to_nerged_keytab

E'I Note:

On a cluster managed by Cloudera Manager 5.1 (or higher), when you set up Kerberos
authentication using the wizard, you can choose to allow Cloudera Manager to deploy
the kr b5. conf on your cluster. In such a case, you do not need to explicitly modify
safety valve parameters as directed above.

Every host has a different - - be_pri nci pal because the actual hostname is different
on each host.

Specify the fully qualified domain name (FQDN) for the proxy host, not the IP address.
Use the exact FQDN as returned by a reverse DNS lookup for the associated IP address.

¢ On a cluster managed by Cloudera Manager, create a role group to set the configuration values from
the preceding step on a per-host basis.

¢ On a cluster not managed by Cloudera Manager, see Modifying Impala Startup Options on page 29 for
the procedure to modify the startup options.

f. Restart Impala to make the changes take effect. Follow the appropriate steps depending on whether you use
Cloudera Manager or not:

e On a cluster managed by Cloudera Manager, restart the Impala service.

* Onacluster not managed by Cloudera Manager, restart the i npal ad daemons on all hosts in the cluster,
as well as the st at est or ed and cat al ogd daemons.

Special Proxy Considerations for TLS/SSL Enabled Clusters

When TLS/SSL is enabled for Impala, the client application, whether impala-shell, Hue, or something else, expects the
certificate common name (CN) to match the hostname that it is connected to. With no load balancing proxy server,
the hostname and certificate CN are both that of the i npal ad instance. However, with a proxy server, the certificate

presented by the i npal ad instance does not match the load balancing proxy server hostname. If you try to load-balance
a TLS/SSL-enabled Impala installation without additional configuration, you see a certificate mismatch error when a
client attempts to connect to the load balancing proxy host.

If you plan to use Auto-TLS, your load balancer must perform TLS/SSL re-establishment or TLS/SSL offload.
You can configure a proxy server in several ways to load balance TLS/SSL enabled Impala:

TLS/SSL Bridging

In this configuration, the proxy server presents a TLS/SSL certificate to the client, decrypts the client request, then
re-encrypts the request before sending it to the backend i npal ad. The client and server certificates can be managed
separately. The request or resulting payload is encrypted in transit at all times.

TLS/SSL Passthrough

In this configuration, traffic passes through to the backend i npal ad instance with no interaction from the load
balancing proxy server. Traffic is still encrypted end-to-end.

The same server certificate, utilizing either wildcard or Subject Alternate Name (SAN), must be installed on each
i mpal ad instance.

TLS/SSL Offload

In this configuration, all traffic is decrypted on the load balancing proxy server, and traffic between the backend
i mpal ad instances is unencrypted. This configuration presumes that cluster hosts reside on a trusted network and
only external client-facing communication need to be encrypted in-transit.

If you plan to use Auto-TLS, your load balancer must perform TLS/SSL bridging or TLS/SSL offload.

Refer to your load balancer documentation for the steps to set up Impala and the load balancer using one of the options
above.

For information specifically about using Impala with the F5 BIG-IP load balancer with TLS/SSL enabled, see Impala HA
with F5 BIG-IP.
Example of Configuring HAProxy Load Balancer for Impala
If you are not already using a load-balancing proxy, you can experiment with HAProxy a free, open source load balancer.
This example shows how you might install and configure that load balancer on a Red Hat Enterprise Linux system.
e Install the load balancer: yum i nstal | hapr oxy

¢ Setup the configuration file:/ et c/ hapr oxy/ hapr oxy. cf g. See the following section for a sample configuration
file.

¢ Run the load balancer (on a single host, preferably one not running i npal ad):
[usr/ sbi n/ haproxy —f /etc/haproxy/ haproxy.cfg
e Ininpal a- shel |, JDBC applications, or ODBC applications, connect to the listener port of the proxy host, rather
than port 21000 or 21050 on a host actually running i npal ad. The sample configuration file sets haproxy to listen
on port 25003, therefore you would send all requests to hapr oxy_host : 25003.

This is the sample hapr oxy. cf g used in this example:

gl obal
To have these nessages end up in /var/log/ haproxy.log you will
need to:
#
1) configure syslog to accept network | og events. This is done
by adding the '-r' option to the SYSLOGD _OPTIONS in
/et c/ sysconfi g/ sysl og
#
2) configure local2 events to go to the /var/| og/ haproxy.| og
file. Aline like the follow ng can be added to
[/etcl/sysconfig/syslog

http://www.cloudera.com/documentation/other/reference-architecture/PDF/Impala-HA-with-F5-BIG-IP.pdf
http://www.cloudera.com/documentation/other/reference-architecture/PDF/Impala-HA-with-F5-BIG-IP.pdf
http://haproxy.1wt.eu/

#

| ocal 2. * /var /1 og/ haproxy. | og
#

| og 127.0.0.1 local O

| og 127.0.0.1 local 1 notice
chr oot /var/1ib/ haproxy
pidfile /var/run/ haproxy. pid
maxconn 4000

user hapr oxy

group hapr oxy

daenon

turn on stats uni x socket
#istats socket /var/lib/haproxy/stats

conmon defaults that all the 'listen' and 'backend' sections wll
use if not designated in their block

The timeout val ues should be dependant on how you use the cluster
and how | ong your queries run

#
#
#
#
You might need to adjust timng values to prevent tineouts.
#
#
#
#

defaults
node http
| og gl obal
option htt pl og
option dont | ognul |
option http-server-close
option forwardfor except 127.0.0.0/8
option redi spat ch
retries 3
maxconn 3000

timeout connect 5000
timeout client 3600s
timeout server 3600s

#
This sets up the admin page for HA Proxy at port 25002
#
listen stats : 25002
bal ance
node http

stats enabl e
stats auth usernane: password

This is the setup for Inpala. Inpala client connect to | oad_bal ancer_host: 25003.
HAProxy will bal ance connections anong the list of servers |isted bel ow
The list of Inpalad is listening at port 21000 for beeswax (inpala-shell) or origina
CDBC driver.
For JDBC or ODBC version 2.x driver, use port 21050 instead of 21000
listen inpala :25003
node tcp
option tcplog
bal ance | eastconn

server synbolic_nane_1 inpal a- host-1. exanpl e. com 21000 check
server synbolic_name_2 inpal a- host - 2. exanpl e. com 21000 check
server synbolic_nanme_3 inpal a- host - 3. exanpl e. com 21000 check
server synbolic_name_4 inpal a- host - 4. exanpl e. com 21000 check

Setup for Hue or other JDBC enabl ed applications.
In particular, Hue requires sticky sessions.
The application connects to | oad_bal ancer _host: 21051, and HAProxy bal ances
connections to the associ ated hosts, where Inpala listens for JDBC
requests on port 21050.
sten inpal aj dbc : 21051
nmode tcp
option tcplog
bal ance source
server synbolic_nane_5 inpal a- host-1. exanpl e. com 21050 check
server synbolic_name_6 inpal a- host - 2. exanpl e. com 21050 check

THHEHHIEH

server synbolic_name_7 inpal a- host - 3. exanpl e. com 21050 check
server synbol i c_nane_8 inpal a- host-4. exanpl e. com 21050 check

o Important: Hue requires the check option at the end of each line in the above file to ensure HAProxy
can detect any unreachable Impalad server, and failover can be successful. Without the TCP check,
you can hit an error when the i npal ad daemon to which Hue tries to connect is down.

E,i Note: If your JDBC or ODBC application connects to Impala through a load balancer such as hapr oxy,
be cautious about reusing the connections. If the load balancer has set up connection timeout values,
either check the connection frequently so that it never sits idle longer than the load balancer timeout
value, or check the connection validity before using it and create a new one if the connection has
been closed.

Managing Disk Space for Impala Data

Although Impala typically works with many large files in an HDFS storage system with plenty of capacity, there are
times when you might perform some file cleanup to reclaim space, or advise developers on techniques to minimize
space consumption and file duplication.

e Use compact binary file formats where practical. Numeric and time-based data in particular can be stored in more
compact form in binary data files. Depending on the file format, various compression and encoding features can
reduce file size even further. You can specify the STORED AS clause as part of the CREATE TABLE statement, or
ALTER TABLE with the SET FI LEFORMAT clause for an existing table or partition within a partitioned table. See
How Impala Works with Hadoop File Formats on page 655 for details about file formats, especially Using the Parquet
File Format with Impala Tables on page 664. See CREATE TABLE Statement on page 269 and ALTER TABLE Statement
on page 239 for syntax details.

¢ You manage underlying data files differently depending on whether the corresponding Impala table is defined as
an internal or external table:

— Use the DESCRI BE FORVATTED statement to check if a particular table is internal (managed by Impala) or
external, and to see the physical location of the data files in HDFS. See DESCRIBE Statement on page 286 for
details.

— For Impala-managed (“internal”) tables, use DROP TABLE statements to remove data files. See DROP TABLE
Statement on page 303 for details.

— For tables not managed by Impala (“external” tables), use appropriate HDFS-related commands such as
hadoop fs, hdfs dfs, ordi stcp, to create, move, copy, or delete files within HDFS directories that are
accessible by the i npal a user. Issue a REFRESH t abl e_nane statement after adding or removing any files
from the data directory of an external table. See REFRESH Statement on page 326 for details.

— Use external tables to reference HDFS data files in their original location. With this technique, you avoid
copying the files, and you can map more than one Impala table to the same set of data files. When you drop
the Impala table, the data files are left undisturbed. See External Tables on page 232 for details.

— Use the LOAD DATA statement to move HDFS files into the data directory for an Impala table from inside
Impala, without the need to specify the HDFS path of the destination directory. This technique works for both
internal and external tables. See LOAD DATA Statement on page 323 for details.

e Make sure that the HDFS trashcan is configured correctly. When you remove files from HDFS, the space might not
be reclaimed for use by other files until sometime later, when the trashcan is emptied. See DROP TABLE Statement
on page 303 and the FAQ entry Why is space not freed up when | issue DROP TABLE? on page 757 for details. See
User Account Requirements on page 25 for permissions needed for the HDFS trashcan to operate correctly.

e Drop all tables in a database before dropping the database itself. See DROP DATABASE Statement on page 296 for
details.

Clean up temporary files after failed | NSERT statements. If an | NSERT statement encounters an error, and you
see a directory named . i npal a_i nsert _stagi ng or_i npal a_i nsert _st agi ng left behind in the data
directory for the table, it might contain temporary data files taking up space in HDFS. You might be able to salvage
these data files, for example if they are complete but could not be moved into place due to a permission error.
Or, you might delete those files through commands such as hadoop fs or hdf s df s, to reclaim space before
re-trying the | NSERT. Issue DESCRI BE FORVMATTED t abl e_nane to see the HDFS path where you can check for
temporary files.

By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored
inthe directory/ t np/ i npal a- scr at ch . These files are removed when the operation finishes. (Multiple concurrent
queries can perform operations that use the “spill to disk” technique, without any name conflicts for these
temporary files.) You can specify a different location by starting the i npal ad daemon with the
--scratch_dirs="path_to_directory" configuration option or the equivalent configuration option in the
Cloudera Manager user interface. You can specify a single directory, or a comma-separated list of directories. The
scratch directories must be on the local filesystem, not in HDFS. You might specify different directory paths for
different hosts, depending on the capacity and speed of the available storage devices. In CDH 5.5 / Impala 2.3 or
higher, Impala successfully starts (with a warning written to the log) if it cannot create or read and write files in
one of the scratch directories. If there is less than 1 GB free on the filesystem where that directory resides, Impala
still runs, but writes a warning message to its log. If Impala encounters an error reading or writing files in a scratch
directory during a query, Impala logs the error and the query fails.

If you use the Amazon Simple Storage Service (S3) as a place to offload data to reduce the volume of local storage,
Impala 2.2.0 and higher can query the data directly from S3. See Using Impala with the Amazon S3 Filesystem on
page 709 for details.

Auditing Impala Operations

To monitor how Impala data is being used within your organization, ensure that your Impala authorization and
authentication policies are effective, and detect attempts at intrusion or unauthorized access to Impala data, you can
use the auditing feature in Impala 1.2.1 and higher:

Enable auditing by including the option - audi t _event _| og_di r=di rect ory_pat h in your i npal ad startup
options for a cluster not managed by Cloudera Manager, or configuring Impala Daemon logging in Cloudera
Manager. The log directory must be a local directory on the server, not an HDFS directory.

Decide how many queries will be represented in each log files. By default, Impala starts a new log file every 5000
queries. To specify a different number, include the option

-max_audit _event _l og_fil e_si ze=nunber _of _queri es inthei npal ad startup options.

Configure Cloudera Navigator to collect and consolidate the audit logs from all the hosts in the cluster.

In CDH 5.12 / Impala 2.9 and higher, you can control how many audit event log files are kept on each host. Specify
the option - - max_audi t _event _| og_fil es=nunber _of | og_fil es inthei npal ad startup options. Once
the limit is reached, older files are rotated out using the same mechanism as for other Impala log files. The default
value for this setting is 0, representing an unlimited number of audit event log files.

Use Cloudera Navigator or Cloudera Manager to filter, visualize, and produce reports based on the audit data.
(The Impala auditing feature works with Cloudera Manager 4.7 to 5.1 and Cloudera Navigator 2.1 and higher.)
Check the audit data to ensure that all activity is authorized and detect attempts at unauthorized access.

Durability and Performance Considerations for Impala Auditing

The auditing feature only imposes performance overhead while auditing is enabled.

Because any Impala host can process a query, enable auditing on all hosts where the i npal ad daemon runs. Each
host stores its own log files, in a directory in the local filesystem. The log data is periodically flushed to disk (through
anfsync() system call) to avoid loss of audit data in case of a crash.

The runtime overhead of auditing applies to whichever host serves as the coordinator for the query, that is, the host
you connect to when you issue the query. This might be the same host for all queries, or different applications or users
might connect to and issue queries through different hosts.

http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_service_audit.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_service_audit.html

To avoid excessive I/0 overhead on busy coordinator hosts, Impala syncs the audit log data (using the f sync() system
call) periodically rather than after every query. Currently, the f sync() calls are issued at a fixed interval, every 5
seconds.

By default, Impala avoids losing any audit log data in the case of an error during a logging operation (such as a disk full
error), by immediately shutting down i npal ad on the host where the auditing problem occurred. You can override
this setting by specifying the option - abort _on_fai | ed_audi t _event =f al se in the i npal ad startup options.

Format of the Audit Log Files

The audit log files represent the query information in JSON format, one query per line. Typically, rather than looking
at the log files themselves, you use the Cloudera Navigator product to consolidate the log data from all Impala hosts
and filter and visualize the results in useful ways. (If you do examine the raw log data, you might run the files through
a JSON pretty-printer first.)

All the information about schema objects accessed by the query is encoded in a single nested record on the same line.
For example, the audit log foran | NSERT ... SELECT statement records that a select operation occurs on the source
table and an insert operation occurs on the destination table. The audit log for a query against a view records the base
table accessed by the view, or multiple base tables in the case of a view that includes a join query. Every Impala
operation that corresponds to a SQL statement is recorded in the audit logs, whether the operation succeeds or fails.
Impala records more information for a successful operation than for a failed one, because an unauthorized query is
stopped immediately, before all the query planning is completed.

The information logged for each query includes:
¢ Client session state:

— Session ID
— User name
— Network address of the client connection

e SQL statement details:

— Query ID

— Statement Type - DML, DDL, and so on

— SQL statement text

— Execution start time, in local time

— Execution Status - Details on any errors that were encountered
— Target Catalog Objects:

— Object Type - Table, View, or Database
— Fully qualified object name
— Privilege - How the object is being used (SELECT, | NSERT, CREATE, and so on)

Which Operations Are Audited

The kinds of SQL queries represented in the audit log are:

e Queries that are prevented due to lack of authorization.

e Queries that Impala can analyze and parse to determine that they are authorized. The audit data is recorded
immediately after Impala finishes its analysis, before the query is actually executed.

The audit log does not contain entries for queries that could not be parsed and analyzed. For example, a query that
fails due to a syntax error is not recorded in the audit log. The audit log also does not contain queries that fail due to
a reference to a table that does not exist, if you would be authorized to access the table if it did exist.

Certain statements in the i npal a- shel | interpreter, such as CONNECT, SUMVARY, PRCFI LE, SET, and QUI T, do not
correspond to actual SQL queries, and these statements are not reflected in the audit log.

Reviewing the Audit Logs

You typically do not review the audit logs in raw form. The Cloudera Manager Agent periodically transfers the log
information into a back-end database where it can be examined in consolidated form. See the Cloudera Navigator
documentation for details .

Viewing Lineage Information for Impala Data

Lineage is a feature in the Cloudera Navigator data management component that helps you track where data originated,
and how data propagates through the system through SQL statements such as SELECT, | NSERT, and CREATE TABLE
AS SELECT. Impala is covered by the Cloudera Navigator lineage features in CDH 5.4 / Impala 2.2 and higher.

This type of tracking is important in high-security configurations, especially in highly regulated industries such as

healthcare, pharmaceuticals, financial services and intelligence. For such kinds of sensitive data, it is important to know
all the places in the system that contain that data or other data derived from it; to verify who has accessed that data;
and to be able to doublecheck that the data used to make a decision was processed correctly and not tampered with.

You interact with this feature through lineage diagrams showing relationships between tables and columns. For
instructions about interpreting lineage diagrams, see
http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_lineage.html.

Column Lineage
Column lineage tracks information in fine detail, at the level of particular columns rather than entire tables.

For example, if you have a table with information derived from web logs, you might copy that data into other tables
as part of the ETL process. The ETL operations might involve transformations through expressions and function calls,
and rearranging the columns into more or fewer tables (normalizing or denormalizing the data). Then for reporting,
you might issue queries against multiple tables and views. In this example, column lineage helps you determine that
data that entered the system as RAW LOGS. Fl ELD1 was then turned into WEBSI TE_REPORTS. | P_ADDRESS through
an | NSERT ... SELECT statement. Or, conversely, you could start with a reporting query against a view, and trace
the origin of the data in a field such as TOP_10_VI SI TORS. USER_I| Dback to the underlying table and even further
back to the point where the data was first loaded into Impala.

When you have tables where you need to track or control access to sensitive information at the column level, see
Enabling Sentry Authorization for Impala on page 115 for how to implement column-level security. You set up
authorization using the Sentry framework, create views that refer to specific sets of columns, and then assign
authorization privileges to those views rather than the underlying tables.

Lineage Data for Impala

The lineage feature is enabled by default. When lineage logging is enabled, the serialized column lineage graph is
computed for each query and stored in a specialized log file in JSON format.

Impala records queries in the lineage log if they complete successfully, or fail due to authorization errors. For write
operations such as | NSERT and CREATE TABLE AS SELECT, the statement is recorded in the lineage log only if it
successfully completes. Therefore, the lineage feature tracks data that was accessed by successful queries, or that was
attempted to be accessed by unsuccessful queries that were blocked due to authorization failure. These kinds of queries
represent data that really was accessed, or where the attempted access could represent malicious activity.

Impala does not record in the lineage log queries that fail due to syntax errors or that fail or are cancelled before they
reach the stage of requesting rows from the result set.

To enable or disable this feature on a system not managed by Cloudera Manager, set or remove the
-lineage_event _| og_di r configuration option for thei npal ad daemon. For information about turning the lineage
feature on and off through Cloudera Manager, see
http://www.cloudera.com/documentation/enterprise/latest/topics/datamgmt_impala_lineage_log.html.

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Navigator/latest/Cloudera-Navigator-Installation-and-User-Guide/Cloudera-Navigator-Installation-and-User-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Navigator/latest/Cloudera-Navigator-Installation-and-User-Guide/Cloudera-Navigator-Installation-and-User-Guide.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_lineage.html
http://www.cloudera.com/documentation/enterprise/latest/topics/datamgmt_impala_lineage_log.html

Impala Security

Impala includes a fine-grained authorization framework for Hadoop, based on the Sentry open source project. Sentry
authorization was added in Impala 1.1.0. Together with the Kerberos authentication framework, Sentry takes Hadoop
security to a new level needed for the requirements of highly regulated industries such as healthcare, financial services,
and government. Impala also includes an auditing capability; Impala generates the audit data, the Cloudera Navigator
product consolidates the audit data from all nodes in the cluster, and Cloudera Manager lets you filter, visualize, and
produce reports. The auditing feature was added in Impala 1.1.1.

The Impala security features have several objectives. At the most basic level, security prevents accidents or mistakes
that could disrupt application processing, delete or corrupt data, or reveal data to unauthorized users. More advanced
security features and practices can harden the system against malicious users trying to gain unauthorized access or
perform other disallowed operations. The auditing feature provides a way to confirm that no unauthorized access
occurred, and detect whether any such attempts were made. This is a critical set of features for production deployments
in large organizations that handle important or sensitive data. It sets the stage for multi-tenancy, where multiple
applications run concurrently and are prevented from interfering with each other.

The material in this section presumes that you are already familiar with administering secure Linux systems. That is,
you should know the general security practices for Linux and Hadoop, and their associated commands and configuration
files. For example, you should know how to create Linux users and groups, manage Linux group membership, set Linux
and HDFS file permissions and ownership, and designate the default permissions and ownership for new files. You
should be familiar with the configuration of the nodes in your Hadoop cluster, and know how to apply configuration
changes or run a set of commands across all the nodes.

The security features are divided into these broad categories:

authorization

Which users are allowed to access which resources, and what operations are they allowed to perform? Impala relies
on the open source Sentry project for authorization. By default (when authorization is not enabled), Impala does
all read and write operations with the privileges of the i npal a user, which is suitable for a development/test
environment but not for a secure production environment. When authorization is enabled, Impala uses the OS user
ID of the user who runs i npal a- shel | or other client program, and associates various privileges with each user.
See Enabling Sentry Authorization for Impala on page 115 for details about setting up and managing authorization.

authentication

How does Impala verify the identity of the user to confirm that they really are allowed to exercise the privileges
assigned to that user? Impala relies on the Kerberos subsystem for authentication. See Enabling Kerberos
Authentication for Impala on page 124 for details about setting up and managing authentication.

auditing
What operations were attempted, and did they succeed or not? This feature provides a way to look back and
diagnose whether attempts were made to perform unauthorized operations. You use this information to track
down suspicious activity, and to see where changes are needed in authorization policies. The audit data produced
by this feature is collected by the Cloudera Manager product and then presented in a user-friendly form by the
Cloudera Manager product. See Auditing Impala Operations on page 106 for details about setting up and managing
auditing.

Security Guidelines for Impala

The following are the major steps to harden a cluster running Impala against accidents and mistakes, or malicious
attackers trying to access sensitive data:

e Secure the r oot account. The r oot user can tamper with the i npal ad daemon, read and write the data files in
HDFS, log into other user accounts, and access other system services that are beyond the control of Impala.

e Restrict membership in the sudoer s list (in the / et ¢/ sudoer s file). The users who can run the sudo command
can do many of the same things as the r oot user.

e Ensure the Hadoop ownership and permissions for Impala data files are restricted.
e Ensure the Hadoop ownership and permissions for Impala log files are restricted.

e Ensure that the Impala web Ul (available by default on port 25000 on each Impala node) is password-protected.
See Impala Web User Interface for Debugging on page 731 for details.

e Create a policy file that specifies which Impala privileges are available to users in particular Hadoop groups (which
by default map to Linux OS groups). Create the associated Linux groups using the gr oupadd command if necessary.

e The Impala authorization feature makes use of the HDFS file ownership and permissions mechanism; for background
information, see the HDFS Permissions Guide. Set up users and assign them to groups at the OS level, corresponding
to the different categories of users with different access levels for various databases, tables, and HDFS locations
(URISs). Create the associated Linux users using the user add command if necessary, and add them to the appropriate
groups with the user nrod command.

e Design your databases, tables, and views with database and table structure to allow policy rules to specify simple,
consistent rules. For example, if all tables related to an application are inside a single database, you can assign
privileges for that database and use the * wildcard for the table name. If you are creating views with different
privileges than the underlying base tables, you might put the views in a separate database so that you can use
the * wildcard for the database containing the base tables, while specifying the precise names of the individual
views. (For specifying table or database names, you either specify the exact name or * to mean all the databases
on a server, or all the tables and views in a database.)

e Enable authorization by running the i npal ad daemons with the - ser ver _nane and
-aut hori zation_policy_fil e optionson all nodes. (The authorization feature does not apply to the
st at est or ed daemon, which has no access to schema objects or data files.)

¢ Set up authentication using Kerberos, to make sure users really are who they say they are.

Securing Impala Data and Log Files

One aspect of security is to protect files from unauthorized access at the filesystem level. For example, if you store
sensitive data in HDFS, you specify permissions on the associated files and directories in HDFS to restrict read and write
permissions to the appropriate users and groups.

If you issue queries containing sensitive values in the WHERE clause, such as financial account numbers, those values
are stored in Impala log files in the Linux filesystem and you must secure those files also. For the locations of Impala
log files, see Using Impala Logging on page 725.

All Impala read and write operations are performed under the filesystem privileges of the i npal a user. The i npal a
user must be able to read all directories and data files that you query, and write into all the directories and data files
for | NSERT and LOAD DATA statements. At a minimum, make sure the i npal a user is in the hi ve group so that it
can access files and directories shared between Impala and Hive. See User Account Requirements on page 25 for more
details.

Setting file permissions is necessary for Impala to function correctly, but is not an effective security practice by itself:

e The way to ensure that only authorized users can submit requests for databases and tables they are allowed to
access is to set up Sentry authorization, as explained in Enabling Sentry Authorization for Impala on page 115. With
authorization enabled, the checking of the user ID and group is done by Impala, and unauthorized access is blocked
by Impala itself. The actual low-level read and write requests are still done by the i npal a user, so you must have
appropriate file and directory permissions for that user ID.

* You must also set up Kerberos authentication, as described in Enabling Kerberos Authentication for Impala on
page 124, so that users can only connect from trusted hosts. With Kerberos enabled, if someone connects a new

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html

host to the network and creates user IDs that match your privileged IDs, they will be blocked from connecting to
Impala at all from that host.

Installation Considerations for Impala Security

Impala 1.1 comes set up with all the software and settings needed to enable security when you run the i npal ad
daemon with the new security-related options (- ser ver _nane and - aut hori zati on_policy_file).Youdo not
need to change any environment variables or install any additional JAR files. In a cluster managed by Cloudera Manager,
you do not need to change any settings in Cloudera Manager.

Securing the Hive Metastore Database

Itis important to secure the Hive metastore, so that users cannot access the names or other information about databases
and tables the through the Hive client or by querying the metastore database. Do this by turning on Hive metastore
security, using the instructions in the CDH 5 Security Guide for securing different Hive components:

¢ Secure the Hive Metastore.

e |n addition, allow access to the metastore only from the HiveServer2 server, and then disable local access to the
HiveServer2 server.

Securing the Impala Web User Interface

The instructions in this section presume you are familiar with the _. ht passwd mechanism commonly used to
password-protect pages on web servers.

Password-protect the Impala web Ul that listens on port 25000 by default. Set up a. ht passwd file in the $1 MPALA_HOVE
directory, or start both the i npal ad and st at est or ed daemons with the - - webser ver _password_fi | e option
to specify a different location (including the filename).

This file should only be readable by the Impala process and machine administrators, because it contains (hashed)
versions of passwords. The username / password pairs are not derived from Unix usernames, Kerberos users, or any
other system. The domai n field in the password file must match the domain supplied to Impala by the new command-line
option - - webser ver _aut henti cati on_domai n. The default is mydomai n. com

Impala also supports using HTTPS for secure web traffic. To do so, set - - webserver _certificate fil e to refer
to a valid . pemTLS/SSL certificate file. Impala will automatically start using HTTPS once the TLS/SSL certificate has
been read and validated. A . pemfile is basically a private key, followed by a signed TLS/SSL certificate; make sure to
concatenate both parts when constructing the . pemfile.

If Impala cannot find or parse the . pemfile, it prints an error message and quits.

E’; Note:

If the private key is encrypted using a passphrase, Impala will ask for that passphrase on startup, which
is not useful for a large cluster. In that case, remove the passphrase and make the . pemfile readable
only by Impala and administrators.

When you turn on TLS/SSL for the Impala web Ul, the associated URLs change from ht t p: / / prefixes
to htt ps: // . Adjust any bookmarks or application code that refers to those URLs.

Configuring Secure Access for Impala Web Servers

Cloudera Manager supports two methods of authentication for secure access to the Impala Catalog Server, Daemon,
and StateStoreweb servers: password-based authentication and TLS/SSL certificate authentication.

Authentication for the three types of daemons can be configured independently.

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_hive_security.html
http://en.wikipedia.org/wiki/.htpasswd

Configuring Password Authentication

1. Navigate to Clusters > Impala Service > Configuration.

2. Search for "password" using the Search box in the Configuration tab. This should display the password-related
properties (Username and Password properties) for the Impala Daemon, StateStore, and Catalog Server. If there
are multiple role groups configured for Impala Daemon instances, the search should display all of them.

3. Enter a username and password into these fields.
4. Click Save Changes, and restart the Impala service.

Now when you access the Web Ul for the Impala Daemon, StateStore, or Catalog Server, you are asked to log in before
access is granted.

Configuring TLS/SSL Certificate Authentication

1. Create or obtain an TLS/SSL certificate.

2. Place the certificate, in . pemformat, on the hosts where the Impala Catalog Server and StateStore are running,
and on each host where an Impala Daemon is running. It can be placed in any location (path) you choose. If all
the Impala Daemons are members of the same role group, then the . pemfile must have the same path on every
host.

3. Navigate to Clusters > Impala Service > Configuration.

4. Search for "certificate" using the Search box in the Configuration tab. This should display the certificate file location
properties for the Impala Catalog Server, Impala Daemon, and StateStore. If there are multiple role groups
configured for Impala Daemon instances, the search should display all of them.

5. In the property fields, enter the full path name to the certificate file.
6. Click Save Changes, and restart the Impala service.

o Important: If Cloudera Manager cannot find the . pemfile on the host for a specific role instance,
that role will fail to start.

When you access the Web Ul for the Impala Catalog Server, Impala Daemon, and StateStore, ht t ps will be used.

Configuring TLS/SSL for Impala

Impala supports TLS/SSL network encryption, between Impala and client programs, and between the Impala-related
daemons running on different nodes in the cluster. This feature is important when you also use other features such
as Kerberos authentication or Sentry authorization, where credentials are being transmitted back and forth.

o Important:

¢ You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

¢ This information applies specifically to the version of Impala shown in the HTML page header or
on the PDF title page. If you use an earlier version of CDH, see the documentation for that version
located at Cloudera Documentation.

Using Cloudera Manager
To configure Impala to listen for Beeswax and HiveServer2 requests on TLS/SSL-secured ports:

. Open the Cloudera Manager Admin Console and go to the Impala service.
. Click the Configuration tab.

. Select Scope > Impala (Service-Wide).

. Select Category > Security.

. Edit the following properties:

U b WN R

http://www.cloudera.com/content/support/en/documentation.html

Table 1: Impala SSL Properties

Property Description

Enable TLS/SSL for Impala Encrypt communication between clients (like ODBC, JDBC, and the Impala shell)
and the Impala daemon using Transport Layer Security (TLS) (formerly known
as Secure Socket Layer (SSL)).

Impala TLS/SSL Server Local path to the X509 certificate that identifies the Impala daemon to clients
Certificate File (PEM Format) | during TLS/SSL connections. This file must be in PEM format.

Impala TLS/SSL Server Private | Local path to the private key that matches the certificate specified in the
Key File (PEM Format) Certificate for Clients. This file must be in PEM format.

Impala TLS/SSL Private Key The password for the private key in the Impala TLS/SSL Server Certificate and
Password Private Key file. If left blank, the private key is not protected by a password.

Impala TLS/SSL CA Certificate | The location on disk of the certificate, in PEM format, used to confirm the
authenticity of SSL/TLS servers that the Impala daemons might connect to.
Because the Impala daemons connect to each other, this should also include
the CA certificate used to sign all the SSL/TLS Certificates. Without this parameter,
SSL/TLS between Impala daemons will not be enabled.

SSL/TLS Certificate for Impala | There are three of these configuration settings, one each for “Impala Daemon”,
component Webserver “Catalog Server”, and “Statestore”. Each of these Impala components has its
own internal web server that powers the associated web Ul with diagnostic
information. The configuration setting represents the local path to the X509
certificate that identifies the web server to clients during TLS/SSL connections.
This file must be in PEM format.

6. Click Save Changes to commit the changes.

7. Select each scope, one each for “Impala Daemon”, “Catalog Server”, and “Statestore”, and repeat the above steps.
Each of these Impala components has its own internal web server that powers the associated web Ul with diagnostic
information. The configuration setting represents the local path to the X509 certificate that identifies the web
server to clients during TLS/SSL connections.

8. Restart the Impala service.

For information on configuring TLS/SSL communication with the i npal a- shel | interpreter, see Configuring TLS/SSL
Communication for the Impala Shell on page 114.

Using the Command Line

To enable SSL for when client applications connect to Impala, add both of the following flags to the i npal ad startup
options:

e --ssl_server_certificate:the full path to the server certificate, on the local filesystem.
e --ssl_private_key: the full path to the server private key, on the local filesystem.

In CDH 5.5 / Impala 2.3 and higher, Impala can also use SSL for its own internal communication between the i npal ad,
st at est or ed, and cat al ogd daemons. To enable this additional SSL encryption, setthe- - ssl _server _certificate
and - -ssl _privat e_key flags in the startup options for i mpal ad, cat al ogd, and st at est or ed, and also add the
--ssl _client_ca_certificate flag for all three of those daemons.

Warning: Priorto CDH 5.5.2 / Impala 2.3.2, you could enable Kerberos authentication between Impala

A internal components, or SSL encryption between Impala internal components, but not both at the
same time. This restriction has now been lifted. See IMPALA-2598 to see the maintenance releases
for different levels of CDH where the fix has been published.

If either of these flags are set, both must be set. In that case, Impala starts listening for Beeswax and HiveServer2
requests on SSL-secured ports only. (The port numbers stay the same; see Ports Used by Impala on page 738 for details.)

https://issues.cloudera.org/browse/IMPALA-2598

Since Impala uses passphrase-less certificates in PEM format, you can reuse a host's existing Java keystore by converting
it to the PEM format. For instructions, see
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_openssl_jks.html.

Configuring TLS/SSL Communication for the Impala Shell

Typically, a client program has corresponding configuration properties in Cloudera Manager to verify that it is connecting
to the right server. For example, with SSL enabled for Impala, you use the following options when starting the
i mpal a- shel | interpreter:

e --ssl :enables TLS/SSL fori npal a-shel | .
e --ca_cert:the local pathname pointing to the third-party CA certificate, or to a copy of the server certificate
for self-signed server certificates.

If--ca_cert isnotset, i npal a- shel | enables TLS/SSL, but does not validate the server certificate. This is useful
for connecting to a known-good Impala that is only running over TLS/SSL, when a copy of the certificate is not available
(such as when debugging customer installations).

Fori npal a- shel | to successfully connect to an Impala cluster that has the minimum allowed TLS/SSL version set to
1.2 (- - ssl _mi ni mum versi on=t | sv1. 2), the Python version on the cluster that i npal a- shel | runs on must be
2.7.9 or higher (or a vendor-provided Python version with the required support. Some vendors patched Python 2.7.5
versions on Red Hat Enterprise Linux 7 and derivatives).

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC applications
to Impala. See Configuring Impala to Work with JDBC on page 40 and Configuring Impala to Work with ODBC on page
37 for details.

Prior to CDH 5.7 / Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication
and SSL encryption. If your cluster is running an older release that has this restriction, to use both of these security
features with Impala through a JDBC application, use the Cloudera JDBC Connector as the JDBC driver.

Specifying TLS/SSL Minimum Allowed Version and Ciphers

Depending on your cluster configuration and the security practices in your organization, you might need to restrict the
allowed versions of TLS/SSL used by Impala. Older TLS/SSL versions might have vulnerabilities or lack certain features.
In CDH 5.13 / Impala 2.10, you can use startup options for the i npal ad, cat al ogd, and st at est or ed daemons to

specify a minimum allowed version of TLS/SSL.

Specify one of the following values for the - - ssl _mi ni mum ver si on configuration setting:

e tlsvl:Allow any TLS version of 1.0 or higher. This setting is the default when TLS/SSL is enabled.
e tlsvil. 1:Allow any TLS version of 1.1 or higher.

e tlsvil. 2: Allow any TLS version of 1.2 or higher.
Along with specifying the version, you can also specify the allowed set of TLS ciphers by using the - - ssl _ci pher _I i st

configuration setting. The argument to this option is a list of keywords, separated by colons, commas, or spaces, and
optionally including other notation. For example:

--ssl _ci pher_Ili st ="RC4- SHA, RC4- MD5"

By default, the cipher list is empty, and Impala uses the default cipher list for the underlying platform. See the output
of man ci pher s for the full set of keywords and notation allowed in the argument string.

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_openssl_jks.html
http://www.cloudera.com/content/www/en-us/downloads.html

Enabling Sentry Authorization for Impala

Authorization determines which users are allowed to access which resources, and what operations they are allowed
to perform. In Impala 1.1 and higher, you use Apache Sentry for authorization. Sentry adds a fine-grained authorization
framework for Hadoop. By default (when authorization is not enabled), Impala does all read and write operations with
the privileges of thei npal a user, which is suitable for a development/test environment but not for a secure production
environment. When authorization is enabled, Impala uses the OS user ID of the user who runsi npal a- shel | orother
client program, and associates various privileges with each user.

E,i Note: Sentry is typically used in conjunction with Kerberos authentication that defines which hosts
are allowed to connect to each server. Using the combination of Sentry and Kerberos prevents malicious
users from being able to connect by creating a named account on an untrusted machine. See Enabling
Kerberos Authentication for Impala on page 124 for details about Kerberos authentication.

The Sentry Privilege Model

Privileges can be granted on different objects in the schema and are associated with a level in the object hierarchy. If
a privilege is granted on a parent object in the hierarchy, the child object automatically inherits it. This is the same
privilege model as Hive and other database systems.

The objects in the Impala schema hierarchy are:

Server
URI
Dat abase
Tabl e
Col umm

The table-level privileges apply to views as well. Anywhere you specify a table name, you can specify a view name
instead.

In CDH 5.5 / Impala 2.3 and higher, you can specify privileges for individual columns.

The table below lists the minimum level of privileges and the scope required to execute SQL statements in CDH 6.1 /
CDH 5.16 and higher. The following notations are used:

e ANY denotes the SELECT, | NSERT, CREATE, or REFRESH privilege.
e ALL privilege denotes the SELECT, | NSERT, CREATE, and REFRESH privileges.
¢ The owner of an object effectively has the ALL privilege on the object.

e The parent levels of the specified scope are implicitly supported. For example, if a privilege is listed with the TABLE
scope, the same privilege granted on DATABASE and SERVER will allow the user to execute that specific SQL
statement on TABLE.

SQL Statement Privileges Scope
SELECT SELECT TABLE
WITH SELECT SELECT TABLE
EXPLAIN SELECT SELECT TABLE
INSERT INSERT TABLE
EXPLAIN INSERT INSERT TABLE
TRUNCATE INSERT TABLE
LOAD INSERT TABLE
ALL URI
CREATE DATABASE CREATE SERVER

Impala Security

CREATE DATABASE LOCATION CREATE SERVER
ALL URI
CREATE TABLE CREATE DATABASE
CREATE TABLE LIKE CREATE DATABASE
SELECT, INSERT, or REFRESH TABLE
CREATE TABLE AS SELECT CREATE DATABASE
INSERT DATABASE
SELECT TABLE
EXPLAIN CREATE TABLE AS SELECT CREATE DATABASE
INSERT DATABASE
SELECT TABLE
CREATE TABLE LOCATION CREATE TABLE
ALL URI
CREATE VIEW CREATE DATABASE
SELECT TABLE
ALTER DATABASE SET OWNER ALL WITH GRANT DATABASE
ALTER TABLE ALL TABLE
ALTER TABLE SET LOCATION ALL TABLE
ALL URI
ALTER TABLE RENAME CREATE DATABASE
ALL TABLE
ALTER TABLE SET OWNER ALL WITH GRANT TABLE
ALTER VIEW ALL TABLE
SELECT TABLE
ALTER VIEW RENAME CREATE DATABASE
ALL TABLE
ALTER VIEW SET OWNER ALL WITH GRANT VIEW
DROP DATABASE ALL DATABASE
DROP TABLE ALL TABLE
DROP VIEW ALL TABLE
CREATE FUNCTION CREATE DATABASE
ALL URI
DROP FUNCTION ALL DATABASE
COMPUTE STATS ALL TABLE
DROP STATS ALL TABLE
INVALIDATE METADATA REFRESH SERVER

116 | Apache Impala Guide

Impala Security

INVALIDATE METADATA <table> REFRESH TABLE
REFRESH <table> REFRESH TABLE
REFRESH FUNCTIONS REFRESH DATABASE
COMMENT ON DATABASE ALL DATABASE
COMMENT ON TABLE ALL TABLE
COMMENT ON VIEW ALL TABLE
COMMENT ON COLUMN ALL TABLE
DESCRIBE DATABASE SELECT, INSERT, or REFRESH DATABASE
DESCRIBE <table/view> SELECT, INSERT, or REFRESH TABLE

If the user has the SELECT privilege at | SELECT COLUMN
the COLUMN level, only the columns

the user has access will show.

USE ANY TABLE
SHOW DATABASES ANY TABLE
SHOW TABLES ANY TABLE
SHOW FUNCTIONS SELECT, INSERT, or REFRESH DATABASE
SHOW PARTITIONS SELECT, INSERT, or REFRESH TABLE
SHOW TABLE STATS SELECT, INSERT, or REFRESH TABLE
SHOW COLUMN STATS SELECT, INSERT, or REFRESH TABLE
SHOW FILES SELECT, INSERT, or REFRESH TABLE
SHOW CREATE TABLE SELECT, INSERT, or REFRESH TABLE
SHOW CREATE VIEW SELECT, INSERT, or REFRESH TABLE
SHOW CREATE FUNCTION SELECT, INSERT, or REFRESH DATABASE
SHOW RANGE PARTITIONS (Kudu only) | SELECT, INSERT, or REFRESH TABLE
UPDATE (Kudu only) ALL TABLE
EXPLAIN UPDATE (Kudu only) ALL TABLE
UPSERT (Kudu only) ALL TABLE
WITH UPSERT (Kudu only) ALL TABLE
EXPLAIN UPSERT (Kudu only) ALL TABLE
DELETE (Kudu only) ALL TABLE
EXPLAIN DELETE (Kudu only) ALL TABLE

E’; Note: If a specific privilege is not enabled in Sentry, the ALL privilege is required in Impala.

Originally, privileges were encoded in a policy file, stored in HDFS. This mode of operation is still an option, but the
emphasis of privilege management is moving towards being SQL-based. The SQL-based mode of operation with the
GRANT and REVCKE statements requires that a special Sentry service be enabled. This Sentry service stores, retrieves,

and manipulates privilege information stored inside the metastore database.

Apache Impala Guide | 117

Note:

Although this document refers to the ALL privilege, currently if you use the policy file mode, you do
not use the actual keyword ALL in the policy file. When you code role entries in the policy file:

e To specify the ALL privilege for a server, use a role like ser ver =ser ver _nane.
¢ To specify the ALL privilege for a database, use a role like
server =server _nane- >db=dat abase_nane.
¢ To specify the ALL privilege for a table, use a role like
server =server _nane- >db=dat abase_nane- >t abl e=t abl e_nane- >acti on=*.

Object Ownership in Sentry

Starting in CDH 5.16 and CDH 6.1, Impala supports the ownership on databases, tables, and views. The CREATE
statements implicitly make the user running the statement the owner of the object. An owner has the OANER privilege
if enabled in Sentry. For example, if User A creates a database, foo, via the CREATE DATABASE statement, User A now
owns the foo database and is authorized to perform any operation on the foo database.

The ONNER privilege is not a grantable or revokable privilege whereas the ALL privilege is explicitly granted via the
GRANT statement.

The object ownership feature is controlled by a Sentry configuration. The OANER privilege is only granted when the
feature is enabled in Sentry. When enabled they get the owner privilege, with or without the GRANT OPTI ON, which
is also controlled by the Sentry configuration.

An ownership can be transferred to another user or role via the ALTER DATABASE, ALTER TABLE, or ALTER VI EW
with the SET OMNER clause.

Starting the impalad Daemon with Sentry Authorization Enabled

To runthei nmpal ad daemon with authorization enabled, you add the following options to the | MPALA_SERVER _ARGS
declaration in the / et ¢/ def aul t /i npal a configuration file:

e -server _nane:Turnson Sentry authorization for Impala. The authorization rules refer to a symbolic server name,
and you specify the name to use as the argument to the - ser ver _nane option.

Starting in Impala 1.4.0 and higher, if you specify just - ser ver _nane without - aut hori zati on_policy file,
Impala uses the Sentry service for authorization.

e --sentry_confi g: Specifies the local path to the sent ry-si t e. xnl configuration file. This setting is required
to enable authorization.

e -authorization_policy_fil e:Specifiesthe HDFS path to the policy file that defines the privileges on schema
objects. Prior to Impala 1.4.0, or if you want to continue storing privilege rules in the policy file, specify the
-aut hori zation_policy_fil e optionto make Impala read privilege information from a policy file, rather
than from the metastore database.

For example, you might adapt your / et ¢/ def aul t/ i npal a configuration to contain lines like the following. To use

the Sentry service rather than the policy file:

| MPALA SERVER ARGS=" \
-server_nane=server1l \

Or to use the policy file, as in releases prior to Impala 1.4:

| MPALA SERVER ARGS=" \
-aut hori zation_policy_file=/user/hivel/warehouse/auth-policy.ini \
-server_nane=serverl \

The preceding examples set up a symbolic name of ser ver 1 to refer to the current instance of Impala. This symbolic
name is used in the following ways:

¢ Inan environment managed by Cloudera Manager, see Enabling Sentry for Impala in Cloudera Manager on page
119 for setting up Sentry for Impala in Cloud Manager. The values must be the same for both, so that Impala and
Hive can share the privilege rules. Restart the Impala and Hive services after setting or changing this value.

¢ |nan environment not managed by Cloudera Manager, you specify this value for the sent ry. hi ve. server
propertyinthesent ry-sit e. xm configuration file for Hive, as well asin the - ser ver _nare option fori npal ad.

Now restart the i npal ad daemons on all the nodes.

Enabling Sentry for Impala in Cloudera Manager
To enable the Sentry service for Impala and Hive:

1. Navigate to the Hive cluster.

2. In the Configuration tab, select Hive (Service-Wide) under SCOPE and Advanced under CATEGORY.

3. In the Sentry Service field, type the Sentry service you specified in the Impala configuration. This is the server
name to use when granting server level privileges

4. When using Sentry with the Hive Metastore, you can specify the list of users that are allowed to bypass Sentry
Authorization in Hive Metastore. Select Security for CATEGORY in the Configuration tab, and specify the users in
the Bypass Sentry Authorization Users field. These are usually service users that already ensure all activity has
been authorized.

5. If in CDH 5, navigate to the Impala cluster, and perform the next two steps to disable the policy file-based
authorization.

6. In the Configuration tab, select Impala (Service-Wide) under SCOPE and Policy File Based Sentry under CATEGORY.

7. Deselect the Enable Sentry Authorization using Policy Files parameter when using the Sentry service. Cloudera
Manager throws a validation error in CDH 5 if you attempt to configure the Sentry service and policy file at the
same time.

8. Restart Impala and Hive.

Using Impala with the Sentry Service (CDH 5.1 or higher only)

When you use the Sentry service, you set up privileges through the GRANT and REVOKE statements in either Impala
or Hive. Then both components use those same privileges automatically. (Impala added the GRANT and REVOKE
statements in CDH 5.2 / Impala 2.0.)

For information about using the Impala GRANT and REVOKE statements, see GRANT Statement (CDH 5.2 or higher only)
on page 308 and REVOKE Statement (CDH 5.2 or higher only) on page 328.

Changing Privileges
If you make a change to privileges in Sentry from outside of Impala, e.g. adding a user, removing a user, modifying

privileges, there are two options to propagate the change:

e Usethecatal ogdflag,--sentry_catal og_pol I'i ng_frequency_s to specify how often to do a Sentry
refresh. The flag is set to 60 seconds by default.

e Runthe | NVALI DATE METADATA statement to force a Sentry refresh. | NVALI DATE METADATA forces a Sentry
refresh regardless of the - - sentry_cat al og_pol | i ng_f equency_s flag.

If you make a change to privileges within Impala, | NVALI DATE METADATAis not required.

n Warning: As | NVALI DATE METADATA is an expensive operation, you should use it judiciously.

Granting Privileges on URI

URIs represent the file paths you specify as part of statements such as CREATE EXTERNAL TABLE and LOAD DATA.
Typically, you specify what look like UNIX paths, but these locations can also be prefixed with hdf s: // to make clear
that they are really URIs. To set privileges for a URI, specify the name of a directory, and the privilege applies to all the
files in that directory and any directories underneath it.

URIs must start with hdf s: //,s3a://,adl ://,orfile://.IfaURIstarts with an absolute path, the path will be
appended to the default filesystem prefix. For example, if you specify:

GRANT ALL ON URI '/tnp';

The above statement effectively becomes the following where the default filesystem is HDFS.

GRANT ALL ON URI 'hdfs://1ocal host: 20500/t np';

When defining URIs for HDFS, you must also specify the NameNode. For example:

/path/to/dir TO <rol e>

GRANT ALL ON URI file://
/I nanenode: port/path/to/dir TO <rol e>

GRANT ALL ON URI hdfs:

Warning: Because the NameNode host and port must be specified, it is strongly recommended that
A you use High Availability (HA). This ensures that the URI will remain constant even if the NameNode
changes. For example:

GRANT ALL ON URI hdfs://ha-nn-uri/path/to/dir TO <rol e>

Examples of Setting up Authorization for Security Scenarios
The following examples show how to set up authorization to deal with various scenarios.
A User with No Privileges

If a user has no privileges at all, that user cannot access any schema objects in the system. The error messages do not
disclose the names or existence of objects that the user is not authorized to read.

This is the experience you want a user to have if they somehow log into a system where they are not an authorized
Impala user. Or in a real deployment, a user might have no privileges because they are not a member of any of the
authorized groups.

Examples of Privileges for Administrative Users

In this example, the SQL statements grant the ent i r e_ser ver role all privileges on both the databases and URIs
within the server.

CREATE ROLE entire_server;
GRANT ROLE entire_server TO GROUP adm n_group;
GRANT ALL ON SERVER serverl TO ROLE entire_server;

A User with Privileges for Specific Databases and Tables

If a user has privileges for specific tables in specific databases, the user can access those things but nothing else. They
can see the tables and their parent databases in the output of SHOW TABLES and SHOW DATABASES, USE the appropriate
databases, and perform the relevant actions (SELECT and/or | NSERT) based on the table privileges. To actually create
a table requires the ALL privilege at the database level, so you might define separate roles for the user that sets up a
schema and other users or applications that perform day-to-day operations on the tables.

CREATE ROLE one_dat abase;

GRANT ROLE one_dat abase TO GROUP adni n_gr oup;
GRANT ALL ON DATABASE dbl TO RCOLE one_dat abase;

CREATE ROLE instructor;
GRANT ROLE instructor TO GROUP trainers;
GRANT ALL ON TABLE dbl.!|esson TO RCOLE i nstructor;

This particular course is all about queries, so the students can SELECT but not | NSERT
or CREATE/ DROP.

CREATE ROLE student;

GRANT ROLE student TO GROUP visitors;

GRANT SELECT ON TABLE dbl.training TO ROLE student;

Privileges for Working with External Data Files

When data is being inserted through the LOAD DATA statement, or is referenced from an HDFS location outside the
normal Impala database directories, the user also needs appropriate permissions on the URIs corresponding to those
HDFS locations.

In this example:

e The external _tabl e role can insert into and query the Impala table, ext er nal _t abl e. sanpl e.

e The st agi ng_di r role can specify the HDFS path / user/ cl ouder a/ ext er nal _dat a with the LOAD DATA
statement. When Impala queries or loads data files, it operates on all the files in that directory, not just a single
file, so any Impala LOCATI ON parameters refer to a directory rather than an individual file.

CREATE RCLE external _table;
GRANT ROLE external _table TO GROUP cl ouder a;
GRANT ALL ON TABLE external _tabl e.sanple TO ROLE external _tabl e;

CREATE RCLE staging_dir;
GRANT ROLE stagi ng TO GROUP cl ouder a;
GRANT ALL ON URI ' hdfs://127.0.0.1: 8020/ user/ cl ouder a/ external _data' TO ROLE stagi ng_dir;

Separating Administrator Responsibility from Read and Write Privileges

To create a database, you need the full privilege on that database while day-to-day operations on tables within that
database can be performed with lower levels of privilege on specific table. Thus, you might set up separate roles for
each database or application: an administrative one that could create or drop the database, and a user-level one that
can access only the relevant tables.

In this example, the responsibilities are divided between users in 3 different groups:

e Members of the super gr oup group have the t r ai ni ng_sysadni n role and so can set up a database named
training.

e Members of the cl ouder a group have the i nstruct or role and so can create, insert into, and query any tables
in the t r ai ni ng database, but cannot create or drop the database itself.

e Members of the vi si t or group have the st udent role and so can query those tables in thet r ai ni ng database.

CREATE RCLE trai ni ng_sysadmi n;
GRANT ROLE training_sysadnin TO GROUP supergroup;
GRANT ALL ON DATABASE trainingl TO ROLE training_sysadm n;

CREATE ROLE instructor;
GRANT ROLE instructor TO GROUP cl ouder a;
GRANT ALL ON TABLE trainingl.coursel TO ROLE instructor;

CREATE ROLE visitor;

GRANT ROLE student TO GROUP visitor;
GRANT SELECT ON TABLE trainingl. coursel TO ROLE student;

Using Impala with the Sentry Policy File

The policy file is a file that you put in a designated location in HDFS, and is read during the startup of the i npal ad
daemon when you specify both the - ser ver _nane and - aut hori zati on_pol i cy_fi | e startup options. It controls

which objects (databases, tables, and HDFS directory paths) can be accessed by the user who connects to i npal ad,
and what operations that user can perform on the objects.

E,i Note: The policy-file based authorization was deprecated in CDH 5.16. We recommend managing
privileges through SQL statements as described in Using Impala with the Sentry Service (CDH 5.1 or
higher only) on page 119. If you are still using policy files, plan to migrate to the new approach some
time in the future.

The location of the policy file is listed in the aut h- si t e. xm configuration file.

When authorization is enabled, Impala uses the policy file as a whitelist, representing every privilege available to any
user on any object. That is, only operations specified for the appropriate combination of object, role, group, and user
are allowed. All other operations are not allowed. If a group or role is defined multiple times in the policy file, the last
definition takes precedence.

To understand the notion of whitelisting, set up a minimal policy file that does not provide any privileges for any object.
When you connect to an Impala node where this policy file is in effect, you get no results for SHOW DATABASES, and
an error when you issue any SHOW TABLES, USE dat abase_nane, DESCRI BE t abl e_nane, SELECT, and or other
statements that expect to access databases or tables, even if the corresponding databases and tables exist.

The contents of the policy file are cached, to avoid a performance penalty for each query. The policy file is re-checked
by each i npal ad node every 5 minutes. When you make a non-time-sensitive change such as adding new privileges
or new users, you can let the change take effect automatically a few minutes later. If you remove or reduce privileges,
and want the change to take effect immediately, restart the i npal ad daemon on all nodes, again specifying the
-server _nane and - aut hori zati on_pol i cy_fil e options so that the rules from the updated policy file are
applied.

Policy File Format
The policy file uses the familiar . i ni format, divided into the major sections [gr oups] and[rol es].

There is also an optional [dat abases] section, which allows you to specify a specific policy file for a particular database,
as explained in Using Multiple Policy Files for Different Databases on page 123.

Another optional section, [user s], allows you to override the OS-level mapping of users to groups; that is an advanced
technique primarily for testing and debugging, and is beyond the scope of this document.

In the [gr oups] section, you define various categories of users and select which roles are associated with each
category. The group and usernames correspond to Linux groups and users on the server where the i npal ad daemon
runs.

The group and usernames in the [gr oups] section correspond to Hadoop groups and users on the server where the
i mpal ad daemon runs. When you access Impala through the i npal ad interpreter, for purposes of authorization, the
user is the logged-in Linux user and the groups are the Linux groups that user is a member of. When you access Impala
through the ODBC or JDBC interfaces, the user and password specified through the connection string are used as login
credentials for the Linux server, and authorization is based on that username and the associated Linux group membership.

Inthe [r ol es] section, you a set of roles. For each role, you specify precisely the set of privileges is available. That
is, which objects users with that role can access, and what operations they can perform on those objects. This is the
lowest-level category of security information; the other sections in the policy file map the privileges to higher-level
divisions of groups and users. In the [gr oups] section, you specify which roles are associated with which groups. The
group and usernames correspond to Linux groups and users on the server where the i npal ad daemon runs. The
privileges are specified using patterns like:

server =server _name- >db=dat abase_nane- >t abl e=t abl e_nane- >acti on=SELECT
server =server _nane- >db=dat abase_nane- >t abl e=t abl e_nane- >act i on=CREATE
server=server _name- >db=dat abase_nane- >t abl e=t abl e_nane- >acti on=ALL

For the server_name value, substitute the same symbolic name you specify with the i npal ad - ser ver _nane option.
You can use * wildcard characters at each level of the privilege specification to allow access to all such objects. For
example:

server =i npal a- host . exanpl e. com >db=def aul t - >t abl e=t 1- >acti on=SELECT
server =i npal a- host . exanpl e. com >db=*- >t abl e=*- >act i on=CREATE

server =i npal a- host . exanpl e. com >db=*- >t abl e=audi t _| og- >acti on=SELECT
server =i npal a- host . exanpl e. com >db=def aul t - >t abl e=t 1- >act i on=*

Using Multiple Policy Files for Different Databases

For an Impala cluster with many databases being accessed by many users and applications, it might be cumbersome
to update the security policy file for each privilege change or each new database, table, or view. You can allow security
to be managed separately for individual databases, by setting up a separate policy file for each database:

¢ Add the optional [dat abases] section to the main policy file.
e Add entries in the [dat abases] section for each database that has its own policy file.
e For each listed database, specify the HDFS path of the appropriate policy file.

For example:

[dat abases]

Defines the location of the per-DB policy files for the 'custoners' and 'sales'
dat abases.

custoners = hdfs://ha-nn-uri/etc/access/custoners.ini

sales = hdfs://ha-nn-uri/etc/access/sal es.ini

To enable URIs in per-DB policy files, add the following string in the Cloudera Manager field Impala Service Environment
Advanced Configuration Snippet (Safety Valve):

JAVA TOOL_OPTI ONS="-Dsentry. al | ow. uri. db. policyfil e=true"

o Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of
the db-level policy file to grant himself/herself load privileges to anything the i npal a user has read
permissions for in HDFS (including data in other databases controlled by different db-level policy files).

Setting Up Schema Objects for a Secure Impala Deployment

In your role definitions, you must specify privileges at the level of individual databases and tables, or all databases or
all tables within a database. To simplify the structure of these rules, plan ahead of time how to name your schema
objects so that data with different authorization requirements is divided into separate databases.

If you are adding security on top of an existing Impala deployment, you can rename tables or even move them between
databases using the ALTER TABLE statement.
Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

¢ InCloudera Manager, add | og4j . | ogger . or g. apache. sent r y=DEBUGto0 the logging settings for your service
through the corresponding Logging Safety Valve field for the Impala, Hive Server 2, or Solr Server services.

¢ On systems not managed by Cloudera Manager, add | og4j . | ogger. or g. apache. sent r y=DEBUGto the
| og4j . properti es file on each host in the cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

Fi |l ePerm ssion server..., RequestPermnission server...., result [true|false]

which indicate each evaluation Sentry makes. The Fi | ePer mi ssi on is from the policy file, while Request Per mi ssi on
is the privilege required for the query. A Request Per ni ssi on will iterate over all appropriate Fi | ePer ni ssi on
settings until a match is found. If no matching privilege is found, Sentry returns f al se indicating “Access Denied” .

The DEFAULT Database in a Secure Deployment

Because of the extra emphasis on granular access controls in a secure deployment, you should move any important
or sensitive information out of the DEFAULT database into a named database whose privileges are specified in the
policy file. Sometimes you might need to give privileges on the DEFAULT database for administrative reasons; for
example, as a place you can reliably specify with a USE statement when preparing to drop a database.

Impala Authentication

Authentication is the mechanism to ensure that only specified hosts and users can connect to Impala. It also verifies
that when clients connect to Impala, they are connected to a legitimate server. This feature prevents spoofing such as
impersonation (setting up a phony client system with the same account and group names as a legitimate user) and
man-in-the-middle attacks (intercepting application requests before they reach Impala and eavesdropping on sensitive
information in the requests or the results).

Impala supports authentication using either Kerberos or LDAP.

E,i Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and

data files owned by the same user (typically i npal a). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 115.

Once you are finished setting up authentication, move on to authorization, which involves specifying what databases,
tables, HDFS directories, and so on can be accessed by particular users when they connect through Impala. See Enabling
Sentry Authorization for Impala on page 115 for details.

Enabling Kerberos Authentication for Impala

Impala supports Kerberos authentication. For background information on enabling Kerberos authentication, see the
topic on Configuring Hadoop Security in the CDH 5 Security Guide.

When using Impala in a managed environment, Cloudera Manager automatically completes Kerberos configuration.
In an unmanaged environment, create a Kerberos principal for each host runningi npal ad or st at est or ed. Cloudera
recommends using a consistent format, such asi npal a/ _HOST@Your - Real m but you can use any three-part Kerberos
server principal.

In Impala 2.0 and later, user () returns the full Kerberos principal string, such as user @xanpl e. com in a Kerberized
environment.

E,’ Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and

data files owned by the same user (typically i npal a). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 115.

An alternative form of authentication you can use is LDAP, described in Enabling LDAP Authentication for Impala on
page 128.

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_cdh5_hadoop_security.html

Requirements for Using Impala with Kerberos

On version 5 of Red Hat Enterprise Linux and comparable distributions, some additional setup is needed for the
i mpal a- shel | interpreter to connect to a Kerberos-enabled Impala cluster:

sudo yuminstall python-devel openssl-devel python-pip
sudo pi p-python install ssl

o Important:

¢ If you plan to use Impala in your cluster, you must configure your KDC to allow tickets to be
renewed, and you must configure kr b5. conf to request renewable tickets. Typically, you can
do this by adding the max_r enewabl e_| i f e setting to your realm in kdc. conf , and by adding
therenew | i feti me parameter to the | i bdef aul t s section of kr b5. conf.

For more information about renewable tickets, see the Kerberos documentation.

e The Impala Web Ul does not support Kerberos authentication.

¢ You cannot use the Impala resource management feature on a cluster that has Kerberos
authentication enabled.

Start alli npal ad and st at est or ed daemons with the - - pri nci pal and - - keyt ab- fi | e flags set to the principal
and full path name of the keyt ab file containing the credentials for the principal.

Impala supports the Cloudera ODBC driver and the Kerberos interface provided. To use Kerberos through the ODBC
driver, the host type must be set depending on the level of the ODBD driver:

e Secl npal a for the ODBC 1.0 driver.

e SecBeeswax for the ODBC 1.2 driver.

¢ Blank for the ODBC 2.0 driver or higher, when connecting to a secure cluster.

e HS2NoSasl for the ODBC 2.0 driver or higher, when connecting to a non-secure cluster.

To enable Kerberos in the Impala shell, start the i npal a- shel | command using the - k flag.

To enable Impala to work with Kerberos security on your Hadoop cluster, make sure you perform the installation and
configuration steps in Authentication in the CDH 5 Security Guide.

Configuring Impala to Support Kerberos Security
Enabling Kerberos authentication for Impala involves steps that can be summarized as follows:

e Creating service principals for Impala and the HTTP service. Principal names take the form:
servi ceNane/ful ly. qual i fi ed. domai n. name @GXERBERCS. REALM

¢ Creating, merging, and distributing key tab files for these principals.

e Editing/ et c/ def aul t /i npal a (in cluster not managed by Cloudera Manager), or editing the Security settings
in the Cloudera Manager interface, to accommodate Kerberos authentication.

Enabling Kerberos for Impala

1. Create an Impala service principal, specifying the name of the OS user that the Impala daemons run under, the
fully qualified domain name of each node running i npal ad, and the realm name. For example:

$ kadnin
kadmi n: addprinc -requires_preauth -randkey
i mpal a/ i npal a_host . exanpl e. com@EST. EXAMPLE. COM

2. Create an HTTP service principal. For example:

kadmi n: addprinc -randkey HTTP/inpal a_host. exanpl e. com@EST. EXAMPLE. COM

http://web.mit.edu/Kerberos/krb5-1.8/
http://www.cloudera.com/documentation/enterprise/latest/topics/sg_authentication.html

E,i Note: The HTTP component of the service principal must be uppercase as shown in the preceding
example.

3. Create keyt ab files with both principals. For example:

kadm n: xst -k inpal a. keytab inpal a/inpal a_host. exanpl e. com
kadnmi n: xst -k http. keytab HTTP/inpal a_host. exanpl e. com
kadm n: quit

4. Usekt util toreadthe contents of the two keytab files and then write those contents to a new file. For example:

$ ktutil

ktutil: rkt inpala.keytab
ktutil: rkt http.keytab
ktutil: wkt inpala-http. keytab
ktutil: quit

5. (Optional) Test that credentials in the merged keytab file are valid, and that the “renew until” date is in the future.
For example:

$ klist -e -k -t inpala-http.keytab

6. Copy the i npal a- htt p. keyt ab file to the Impala configuration directory. Change the permissions to be only
read for the file owner and change the file owner to the i npal a user. By default, the Impala user and group are
both named i npal a. For example:

cp inpal a-http. keytab /etc/inpal a/ conf
cd /etc/inpal al conf

chnmod 400 i npal a- http. keyt ab

chown inpal a:inpal a i npal a- http. keytab

BAARP

7. Add Kerberos options to the Impala defaultsfile,/ et ¢/ def aul t / i npal a. Add the options for both the i npal ad
and st at est or ed daemons, using the | MPALA_SERVER _ARGSand | MPALA_STATE_STORE_ARGSvariables. For
example, you might add:

-kerberos_reinit_interval =60
- princi pal =i mpal a_1/i npal a_host . exanpl e. com@EST. EXAMPLE. COM
-keytab_fil e=/var/run/cl oudera-scm agent/ process/ 3212-i npal a- | MPALAD/ i npal a. keyt ab

For more information on changing the Impala defaults specified in/ et ¢/ def aul t /i npal a, see Modifying Impala
Startup Options.

E,i Note: Restarti npal ad and st at est or ed for these configuration changes to take effect.

Enabling Kerberos for Impala with a Proxy Server

A common configuration for Impala with High Availability is to use a proxy server to submit requests to the actual

i npal ad daemons on different hosts in the cluster. This configuration avoids connection problems in case of machine
failure, because the proxy server can route new requests through one of the remaining hosts in the cluster. This
configuration also helps with load balancing, because the additional overhead of being the “coordinator node” for
each query is spread across multiple hosts.

Although you can set up a proxy server with or without Kerberos authentication, typically users set up a secure Kerberized
configuration. For information about setting up a proxy server for Impala, including Kerberos-specific steps, see Using
Impala through a Proxy for High Availability on page 100.

Enabling Impala Delegation for Kerberos Users

See Configuring Impala Delegation for Hue and Bl Tools on page 130 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC applications
to Impala. See Configuring Impala to Work with JDBC on page 40 and Configuring Impala to Work with ODBC on page
37 for details.

Prior to CDH 5.7 / Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication
and SSL encryption. If your cluster is running an older release that has this restriction, to use both of these security
features with Impala through a JDBC application, use the Cloudera JDBC Connector as the JDBC driver.

Enabling Access to Internal Impala APIs for Kerberos Users

For applications that need direct access to Impala APIs, without going through the HiveServer2 or Beeswax interfaces,
you can specify a list of Kerberos users who are allowed to call those APIs. By default, the i npal a and hdf s users are
the only ones authorized for this kind of access. Any users not explicitly authorized through the

i nternal _principal s_whitelist configuration setting are blocked from accessing the APIs. This setting applies
to all the Impala-related daemons, although currently it is primarily used for HDFS to control the behavior of the catalog
server.

Mapping Kerberos Principals to Short Names for Impala

In CDH 5.8 / Impala 2.6 and higher, Impala recognizes the aut h_t o_| ocal setting, specified through the HDFS
configuration setting hadoop. security. auth_t o_| ocal orthe Cloudera Manager setting Additional Rules to Map
Kerberos Principals to Short Names. This feature is disabled by default, to avoid an unexpected change in security-related
behavior. To enable it:

e For clusters not managed by Cloudera Manager, specify--1 oad_auth_to_| ocal _rul es=trueinthei npal ad
and cat al ogdconfiguration settings.

e For clusters managed by Cloudera Manager, select the Use HDFS Rules to Map Kerberos Principals to Short Names
checkbox to enable the service-widel oad_aut h_t o_| ocal _rul es configuration setting. Then restart the Impala
service.

See Using Auth-to-Local Rules to Isolate Cluster Users for general information about this feature.

Kerberos-Related Memory Overhead for Large Clusters

On a kerberized cluster with high memory utilization, ki ni t commands executed after every
"kerberos_reinit_interval' maycause out-of-memory errors, because executing the command involves a fork
of the Impala process. The error looks similar to the following:

Fail ed to obtain Kerberos ticket for principal: <varname>principal _detail s</varnanme>
Failed to execute shell cnd: "kinit -k -t <varnanme>keytab_detai |l s</varname>',
error was: Error(12): Cannot allocate nenory

The following command changes the vm over commi t _nenor y setting immediately on a running host. However, this
setting is reset when the host is restarted.

echo 1 > /proc/sys/vnlovercomit_nenory

http://www.cloudera.com/content/www/en-us/downloads.html
http://www.cloudera.com/documentation/enterprise/latest/topics/sg_auth_to_local_isolate.html

To change the setting in a persistent way, add the following line to the / et ¢/ sysct | . conf file:
vm over conmit _menory=1

Then runsysct| -p. No reboot is needed.

Enabling LDAP Authentication for Impala

Authentication is the process of allowing only specified named users to access the server (in this case, the Impala
server). This feature is crucial for any production deployment, to prevent misuse, tampering, or excessive load on the
server. Impala uses LDAP for authentication, verifying the credentials of each user who connects throughi npal a- shel |,
Hue, a Business Intelligence tool, JDBC or ODBC application, etc.

E,i Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and

data files owned by the same user (typically i npal a). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 115.

An alternative form of authentication you can use is Kerberos, described in Enabling Kerberos Authentication for Impala
on page 124.

Requirements for Using Impala with LDAP

Authentication against LDAP servers is available in Impala 1.2.2 and higher. Impala 1.4.0 added the support for secure
LDAP authentication through SSL and TLS.

The Impala LDAP support lets you use Impala with systems such as Active Directory that use LDAP behind the scenes.
Consideration for Connections Between Impala Components
Only the connections between clients and Impala can be authenticated by LDAP.

You must use the Kerberos authentication mechanism for connections between internal Impala components, such as
between the i npal ad, st at est or ed, and cat al ogd daemons. See Enabling Kerberos Authentication for Impala on
page 124 on how to set up Kerberos for Impala.

Enabling LDAP in Command Line Interface

To enable LDAP authentication via a command line interface, start the i npal ad with the following startup options
for:

--enabl e_| dap_auth
Enables LDAP-based authentication between the client and Impala.
--ldap_uri

Sets the URI of the LDAP server to use. Typically, the URI is prefixed with | dap: / /. You can specify secure SSL-based
LDAP transport by using the prefix | daps: / /. The URI can optionally specify the port, for example:

| dap:/ /| dap_server. exanpl e.com 389 or| daps: //| dap_server. exanpl e. com 636. (389 and 636 are
the default ports for non-SSL and SSL LDAP connections, respectively.)

Support for Custom Bind Strings

When Impala connects to LDAP it issues a bind call to the LDAP server to authenticate as the connected user. Impala
clients, including the Impala shell, provide the short name of the user to Impala. This is necessary so that Impala can
use Sentry for role-based access, which uses short names.

However, LDAP servers often require more complex, structured usernames for authentication. Impala supports three
ways of transforming the short name (for example, ' henry') to a more complicated string. If necessary, specify one
of the following configuration options when starting the i npal ad daemon.

--l dap_donai n
Replaces the username with a string user name@ dap_donai n.
--1 dap_baseDN

Replaces the username with a “distinguished name” (DN) of the form: ui d=useri d, | dap_baseDN. (This is
equivalent to a Hive option).

--l dap_bi nd_pattern

This is the most general option, and replaces the username with the string Idap_bind_pattern where all instances
of the string #Ul D are replaced with userid. For example, an | dap_bi nd_pat t er n of

"user =#Ul D, OU=f 0o, CN=bar " with a username of henr y will construct a bind name of

"user =henry, OU=f oo, CN=bar ".

The above options are mutually exclusive, and Impala does not start if more than one of these options are specified.

Secure LDAP Connections

To avoid sending credentials over the wire in cleartext, you must configure a secure connection between both the
client and Impala, and between Impala and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

For SSL-enabled LDAP connections, specify a prefix of | daps: // instead of | dap: / /. Also, the default port for
SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can be made on the same server port as non-TLS connections. To secure all connections using TLS, specify
the following flags as startup options to the i npal ad daemon:

--ldap_tls
Tells Impala to start a TLS connection to the LDAP server, and to fail authentication if it cannot be done.
--ldap_ca_certificate="/path/to/certificatelpent
Specifies the location of the certificate in standard . PEMformat. Store this certificate on the local filesystem, in a
location that only the i npal a user and other trusted users can read.
Enabling LDAP in Cloudera Manager
To enable LDAP authentication in Cloudera Manager:

1. In the Impala service, click the Configuration tab.

2. In the search box, type Idap.

3. Specify the values for the option fields. Each field lists the corresponding Impala startup flag. See the sections
above for the corresponding flag if you need more information on a particular field.

4. Click Save Changes.
5. Restart the Impala service.

LDAP Authentication for impala-shell

To connect to Impala using LDAP authentication, you specify command-line options to the i npal a- shel | command
interpreter and enter the password when prompted.

Enables LDAP authentication.

http://en.wikipedia.org/wiki/Transport_Layer_Security

-u

Sets the user. Per Active Directory, the user is the short username, not the full LDAP distinguished name. If your
LDAP settings include a search base, use the - - | dap_bi nd_pat t er n on the i npal ad daemon to translate the
short user name from i nmpal a- shel | automatically to the fully qualified name.

i mpal a- shel | automatically prompts for the password.

See Configuring Impala to Work with JDBC on page 40 for the format to use with the JDBC connection string for servers
using LDAP authentication.

Enabling LDAP for Impala in Hue

1. Go to the Hue service.

. Click the Configuration tab.

. Select Scope > Hue Server.

. Select Category > Advanced.

. Add the following properties to the Hue Server Advanced Configuration Snippet (Safety Valve) for
hue_safety_valve_server.ini property.

v A WN

[i mpal a]
aut h_user name=<LDAP usernane of Hue user to be authenticated>
aut h_passwor d=<LDAP password of Hue user to be authenticated>

6. Click Save Changes.

Enabling Impala Delegation for LDAP Users

See Configuring Impala Delegation for Hue and Bl Tools on page 130 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.

LDAP Restrictions for Impala

The LDAP support is preliminary. It currently has only been tested against Active Directory.

Using Multiple Authentication Methods with Impala

Impala 2.0 and later automatically handles both Kerberos and LDAP authentication. Each i npal ad daemon can accept
both Kerberos and LDAP requests through the same port. No special actions need to be taken if some users authenticate
through Kerberos and some through LDAP.

Prior to Impala 2.0, you had to configure each i npal ad to listen on a specific port depending on the kind of
authentication, then configure your network load balancer to forward each kind of request to a DataNode that was
set up with the appropriate authentication type. Once the initial request was made using either Kerberos or LDAP
authentication, Impala automatically handled the process of coordinating the work across multiple nodes and transmitting
intermediate results back to the coordinator node.

Configuring Impala Delegation for Hue and Bl Tools

When users submit Impala queries through a separate application, such as Hue or a business intelligence tool, typically
all requests are treated as coming from the same user. In Impala 1.2 and higher, Impala supports “delegation” where
users whose names you specify can delegate the execution of a query to another user. The query runs with the privileges
of the delegated user, not the original authenticated user.

The name of the delegated user is passed using the HiveServer2 protocol configuration property i npal a. doas. user
when the client connects to Impala.

Currently, the delegation feature is available only for Impala queries submitted through application interfaces such as
Hue and Bl tools. For example, Impala cannot issue queries using the privileges of the HDFS user.

The delegation feature is enabled by the startup option for i npal ad: - - aut hori zed_pr oxy_user _confi g.

The syntax for the option is:
--aut hori zed proxy_user_confi g=aut henti cat ed_user 1=del egat ed user 1, del egat ed user2,...;authenti cated user2=...

¢ The list of authorized users are delimited with ;
e The list of delegated users are delimited with , by default.

e Usethe--authorized_proxy_user_config_deliniter startup option to override the default user delimiter
(the comma character) to another character.

e Wildcard (*) is supported to delegated to any users, e.g. - - aut hori zed_pr oxy_user _conf i g=hue=*. Make
sure to use single quotes or escape characters to ensure that any * characters do not undergo wildcard expansion
when specified in command-line arguments.

When you start Impala with the - - aut hori zed_pr oxy_user _confi g=aut henti cat ed_user =del egat ed_user
option:

e Authentication is based on the user on the left hand side (authenticated_user).

e Authorization is based on the right hand side user(s) (delegated_user).

¢ When opening a client connection, the client must provide a delegated username via the HiveServer2 protocol
property,i npal a. doas. user or Del egati onUl D.

¢ |tis not necessary for authenticated_user to have the permission to access/edit files.
e |t is not necessary for the delegated users to have access to the service via Kerberos.
e delegated_user must exist in the OS.
e Inlmpala,user () returns authenticated_userandef f ecti ve_user () returnsthe delegated user that the client
specified.
The user delegation process works as follows:
1. The Impalad daemon starts with the following option:

e --authorized_proxy_user_config=authenti cat ed_user=del egat ed_user

2. A client connects to Impala via the HiveServer2 protocol with the i npal a. doas. user configuration property,
e.g. connected user is authenticated_user with i npal a. doas. user =del egat ed_user .

3. The client user authenticated_user sends a request to Impala as the delegated user delegated_user.
4. Impala checks if delegated_user is in the list of authorized delegate users for the user authenticated_user.

5. If the user is an authorized delegated user for authenticated_user, the request is executed as the delegate user
delegated_user.

See this Cloudera blog post for background information about the delegation capability in HiveServer2.

To set up authentication for the delegated users:

¢ On the server side, configure either user/password authentication through LDAP, or Kerberos authentication, for
all the delegated users. See Enabling LDAP Authentication for Impala on page 128 or Enabling Kerberos Authentication
for Impala on page 124 for details.

¢ On the client side, to learn how to enable delegation, consult the documentation for the ODBC driver you are
using.

Enabling Delegation in Cloudera Manager
To enable delegation in Cloudera Manager:

1. Navigate to Clusters > Impala > Configuration > Policy File-Based Sentry.

2. In the Proxy User Configuration field, type the a semicolon-separated list of key=value pairs of authorized proxy
users to the user(s) they can impersonate. The list of delegated users are delimited with a comma, e.g. hue=userl,
user2.

The user names should be given in the short form. The names are case-sensitive

3. Click Save Changes and then restart Impala service.

http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/

Impala SQL Language Reference

Impala uses SQL as its query language. To protect user investment in skills development and query design, Impala
provides a high degree of compatibility with the Hive Query Language (HiveQL):

e Because Impala uses the same metadata store as Hive to record information about table structure and properties,
Impala can access tables defined through the native Impala CREATE TABLE command, or tables created using
the Hive data definition language (DDL).

e Impala supports data manipulation (DML) statements similar to the DML component of HiveQL.

e Impala provides many built-in functions with the same names and parameter types as their HiveQL equivalents.
Impala supports most of the same statements and clauses as HiveQL, including, but not limited to JO N, AGGREGATE,

DI STI NCT, UNI ON ALL, ORDER BY, LI M T and (uncorrelated) subquery in the FROMclause. Impala also supports
I NSERT | NTOand | NSERT OVERWRI TE.

Impala supports data types with the same names and semantics as the equivalent Hive data types: STRI NG, Tl NYI NT,
SMALLI NT, I NT, Bl G NT, FLOAT, DOUBLE, BOOLEAN, STRI NG, TI MESTAMP.

For full details about Impala SQL syntax and semantics, see Impala SQL Statements on page 237.

Most HiveQL SELECT and | NSERT statements run unmodified with Impala. For information about Hive syntax not
available in Impala, see SQL Differences Between Impala and Hive on page 571.

For a list of the built-in functions available in Impala queries, see Impala Built-In Functions on page 423.

Comments
Impala supports the familiar styles of SQL comments:

e All text from a - - sequence to the end of the line is considered a comment and ignored. This type of comment
can occur on a single line by itself, or after all or part of a statement.
e Alltextfroma/ * sequence to the next */ sequence is considered a comment and ignored. This type of comment

can stretch over multiple lines. This type of comment can occur on one or more lines by itself, in the middle of a
statement, or before or after a statement.

For example:

-- This line is a comment about a table.
create table ...;

/*

This is a multi-line conment about a query.
*/

select ...;

select * fromt /* This is an enbedded conmment about a query. */ where ..

L]

select * fromt -- This is a trailing coment within a nulti-line conmand.
where ...;

Data Types

Impala supports a set of data types that you can use for table columns, expression values, and function arguments and
return values.

E,i Note: Currently, Impala supports only scalar types, not composite or nested types. Accessing a table
containing any columns with unsupported types causes an error.

For the notation to write literals of each of these data types, see Literals on page 201.
Impala supports a limited set of implicit casts to avoid undesired results from unexpected casting behavior.

e Impala does not implicitly cast between string and numeric or Boolean types. Always use CAST() for these
conversions.

e Impala does perform implicit casts among the numeric types, when going from a smaller or less precise type to a
larger or more precise one. For example, Impala will implicitly convert a SMALLI NT to a Bl G NT or FLOAT, but to
convert from DOUBLE to FLOAT or | NT to TI NYI NT requires a call to CAST() in the query.

* Impala does perform implicit casts from STRI NGto TI MESTAMP. Impala has a restricted set of literal formats for
the TI MESTAMP data type and the FROM_UNI XTI ME() format string; see TIMESTAMP Data Type on page 163 for
details.

See the topics under this section for full details on implicit and explicit casting for each data type, and see Impala Type
Conversion Functions on page 454 for details about the CAST() function.

ARRAY Complex Type (CDH 5.5 or higher only)

A complex data type that can represent an arbitrary number of ordered elements. The elements can be scalars or
another complex type (ARRAY, STRUCT, or MAP).

Syntax:

col um_nane ARRAY < type >

type ::= primtive_type | conplex_type

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are unfamiliar
with the Impala complex types, start with Complex Types (CDH 5.5 or higher only) on page 174 for background information
and usage examples.

The elements of the array have no names. You refer to the value of the array item using the | TEMpseudocolumn, or
its position in the array with the POS pseudocolumn. See ITEM and POS Pseudocolumns on page 187 for information
about these pseudocolumns.

Each row can have a different number of elements (including none) in the array for that row.

When an array contains items of scalar types, you can use aggregation functions on the array elements without using
join notation. For example, you can find the COUNT() , AVE), SUM), and so on of numeric array elements, or the
MAX() and M N() of any scalar array elements by referring to t abl e_nane. arr ay_col um in the FROMclause of
the query. When you need to cross-reference values from the array with scalar values from the same row, such as by
including a GROUP BY clause to produce a separate aggregated result for each row, then the join clause is required.

A common usage pattern with complex types is to have an array as the top-level type for the column: an array of
structs, an array of maps, or an array of arrays. For example, you can model a denormalized table by creating a column
that is an ARRAY of STRUCT elements; each item in the array represents a row from a table that would normally be
used in a join query. This kind of data structure lets you essentially denormalize tables by associating multiple rows
from one table with the matching row in another table.

You typically do not create more than one top-level ARRAY column, because if there is some relationship between the
elements of multiple arrays, it is convenient to model the data as an array of another complex type element (either
STRUCT or MAP).

You can pass a multi-part qualified name to DESCRI BE to specify an ARRAY, STRUCT, or MAP column and visualize its
structure as if it were a table. For example, if table T1 contains an ARRAY column Al, you could issue the statement
DESCRI BE t 1. al. If table T1 contained a STRUCT column S1, and a field F1 within the STRUCT was a MAP, you could
issue the statement DESCRI BE t 1. s1.f 1. An ARRAY is shown as a two-column table, with | TEMand POS columns.
A STRUCT is shown as a table with each field representing a column in the table. A MAP is shown as a two-column table,
with KEY and VALUE columns.

Added in: CDH 5.5.0 / Impala 2.3.0

Restrictions:
e Columns with this data type can only be used in tables or partitions with the Parquet file format.
e Columns with this data type cannot be used as partition key columns in a partitioned table.
e The COMPUTE STATS statement does not produce any statistics for columns of this data type.

¢ The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

¢ See Limitations and Restrictions for Complex Types on page 178 for a full list of limitations and associated guidelines
about complex type columns.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

E,i Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted

from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 195 for the table definitions.

The following example shows how to construct a table with various kinds of ARRAY columns, both at the top level and
nested within other complex types. Whenever the ARRAY consists of a scalar value, such as in the PETS column or the
CHI LDREN field, you can see that future expansion is limited. For example, you could not easily evolve the schema to
record the kind of pet or the child's birthday alongside the name. Therefore, it is more common to use an ARRAY whose
elements are of STRUCT type, to associate multiple fields with each array element.

E,i Note: Practice the CREATE TABLE and query notation for complex type columns using empty tables,
until you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE array_deno

id Bl G NT,
nane STRI NG

-- An ARRAY of scalar type as a top-level columm.
pets ARRAY <STRI NG,

-- An ARRAY with el enents of conplex type (STRUCT).
pl aces_|ived ARRAY < STRUCT <
pl ace: STRI NG
start_year: |INT
>>,
-- An ARRAY as a field (CH LDREN) within a STRUCT.
-- (The STRUCT is inside another ARRAY, because it is rare
-- for a STRUCT to be a top-level colum.)
marri ages ARRAY < STRUCT <
spouse: STRI NG
children: ARRAY <STRI NG
>>,
-- An ARRAY as the value part of a MAP.
-- The first MAP field (the key) woul d be a val ue such as
-- "Parent' or 'Grandparent', and the corresponding array woul d
-- represent 2 parents, 4 grandparents, and so on.
ancestors MAP < STRING ARRAY <STRI NG >

)
STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more ARRAY columns by using
the DESCRI BE statement. You can visualize each ARRAY as its own two-column table, with columns | TEMand PCS.

DESCRI BE array_deno;

S Fom e e e e e e e +
| name | type
e e e Fom e e e e e e e e +
id bi gi nt
nanme string
pets array<string>
marri ages array<struct<

spouse: string,
children:array<string>
>>
pl aces_lived array<struct<
pl ace: stri ng,
start_year:int
>>
ancestors map<string, array<string>>

DESCRI BE array_denp. pets;
B +

| item]| string |
| pos | bigint |

item| struct< |
| spouse: string, |
children:array<string> |
I

I

item]| struct< |
| pl ace:string, |
start_year:int |
I

I

E Fom e +
| name | type I
B o e e e +
| key | string _

| value | array<string> |
. T +

The following example shows queries involving ARRAY columns containing elements of scalar or complex types. You
“unpack” each ARRAY column by referring to it in a join query, as if it were a separate table with | TEMand PQS columns.
If the array element is a scalar type, you refer to its value using the | TEMpseudocolumn. If the array element is a
STRUCT, you refer to the STRUCT fields using dot notation and the field names. If the array element is another ARRAY
or a MAP, you use another level of join to unpack the nested collection elements.

-- Array of scalar val ues.
-- Each array el enent represents a single string, plus we knowits position in the array.
SELECT id, nane, pets.pos, pets.item FROM array_deno, array_deno. pets;

-- Array of structs.

-- Now each array el ement has named fields, possibly of different types.

-- You can consider an ARRAY of STRUCT to represent a table inside another table.
SELECT id, name, places_lived. pos, places_lived.itemplace, places_lived.itemstart_year
FROM array_deno, array_deno. pl aces_li ved;

-- The .ITEM nanme is optional for array elenments that are structs.

-- The following query is equivalent to the previous one, with .| TEM

-- renoved fromthe colum references.

SELECT id, nane, places_lived. pos, places_|lived.place, places_lived.start_year
FROM array_deno, array_deno. pl aces_li ved;

-- To filter specific items fromthe array, do conparisons against the .PCS or .| TEM
-- pseudocol ums, or names of struct fields, in the WHERE cl ause.
SELECT id, nane, pets.item FROM array_deno, array_denp. pets

WHERE pets.pos in (0, 1, 3);

SELECT id, nane, pets.item FROM array_deno, array_denp. pets
WHERE pets.itemLIKE 'M. %;

SELECT id, nane, places_lived. pos, places_lived.place, places_lived.start_year

FROM array_deno, array_denvo. pl aces_|ived
VWHERE pl aces_lived. place like '%California%;

Related information:

Complex Types (CDH 5.5 or higher only) on page 174, STRUCT Complex Type (CDH 5.5 or higher only) on page 158, MAP
Complex Type (CDH 5.5 or higher only) on page 151

BIGINT Data Type
An 8-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane BI G NT

Range: -9223372036854775808 .. 9223372036854775807. There is no UNSI GNED subtype.

Conversions: Impala automatically converts to a floating-point type (FLOAT or DOUBLE) automatically. Use CAST() to
convertto TI NYI NT, SMALLI NT, I NT, STRI NG or TI MESTAMP. Casting an integer or floating-point value Nto TI MESTAMP
produces a value that is Nseconds past the start of the epoch date (January 1, 1970). By default, the result value
represents a date and time in the UTC time zone. If the setting

--use_local _tz for_unix_timestanp_conversions=true is in effect, the resulting TI| MESTAMP represents a
date and time in the local time zone.

Examples:

CREATE TABLE t1 (x BI G NT):
SELECT CAST(1000 AS Bl G NT) ;

Usage notes:

Bl G NT is a convenient type to use for column declarations because you can use any kind of integer values in | NSERT
statements and they are promoted to Bl G NT where necessary. However, Bl G NT also requires the most bytes of
any integer type on disk and in memory, meaning your queries are not as efficient and scalable as possible if you
overuse this type. Therefore, prefer to use the smallest integer type with sufficient range to hold all input values, and
CAST() when necessary to the appropriate type.

For a convenient and automated way to check the bounds of the Bl G NT type, call the functions M N_BI Gl NT() and
MAX_BI G NT() .

If an integer value is too large to be represented as a Bl G NT, use a DECI MAL instead with sufficient digits of precision.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRI NGrepresentation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as an 8-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Sqoop considerations:

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETI ME, or TI MESTAMP columns. The underlying values are represented as the Parquet | NT64 type, which is
represented as Bl G NT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets Bl G NT as the time in seconds. Therefore, if you have a Bl G NT column in a Parquet table that was imported
this way from Sqoop, divide the values by 1000 when interpreting as the TI MESTAMP type.

Related information:

Numeric Literals on page 201, TINYINT Data Type on page 170, SMALLINT Data Type on page 155, INT Data Type on page
150, BIGINT Data Type on page 136, DECIMAL Data Type on page 140, Impala Mathematical Functions on page 429

BOOLEAN Data Type
A data type used in CREATE TABLE and ALTER TABLE statements, representing a single true/false choice.
Syntax:
In the column definition of a CREATE TABLE statement:

col utm_nanme BOOLEAN

Range: TRUE or FALSE. Do not use quotation marks around the TRUE and FALSE literal values. You can write the literal
values in uppercase, lowercase, or mixed case. The values queried from a table are always returned in lowercase, t r ue
orfal se.

Conversions: Impala does not automatically convert any other type to BOOLEAN. All conversions must use an explicit
call to the CAST() function.

You can use CAST() to convert any integer or floating-point type to BOOLEAN: a value of O represents f al se, and any
non-zero value is converted to t r ue.

SELECT CAST(42 AS BOOLEAN) AS nonzero_int, CAST(99.44 AS BOOLEAN) AS nonzero_deci mal ,
CAST(000 AS BOOLEAN) AS zero_int, CAST(0.0 AS BOOLEAN) AS zero_deci nal;
+

Ty [SR, [SR +
| nonzero_int | nonzero_decimal | zero_int | zero_deciml |
Fom e e o m e e e e B [+
| true | true | false | fal se |
S o m e e e e B S SR +

When you cast the opposite way, from BOOLEAN to a numeric type, the result becomes either 1 or 0:

SELECT CAST(true AS INT) AS true_int, CAST(true AS DOUBLE) AS true_doubl e,

You can cast DECI VAL values to BOOLEAN, with the same treatment of zero and non-zero values as the other numeric
types. You cannot cast a BOOLEAN to a DECI MAL.

You cannot cast a STRI NGvalue to BOOLEAN, although you can cast a BOOLEAN value to STRI NG, returning ' 1' for
truevaluesand' 0' forf al se values.

Although you can cast a TI MESTAMP to a BOOLEAN or a BOOLEANto a TI MESTAMP, the results are unlikely to be useful.
Any non-zero TI MESTAMP (that is, any value other than 1970- 01- 01 00: 00: 00) becomes TRUE when converted to
BOOLEAN, while 1970- 01- 01 00: 00: 00 becomes FALSE. A value of FALSE becomes 1970- 01- 01 00: 00: 00 when
converted to BOOLEAN, and TRUE becomes one second past this epoch date, that is, 1970- 01- 01 00: 00: 01.

NULL considerations: An expression of this type produces a NULL value if any argument of the expression is NULL.
Partitioning:

Do not use a BOOLEAN column as a partition key. Although you can create such a table, subsequent operations produce
errors:

[l ocal host:21000] > create table truth_table (assertion string) partitioned by (truth
bool ean) ;

[l ocal host:21000] > insert into truth_table values ('Pigs can fly',false);

ERROR: Anal ysi sException: INSERT into table with BOOLEAN partition colum (truth) is
not supported: partitioning.truth_table

Examples:
SELECT 1 < 2;
SELECT 2 = 5;

SELECT 100 < NULL, 100 > NULL;
CREATE TABLE assertions (claim STRING really BOOLEAN);
I NSERT | NTO assertions VALUES
("1 is less than 2", 1 < 2),
("2 is the sane as 5", 2 = 5),
("Grass is green", true),
("The noon is made of green cheese", false);
SELECT cl ai m FROM assertions WHERE real ly = TRUE;

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.

Related information: Boolean Literals on page 203, SQL Operators on page 205, Impala Conditional Functions on page
487

CHAR Data Type (CDH 5.2 or higher only)

A fixed-length character type, padded with trailing spaces if necessary to achieve the specified length. If values are
longer than the specified length, Impala truncates any trailing characters.

Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane CHAR(I engt h)

The maximum length you can specify is 255.

Semantics of trailing spaces:

¢ When you store a CHAR value shorter than the specified length in a table, queries return the value padded with
trailing spaces if necessary; the resulting value has the same length as specified in the column definition.
¢ Leading spaces in CHAR are preserved within the data file.

¢ If you store a CHARvalue containing trailing spaces in a table, those trailing spaces are not stored in the data file.
When the value is retrieved by a query, the result could have a different number of trailing spaces. That is, the
value includes however many spaces are needed to pad it to the specified length of the column.

¢ |f you compare two CHAR values that differ only in the number of trailing spaces, those values are considered
identical.

e When comparing or processing CHAR values:

— CAST() truncates any longer string to fit within the defined length. For example:

SELECT CAST(' x' AS CHAR(4)) = CAST(' x ' AS CHAR(4)); -- Returns TRUE.

— If a CHARVvalue is shorter than the specified length, it is padded on the right with spaces until it matches the
specified length.

— CHAR_LENGTH() returns the length including any trailing spaces.
— LENGTH() returns the length excluding trailing spaces.
— CONCAT() returns the length including trailing spaces.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (I NT, Bl G NT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.
Parquet considerations:
e This type can be read from and written to Parquet files.

e There is no requirement for a particular level of Parquet.

e Parquet files generated by Impala and containing this type can be freely interchanged with other components
such as Hive and MapReduce.

¢ Any trailing spaces, whether implicitly or explicitly specified, are not written to the Parquet data files.

e Parquet data files might contain values that are longer than allowed by the CHAR(n) length limit. Impala ignores
any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files might contain values that are longer than allowed for a particular CHAR(n) column. Any extra trailing
characters are ignored when Impala processes those values during a query. Text data files can also contain values that
are shorter than the defined length limit, and Impala pads them with trailing spaces up to the specified length. Any
text data files produced by Impala | NSERT statements do not include any trailing blanks for CHAR columns.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit integers
to hold string lengths. In CDH 5.7 / Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRI NGvalue longer than (2**31)-1 bytes in an Avro table, the query fails.
In earlier releases, encountering such long values in an Avro table could cause a crash.

Compatibility:
This type is available using CDH 5.2 / Impala 2.0 or higher.
Some other database systems make the length specification optional. For Impala, the length is required.

Internal details: Represented in memory as a byte array with the same size as the length specification. Values that are
shorter than the specified length are padded on the right with trailing spaces.

Added in: CDH 5.2.0 / Impala 2.0.0

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Performance consideration:

The CHARtype currently does not have the Impala Codegen support, and we recommend using VARCHAR or STRI NG
over CHAR as the performance gain of Codegen outweighs the benefits of fixed width CHAR.

Restrictions:

Because the blank-padding behavior requires allocating the maximum length for each value in memory, for scalability
reasons, you should avoid declaring CHAR columns that are much longer than typical values in that column.

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRI NGcolumn to hold it.

When an expression compares a CHAR with a STRI NG or VARCHAR, the CHAR value is implicitly converted to STRI NG
first, with trailing spaces preserved.

This behavior differs from other popular database systems. To get the expected result of TRUE, cast the expressions
on both sides to CHAR values of the appropriate length. For example:

SELECT CAST("foo " AS CHAR(5)) = CAST('foo' AS CHAR(3)); -- Returns TRUE.

This behavior is subject to change in future releases.
Related information:

STRING Data Type on page 156, VARCHAR Data Type (CDH 5.2 or higher only) on page 171, String Literals on page 202,
Impala String Functions on page 492

DECIMAL Data Type

A numeric data type with fixed scale and precision, used in CREATE TABLE and ALTER TABLE statements. Suitable
for financial and other arithmetic calculations where the imprecise representation and rounding behavior of FLOAT
and DOUBLE make those types impractical.

Syntax:
In the column definition of a CREATE TABLE statement:

col um_nanme DECI MAL[(precision[,scale])]

DECI MAL with no precision or scale values is equivalent to DECI MAL(9, 0) .
Precision and Scale:

precision represents the total number of digits that can be represented by the column, regardless of the location of
the decimal point. This value must be between 1 and 38. For example, representing integer values up to 9999, and
floating-point values up to 99.99, both require a precision of 4. You can also represent corresponding negative values,
without any change in the precision. For example, the range -9999 to 9999 still only requires a precision of 4.

scale represents the number of fractional digits. This value must be less than or equal to precision. A scale of 0 produces
integral values, with no fractional part. If precision and scale are equal, all the digits come after the decimal point,
making all the values between 0 and 0.999... or 0 and -0.999...

When precision and scale are omitted, a DECI MAL value is treated as DECI MAL(9, 0), that is, an integer value ranging
from - 999, 999, 999 to 999, 999, 999. This is the largest DECI MAL value that can still be represented in 4 bytes. If
precision is specified but scale is omitted, Impala uses a value of zero for the scale.

Both precision and scale must be specified as integer literals, not any other kind of constant expressions.

To check the precision or scale for arbitrary values, you can call the pr eci si on() and scal e() built-in functions.
For example, you might use these values to figure out how many characters are required for various fields in a report,
or to understand the rounding characteristics of a formula as applied to a particular DECI MAL column.

Range:

The maximum precision value is 38. Thus, the largest integral value is represented by DECI MAL(38, 0) (999... with 9
repeated 38 times). The most precise fractional value (between 0 and 1, or 0 and -1) is represented by DECI MAL(38, 38),
with 38 digits to the right of the decimal point. The value closest to 0 would be .0000...1 (37 zeros and the final 1). The
value closest to 1 would be .999... (9 repeated 38 times).

For a given precision and scale, the range of DECI MAL values is the same in the positive and negative directions. For
example, DECI MAL(4, 2) can represent from -99.99 to 99.99. This is different from other integral numeric types where
the positive and negative bounds differ slightly.

When you use DECI MAL values in arithmetic expressions, the precision and scale of the result value are determined
as follows:

¢ For addition and subtraction, the precision and scale are based on the maximum possible result, that is, if all the
digits of the input values were 9s and the absolute values were added together.

e For multiplication, the precision is the sum of the precisions of the input values. The scale is the sum of the scales
of the input values.

e For division, Impala sets the precision and scale to values large enough to represent the whole and fractional parts
of the result.

e For UNI ON, the scale is the larger of the scales of the input values, and the precision is increased if necessary to
accommodate any additional fractional digits. If the same input value has the largest precision and the largest
scale, the result value has the same precision and scale. If one value has a larger precision but smaller scale, the
scale of the result value is increased. For example, DECI MAL(20, 2) UNI ON DECI MAL(8, 6) produces a result
of type DECI MAL(24, 6) . The extra 4 fractional digits of scale (6-2) are accommodated by extending the precision
by the same amount (20+4).

¢ To doublecheck, you can always call the PRECI SI ON() and SCALE() functions on the results of an arithmetic
expression to see the relevant values, or use a CREATE TABLE AS SELECT statement to define a column based
on the return type of the expression.

Compatibility:

e Use the DECI MAL data type in Impala for applications where you used the NUVMBER data type in Oracle. The Impala
DECI MAL type does not support the Oracle idioms of * for scale or negative values for precision.

Conversions and casting:

Casting an integer or floating-point value Nto TI MESTAMP produces a value that is N seconds past the start of the
epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use_local _tz for_unix_tinmestanp_conversions=true is in effect, the resulting TI MESTAMP represents a
date and time in the local time zone.

Impala automatically converts between DECI MAL and other numeric types where possible. A DECI MAL with zero scale
is converted to or from the smallest appropriate integral type. A DECI MAL with a fractional part is automatically
converted to or from the smallest appropriate floating-point type. If the destination type does not have sufficient
precision or scale to hold all possible values of the source type, Impala raises an error and does not convert the value.

For example, these statements show how expressions of DECI MAL and other types are reconciled to the same type in
the context of UNI ON queries and | NSERT statements:

[l ocal host:21000] > select cast(1l as int) as x union select cast(1l.5 as decimal (9,4))
as x;

[l ocal host:21000] > create table int_vs_decinmal as select cast(1l as int) as x union
select cast(1.5 as decinal (9,4)) as x;

o e e e e e e e oo n +
| summary |

o e e e e e e e oo n +

| I'nserted 2 rows) |

o e e e e e e e oo n +

[l ocal host:21000] > desc int_vs_decinal;
R [Fomm e e o +

| name | type | conment |

Fomm oo - S [+

| x | decimal (14, 4) | |

Fomm oo - S [+

To avoid potential conversion errors, you can use CAST() to convert DECI MAL values to FLOAT, TI NYI NT, SMALLI NT,
I NT, Bl G NT, STRI NG, TI MESTAMP, or BOOLEAN. You can use exponential notation in DECI MAL literals or when casting
from STRI NG, for example 1. 0e6 to represent one million.

If you cast a value with more fractional digits than the scale of the destination type, any extra fractional digits are
truncated (not rounded). Casting a value to a target type with not enough precision produces a result of NULL and
displays a runtime warning.

[l ocal host:21000] > select cast(1.239 as decinal (3,2));
e m e e e e e e e e aaaa +

| cast(1.239 as decimal (3,2)) |
+

o e e e e e e e e e e e e e e e m i — =
| 1.23 |

o e e e e e e e e e e aaaa +

[l ocal host:21000] > select cast(1234 as decimal (3));
o e m e e e e i e ee e +

| cast(1234 as decinmal (3,0)) |

o e e e e e e e e e e e e e e m -

| NULL |

o e e e e e e eee e +

WARNI NGS: Expression overflowed, returning NULL

When you specify integer literals, for example in | NSERT ... VALUES statements or arithmetic expressions, those
numbers are interpreted as the smallest applicable integer type. You must use CAST() calls for some combinations
of integer literals and DECI MAL precision. For example, | NT has a maximum value that is 10 digits long, TI NYI NT has
a maximum value that is 3 digits long, and so on. If you specify a value such as 123456 to go into a DECI MAL column,
Impala checks if the column has enough precision to represent the largest value of that integer type, and raises an
error if not. Therefore, use an expression like CAST(123456 TO DECI MAL(9, 0)) for DECI MAL columns with precision
9 or less, CAST(50 TO DECI MAL(2, 0)) for DECI MAL columns with precision 2 or less, and so on. For DECI MAL
columns with precision 10 or greater, Impala automatically interprets the value as the correct DECI MAL type; however,
because DECI MAL(10) requires 8 bytes of storage while DECI MAL(9) requires only 4 bytes, only use precision of 10
or higher when actually needed.

[l ocal host:21000] > create table decimals_9_0 (x decimal);

[l ocal host:21000] > insert into decinals_9 0 values (1), (2), (4), (8), (16), (1024),
(32768), (65536), (1000000);

ERROR: Anal ysi sException: Possible |oss of precision for target table

" deci mal _testing.decimals_9_0'.

Expression '1' (type: INT) would need to be cast to DECI MAL(9,0) for colum 'Xx'

[l ocal host:21000] > insert into decimals_9 0 values (cast(1l as decimal)), (cast(2 as
decimal)), (cast(4 as decimal)), (cast(8 as decinal)), (cast(16 as decimal)), (cast(1024
as decimal)), (cast(32768 as decimal)), (cast(65536 as decimal)), (cast(1000000 as
decimal));

[l ocal host:21000] > create table decinmals_10 0 (x decimal (10,0));
[l ocal host:21000] > insert into decimals_10_0 values (1), (2), (4), (8), (16), (1024),

(32768), (65536), (1000000);

Be aware that in memory and for binary file formats such as Parquet or Avro, DECI MAL(10) or higher consumes 8
bytes while DECI MAL(9) (the default for DECI MAL) or lower consumes 4 bytes. Therefore, to conserve space in large
tables, use the smallest-precision DECI MAL type that is appropriate and CAST() literal values where necessary, rather
than declaring DECI MAL columns with high precision for convenience.

To represent a very large or precise DECI MAL value as a literal, for example one that contains more digits than can be
represented by a Bl G NT literal, use a quoted string or a floating-point value for the number, and CAST() to the
desired DECI MAL type:

insert into decimals_38_5 values (1), (2), (4), (8), (16), (1024), (32768), (65536),
(1000000),

(cast ("999999999999999999999999999999" as deci nal (38,5))),

(cast (999999999999999999999999999999. as deci nal (38,5)));

e The result of the SUM) aggregate function on DECI MAL values is promoted to a precision of 38, with the same
precision as the underlying column. Thus, the result can represent the largest possible value at that particular
precision.

¢ STRI NGcolumns, literals, or expressions can be converted to DECI MAL as long as the overall number of digits and
digits to the right of the decimal point fit within the specified precision and scale for the declared DECI MAL type.
By default, a DECI MAL value with no specified scale or precision can hold a maximum of 9 digits of an integer
value. If there are more digits in the string value than are allowed by the DECI MAL scale and precision, the result
is NULL.

The following examples demonstrate how STRI NGvalues with integer and fractional parts are represented when
converted to DECI MAL. If the scale is O, the number is treated as an integer value with a maximum of precision
digits. If the precision is greater than 0, the scale must be increased to account for the digits both to the left and
right of the decimal point. As the precision increases, output values are printed with additional trailing zeros after
the decimal point if needed.

[l ocal host:21000] > select cast('100' as decimal); -- Small integer value fits within

9 digits of scale.

o e m e e e e e e e emmaaa o - +

| cast('100" as decimal (9,0)) |

e e memememe e e e e e e e e, e, e, —e, .-

| 100 |

o e m e e e e e e e e e e e aaao - +

[l ocal host:21000] > select cast('100' as decinal (3,0)); -- Snall integer value fits

within 3 digits of scale.

e mm e e e e e e e e aa +

| cast(' 100" as decinmal (3,0)) |

o e m e e e e e e e e e aa +

| 100 |

o e m e e e e e e e e aa +

[l ocal host:21000] > select cast('100' as decinmal (2,0)); -- 2 digits of scale is not

enough!

o e m e e e e e e e emmaaa o - +

| cast('100" as decimal (2,0)) |

e e memememe e e e e e e e e, e, e, —e, .-

| NuULL |

o e m e e e e e e e e e e e aaao - +

[l ocal host:21000] > sel ect cast(' 100" as decimal (3,1)); -- (3,1) =2 digits left of the
decimal point, 1 to the right. Not enough.

e e m e e e e e e e e e +

| cast('100" as decimal (3,1)) |

o e m e e e e e e e e e aa +

| NULL |

o e m e e e e e e e e aa +

[l ocal host:21000] > select cast('100' as decimal (4,1)); -- 4 digits total, 1 to the

right of the decimal point.

o e m e e e e e e e e e e e aa o - +

o e e e e e e e e e e aa o - +
[l ocal host:21000] > select cast('98.6' as decimal (3,1)); -- (3,1) can hold a 3 digit
nunmber with 1 fractional digit.

- +

| cast('98.6'" as decinal (3,1))

e e e e e e e e e e e e e m e — - -

| 98.6 I

T +

[l ocal host:21000] > select cast('98.6"' as decimal (15,1)); -- Larger scale allows bigger
nunbers but still only 1 fractional digit.

S +

| cast('98.6' as decinal(15,1))

o e e e e e e e e e e e e +

| 98.6 |

o +

[l ocal host: 21000] > select cast('98.6" as decimal (15,5)); -- Larger precision allows
nore fractional digits, outputs trailing zeros.

R +

| cast('98.6' as decinal(15,5))

R +

| 98.60000 |

R +

e Most built-in arithmetic functions such as SI N() and COS() continue to accept only DOUBLE values because they
are so commonly used in scientific context for calculations of IEEE 754-compliant values. The built-in functions
that accept and return DECI MAL are:

- ABS()
- CEIL()

— COALESCE()
- FLOOR()

— FNV_HASH()
— GREATEST()
- IF()

— I'SNULL()

- LEAST()

— NEGATI VE()
— NULLI F()

— POSI TI VE()
- PRECI SI ON\()
— ROUNIX()

— SCALE()

— TRUNCATE()
- ZERO FNULL()

See Impala Built-In Functions on page 423 for details.

e BI G NT, | NT, SMALLI NT, and TI NYI NT values can all be cast to DECI MAL. The number of digits to the left of the
decimal point in the DECI MAL type must be sufficient to hold the largest value of the corresponding integer type.
Note that integer literals are treated as the smallest appropriate integer type, meaning there is sometimes a range
of values that require one more digit of DECI MAL scale than you might expect. For integer values, the precision
of the DECI MAL type can be zero; if the precision is greater than zero, remember to increase the scale value by
an equivalent amount to hold the required number of digits to the left of the decimal point.

The following examples show how different integer types are converted to DECI MAL.

[l ocal host:21000] > select cast(1l as decinual (1,0));
+

| cast(1l as decimal (1,0)) |
+

e e e e e e e e e e m .=

| cast(9 as decinmal (1,0)) |
- +

| 9 I

B T +

[l ocal host:21000] > sel ect cast (10 as decinmal (1,0));
e e e e e e e e e e e e e m e m .- -

| cast(10 as decinaml (1,0)) |

B T +

| 10 I

B +

[l ocal host:21000] > sel ect cast (10 as decimal (1,1));
e e e e e e e e e e e e e m e m .- -

| cast(10 as decimal (1,1)) |

B T +

| 10.0 |

B +

[l ocal host:21000] > sel ect cast (100 as decinal (1,1));
e

| cast(100 as decinmal (1,1)) |
s +

| 100.0 I
e +

[l ocal host:21000] > sel ect cast (1000 as decinual (1,1));
e e e e e e e e e e e e e m -

| cast (1000 as decimal (1,1)) |
e +

| 1000.0 I
T rreee +

e When a DECI MAL value is converted to any of the integer types, any fractional part is truncated (that is, rounded
towards zero):

[l ocal host:21000] > create table numdec_days (x decinal (4,1));

[l ocal host:21000] > insert into numdec_days val ues (1), (2), (cast(4 5 as deci nmal (4, 1)))
[l ocal host:21000] > insert into numdec_days val ues (cast(O 1 as deci mal (4, 1))) (cast(.9
as decimal (4,1))), (cast(9.1 as deci mal (4,1))), (cast(9.9 as decinal (4,1)));

[l ocal host:21000] > select cast(x as int) from num_dec_days

¢ You cannot directly cast TI MESTAMP or BOOLEAN values to or from DECI MAL values. You can turn a DECI MAL
value into a time-related representation using a two-step process, by converting it to an integer value and then
using that result in a call to a date and time function such as f r om_uni xti me().

[l ocal host:21000] > select from.unixtime(cast(cast(1000.0 as deC| mal) as bigint));

[l ocal host:21000] > select now() + interval cast(x as int) days fromnumdec_days; --
x is a DECI MAL col umm.

[l ocal host:21000] > create table numdec_days (x decinal (4,1));
[1 ocal host:21000] > insert into numdec_days values (1), (2), (cast(4 5 as decimal (4,1)));
[l ocal host:21000] > select now() + interval cast(x as i nt) days from num dec_days; --

The 4.5 value is truncated to 4 and becones '4 days'.
+

| rort) T interval castix as 1nt) e |
| 2014-05-13 23:11:55.163284000 |
| 2014-05-14 23:11:55. 163284000 [
| 2014-05-16 23:11:55.163284000 [

e Because values in | NSERT statements are checked rigorously for type compatibility, be prepared to use CAST()
function calls around literals, column references, or other expressions that you are inserting into a DECI MAL
column.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.
DECIMAL differences from integer and floating-point types:

With the DECI MAL type, you are concerned with the number of overall digits of a number rather than powers of 2 (as
in TI NYI NT, SMALLI NT, and so on). Therefore, the limits with integral values of DECI MAL types fall around 99, 999,
9999, and so on rather than 32767, 65535, 2 32 -1, and so on. For fractional values, you do not need to account for
imprecise representation of the fractional part according to the IEEE-954 standard (as in FLOAT and DOUBLE). Therefore,
when you insert a fractional value into a DEClI MAL column, you can compare, sum, query, GROUP BY, and so on that
column and get back the original values rather than some “close but not identical” value.

FLOAT and DOUBLE can cause problems or unexpected behavior due to inability to precisely represent certain fractional
values, for example dollar and cents values for currency. You might find output values slightly different than you
inserted, equality tests that do not match precisely, or unexpected values for GROUP BY columns. DECI MAL can help
reduce unexpected behavior and rounding errors, at the expense of some performance overhead for assignments and
comparisons.

Literals and expressions:

e When you use an integer literal such as 1 or 999 in a SQL statement, depending on the context, Impala will treat
it as either the smallest appropriate DECI MAL type, or the smallest integer type (TI NYI NT, SMALLI NT, | NT, or
Bl A NT). To minimize memory usage, Impala prefers to treat the literal as the smallest appropriate integer type.

e When you use a floating-point literal such as 1. 1 or 999. 44 in a SQL statement, depending on the context, Impala
will treat it as either the smallest appropriate DECI MAL type, or the smallest floating-point type (FLOAT or DOUBLE).
To avoid loss of accuracy, Impala prefers to treat the literal as a DECI MAL.

Storage considerations:

¢ Only the precision determines the storage size for DECI MAL values; the scale setting has no effect on the storage
size.

e Text, RCFile, and SequenceFile tables all use ASClI-based formats. In these text-based file formats, leading zeros
are not stored, but trailing zeros are stored. In these tables, each DECI MAL value takes up as many bytes as there
are digits in the value, plus an extra byte if the decimal point is present and an extra byte for negative values.
Once the values are loaded into memory, they are represented in 4, 8, or 16 bytes as described in the following
list items. The on-disk representation varies depending on the file format of the table.

e Parquet and Avro tables use binary formats, In these tables, Impala stores each value in as few bytes as possible
depending on the precision specified for the DECI MAL column.

— In memory, DECI MAL values with precision of 9 or less are stored in 4 bytes.
— In memory, DECI MAL values with precision of 10 through 18 are stored in 8 bytes.
— In memory, DEClI MAL values with precision greater than 18 are stored in 16 bytes.

File format considerations:

e The DECI MAL data type can be stored in any of the file formats supported by Impala, as described in How Impala
Works with Hadoop File Formats on page 655. Impala only writes to tables that use the Parquet and text formats,
so those formats are the focus for file format compatibility.

¢ Impala can query Avro, RCFile, or SequenceFile tables containing DECI MAL columns, created by other Hadoop
components, on CDH 5 only.

¢ You can use DECI MAL columns in Impala tables that are mapped to HBase tables. Impala can query and insert
into such tables.

e Text, RCFile, and SequencefFile tables all use ASClI-based formats. In these tables, each DECI MAL value takes up
as many bytes as there are digits in the value, plus an extra byte if the decimal point is present. The binary format
of Parquet or Avro files offers more compact storage for DEClI MAL columns.

e Parquet and Avro tables use binary formats, In these tables, Impala stores each value in 4, 8, or 16 bytes depending
on the precision specified for the DECI MAL column.

UDF considerations: When writing a C++ UDF, use the Deci mal Val data type defined in
lusr/include/inpal a_udf/udf. h.

Partitioning:

You can use a DECI MAL column as a partition key. Doing so provides a better match between the partition key values
and the HDFS directory names than using a DOUBLE or FLOAT partitioning column:

Schema evolution considerations:

¢ For text-based formats (text, RCFile, and SequenceFile tables), you can issue an ALTER TABLE ... REPLACE
COLUMNS statement to change the precision and scale of an existing DECI MAL column. As long as the values in
the column fit within the new precision and scale, they are returned correctly by a query. Any values that do not
fit within the new precision and scale are returned as NULL, and Impala reports the conversion error. Leading
zeros do not count against the precision value, but trailing zeros after the decimal point do.

[l ocal host:21000] > create table text_decimals (x string);

[l ocal host:21000] > insert into text_decimals values ("1"), ("2"), ("99.99"), ("1.234"),
("000001"), ("1.000000000");

[l ocal host:21000] > select * fromtext_deci mals;

oo +
| X I
oo +
| 1 I
| 2 I
| 99.99 |
| 1.234 |
| 000001 |
| 1.000000000
o +

[l ocal host:21000] > alter table text_decimals replace colums (x decimal (4,2));
[l ocal host:21000] > select * fromtext_deci nals;

e +
| x I
e +
| 1.00 |
| 2.00 |
| 99.99
| NULL
| 1.00 |
| NULL
Fom e +
ERRORS

Backend 0: Error converting colum: O TO DECI MAL(4, 2) (Data is: 1.234)

file:

hdfs://127.0.0. 1: 8020/ user/ hi ve/ war ehouse/ deci mal _t esti ng. db/text _deci nal s/ 634d4bd3aa0
€8420- b4b13bab7f 1be787_56794587_dat a. 0

record: 1.234

Error converting colum: O TO DECI MAL(4, 2) (Data is: 1.000000000)

file:

hdf s: //127.0.0. 1: 8020/ user/ hi ve/ war ehouse/ deci mal _t esti ng. db/t ext _deci nal s/ cd40dc68e20
c565a- cc4bd86¢c724c96ba_311873428 data. 0

record: 1.000000000

e For binary formats (Parquet and Avro tables), although an ALTER TABLE ... REPLACE COLUM\S statement
that changes the precision or scale of a DECI MAL column succeeds, any subsequent attempt to query the changed
column results in a fatal error. (The other columns can still be queried successfully.) This is because the metadata

about the columns is stored in the data files themselves, and ALTER TABLE does not actually make any updates
to the data files. If the metadata in the data files disagrees with the metadata in the metastore database, Impala
cancels the query.

Examples:

CREATE TABLE t1 (x DECIMAL, y DECI MAL(5,2), z DECI MAL(25,0));
INSERT INTO t1 VALUES (5, 99.44, 123456), (300, 6.7, 999999999);
SELECT x+y, ROUND(y,1), z/98.6 FROMt1;

SELECT CAST(1000.5 AS DECI MAL);

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Related information:

Numeric Literals on page 201, TINYINT Data Type on page 170, SMALLINT Data Type on page 155, INT Data Type on page
150, BIGINT Data Type on page 136, DECIMAL Data Type on page 140, Impala Mathematical Functions on page 429
(especially PRECI SI ON() and SCALE())

DOUBLE Data Type
A double precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col utm_nanme DOUBLE

Range: 4.94065645841246544e-324d .. 1.79769313486231570e+308, positive or negative

Precision: 15 to 17 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 8 bytes, using IEEE 754 Double Precision Binary Floating Point format.

Conversions: Impala does not automatically convert DOUBLE to any other type. You can use CAST() to convert DOUBLE
values to FLOAT, TI NYI NT, SMALLI NT, | NT, Bl G NT, STRI NG, TI MESTAMP, or BOOLEAN. You can use exponential
notation in DOUBLE literals or when casting from STRI NG, for example 1. 0e6 to represent one million. Casting an
integer or floating-point value Nto TI MESTAMP produces a value that is Nseconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use_local _tz_for_unix_tinmestanp_conversions=tr ue is in effect, the resulting TI MESTAMP represents a
date and time in the local time zone.

Usage notes:
The data type REAL is an alias for DOUBLE.

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns f al se:

SELECT CAST(' nan' AS DOUBLE)=CAST(' nan' AS DOUBLE);

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Examples:

CREATE TABLE t1 (x DOUBLE):
SELECT CAST(1000.5 AS DOUBLE);

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECI MAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as an 8-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and distributed
queries can perform these operations in different order for each query, results can vary slightly for aggregate function
calls suchas SUM) and AVE) for FLOAT and DOUBLE columns, particularly on large data sets where millions or billions
of values are summed or averaged. For perfect consistency and repeatability, use the DECI MAL data type for such
operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECI MAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that use
different representations or file formats.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.
Related information:

Numeric Literals on page 201, Impala Mathematical Functions on page 429, FLOAT Data Type on page 149

FLOAT Data Type
A single precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane FLOAT

Range: 1.40129846432481707e-45 .. 3.40282346638528860e+38, positive or negative

Precision: 6 to 9 significant digits, depending on usage. The number of significant digits does not depend on the position
of the decimal point.

Representation: The values are stored in 4 bytes, using IEEE 754 Single Precision Binary Floating Point format.

Conversions: Impala automatically converts FLOAT to more precise DOUBLE values, but not the other way around.
You can use CAST() to convert FLOAT valuesto TI NYI NT, SMALLI NT, | NT, Bl G NT, STRI NG, TI MESTAMP, or BOOLEAN.
You can use exponential notation in FLQOAT literals or when casting from STRI NG, for example 1. 0e6 to represent one
million. Casting an integer or floating-point value Nto TI MESTAMP produces a value that is Nseconds past the start of
the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the
setting - -use_l ocal _tz_for_uni x_ti mestanp_conver si ons=t r ue is in effect, the resulting TI| MESTAMP
represents a date and time in the local time zone.

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

Usage notes:

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns f al se:

SELECT CAST(' nan' AS FLOAT) =CAST(' nan' AS FLOAT);
Examples:

CREATE TABLE t1 (x FLOAT);
SELECT CAST(1000.5 AS FLOAT);

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECI MAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 4-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and distributed
queries can perform these operations in different order for each query, results can vary slightly for aggregate function
calls suchas SUM) and AVE) for FLOAT and DOUBLE columns, particularly on large data sets where millions or billions
of values are summed or averaged. For perfect consistency and repeatability, use the DECI MAL data type for such
operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECI MAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that use
different representations or file formats.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.
Related information:

Numeric Literals on page 201, Impala Mathematical Functions on page 429, DOUBLE Data Type on page 148

INT Data Type
A 4-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane | NT

Range: -2147483648 .. 2147483647. There is no UNSI GNED subtype.

Conversions: Impala automatically converts to a larger integer type (Bl G NT) or a floating-point type (FLOAT or DOUBLE)
automatically. Use CAST() to convert to TI NYI NT, SMALLI NT, STRI NG, or TI MESTAMP. Casting an integer or
floating-point value Nto TI MESTAMP produces a value that is Nseconds past the start of the epoch date (January 1,
1970). By default, the result value represents a date and time in the UTC time zone. If the setting

--use_local _tz for_unix_tinmestanp_conversions=true is in effect, the resulting TI MESTAMP represents a
date and time in the local time zone.

Usage notes:
The data type | NTEGER s an alias for | NT.

For a convenient and automated way to check the bounds of the | NT type, call the functions M N_I NT() and
MAX_| NT() .

If an integer value is too large to be represented as a | NT, use a Bl G NT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x INT);
SELECT CAST(1000 AS | NT);

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRI NGrepresentation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations:

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 4-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Related information:

Numeric Literals on page 201, TINYINT Data Type on page 170, SMALLINT Data Type on page 155, INT Data Type on page
150, BIGINT Data Type on page 136, DECIMAL Data Type on page 140, Impala Mathematical Functions on page 429

MAP Complex Type (CDH 5.5 or higher only)

A complex data type representing an arbitrary set of key-value pairs. The key part is a scalar type, while the value part
can be a scalar or another complex type (ARRAY, STRUCT, or VAP).

Syntax:

col um_nanme MAP < primtive_type, type >

type ::= primtive_type | conplex_type

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are unfamiliar
with the Impala complex types, start with Complex Types (CDH 5.5 or higher only) on page 174 for background information
and usage examples.

The MAP complex data type represents a set of key-value pairs. Each element of the map is indexed by a primitive type
such as Bl G NT or STRI NG, letting you define sequences that are not continuous or categories with arbitrary names.
You might find it convenient for modelling data produced in other languages, such as a Python dictionary or Java
HashMap, where a single scalar value serves as the lookup key.

In a big data context, the keys in a map column might represent a numeric sequence of events during a manufacturing
process, or TI MESTAMP values corresponding to sensor observations. The map itself is inherently unordered, so you
choose whether to make the key values significant (such as a recorded TI MESTAMP) or synthetic (such as a random
global universal ID).

E,i Note: Behind the scenes, the MAP type is implemented in a similar way as the ARRAY type. Impala

does not enforce any uniqueness constraint on the KEY values, and the KEY values are processed by
looping through the elements of the MAP rather than by a constant-time lookup. Therefore, this type
is primarily for ease of understanding when importing data and algorithms from non-SQL contexts,
rather than optimizing the performance of key lookups.

You can pass a multi-part qualified name to DESCRI BE to specify an ARRAY, STRUCT, or MAP column and visualize its
structure as if it were a table. For example, if table T1 contains an ARRAY column Al, you could issue the statement
DESCRI BE t 1. al. If table T1 contained a STRUCT column S1, and a field F1 within the STRUCT was a MAP, you could
issue the statement DESCRI BE t 1. s1. f 1. An ARRAY is shown as a two-column table, with | TEMand PCS columns.
A STRUCT is shown as a table with each field representing a column in the table. A MAP is shown as a two-column table,
with KEY and VALUE columns.

Added in: CDH 5.5.0 / Impala 2.3.0

Restrictions:
e Columns with this data type can only be used in tables or partitions with the Parquet file format.
¢ Columns with this data type cannot be used as partition key columns in a partitioned table.
e The COVMPUTE STATS statement does not produce any statistics for columns of this data type.

e The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

e See Limitations and Restrictions for Complex Types on page 178 for a full list of limitations and associated guidelines
about complex type columns.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.

Examples:

’ Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted
El from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 195 for the table definitions.

The following example shows a table with various kinds of MAP columns, both at the top level and nested within other
complex types. Each row represents information about a specific country, with complex type fields of various levels
of nesting to represent different information associated with the country: factual measurements such as area and
population, notable people in different categories, geographic features such as cities, points of interest within each
city, and mountains with associated facts. Practice the CREATE TABLE and query notation for complex type columns
using empty tables, until you can visualize a complex data structure and construct corresponding SQL statements
reliably.

create TABLE nmap_denp
country_id BI G NT,

-- Nuneric facts about each country, |ooked up by nane.
-- For exanple, 'Area':1000, 'Popul ation':999999.
-- Using a MAP instead of a STRUCT because there could be
-- adifferent set of facts for each country.

metrics MAP <STRING BI G NT>,

-- MAP whose val ue part is an ARRAY.
-- For exanple, the key 'Fanous Politicians' could represent an array of 10 el ements,
-- while the key 'Fanpus Actors' could represent an array of 20 el enents.

not abl es MAP <STRI NG, ARRAY <STRI NG>,

-- MMP that is a field within a STRUCT.
-- (The STRUCT is inside another ARRAY, because it is rare
-- for a STRUCT to be a top-Ilevel colum.)
-- For exanple, city #1 m ght have points of interest with key 'Zoo',
-- representing an array of 3 different zoos.
-- City #2 m ght have conpletely different kinds of points of interest.
-- Because the set of field nanes is potentially large, and nost entries could be bl ank
-- a MAP nakes nore sense than a STRUCT to represent such a sparse data structure
cities ARRAY < STRUCT <
name: STRI NG
points_of _interest: MAP <STRI NG ARRAY <STRI NG>>
>>
-- MAP that is an el ement within an ARRAY. The MAP is inside a STRUCT field to associ ate
-- the mountain name with all the facts about the nopuntain.
-- The "key" of the map (the first STRING field) represents the name of sone fact whose
val ue
-- can be expressed as an integer, such as 'Height', 'Year First Cinbed , and so on
mount ai ns ARRAY < STRUCT < nane: STRING facts: MAP <STRING INT > > >

)
STORED AS PARQUET;

DESCRI BE map_deno;

S o m o e e e e e e e e e e e e e e e e e e mmmm e +
| name | type
o a e o o m o e e e e e e e e e e e e e e e e e e mmm e e eaaaa +
country_id bi gi nt
metrics map<stri ng, bi gi nt >
not abl es map<string, array<string>>
cities array<struct<

nane: string

poi nts_of _interest: map<string, array<string>>
>>
nmount ai ns array<struct<

nane: string

facts: map<string,int>
>>

E Fommmm e oo +
| name | type
Fomm o Fomm o m e - o +
| key | string

| value | bigint |
. - +

E S +
| name | type I
Fomm o o e e e +
| key | string

| value | array<string>
Fommm o - e e e e +

DESCRI BE map_deno. not abl es. val ue;
Fomm e oo - +

| name | type

| pos | bigint |

| item]| struct<

| [nane: string,

| [poi nts_of _interest: map<string, array<string>>

| |

. e +
| name | type |
. e +
| key | string

| value | array<string> |
B o e +

| item]| string |
| pos | bigint |

item| struct< |
| nane: string, [
facts: map<string,int> |
I

I

E Fomm e m e - - +
| name | type |
B Fomm e e - - +
| key | string |
| value | int [
. oo - +

The following example shows a table that uses a variety of data types for the MAP “key” field. Typically, you use Bl G NT
or STRI NGto use numeric or character-based keys without worrying about exceeding any size or length constraints.

CREATE TABLE nap_deno_obscure
(

id BIGNT,
MAP <I NT, |NT>
MAP <SMALLI NT, | NT>,
MAP <TI NYI NT, | NT>
MAP <TI MESTAMP, | NT>
<BOOLEAN, | NT>,
MAP <CHAR(5), |NT>
MAP <VARCHAR(25), | NT>,
MAP <FLOAT, [NT>
MAP <DOUBLE, | NT>,
mL0 MAP <DECI MAL(12, 2), |NT>

333333332
3

)
STORED AS PARQUET;

CREATE TABLE celebrities (nanme STRING birth_year MAP < STRING SMALLINT >) STORED AS
PARQUET;

-- Atypical row mght represent values with 2 different birth years, such as:

-- ("Joe Mwvie Star", { "real": 1972, "clained": 1977 })

CREATE TABLE countries (name STRING fanmous_| eaders MAP < I NT, STRING >) STORED AS
PARQUET;

-- Atypical row nmight represent values with different |eaders, with key val ues
corresponding to their nuneric sequence, such as:

-- ("United States", { 1: "George Washington", 3: "Thormas Jefferson", 16: "Abraham
Li ncol n" })

CREATE TABLE airlines (name STRING special _nmeals MAP < STRING MAP < STRING STRING >
>) STORED AS PARQUET,;

-- Atypical row mght represent values with nultiple kinds of nmeals, each with several
conponent s:

-- ("Elegant Airlines",

-- "vegetarian": { "breakfast": "pancakes", "snack": "cookies", "dinner": "rice
pilaf" },
-- "gluten free": { "breakfast": "oatneal", "snack": "fruit", "dinner": "chicken"

- })

Related information:

Complex Types (CDH 5.5 or higher only) on page 174, ARRAY Complex Type (CDH 5.5 or higher only) on page 133, STRUCT
Complex Type (CDH 5.5 or higher only) on page 158

REAL Data Type

An alias for the DOUBLE data type. See DOUBLE Data Type on page 148 for details.

Examples:

These examples show how you can use the type names REAL and DOUBLE interchangeably, and behind the scenes
Impala treats them always as DOUBLE.

[l ocal host:21000] > create table rl1 (x real);
[l ocal host:21000] > describe r1;

R B R +
| name | type | commrent |
Fomm oo - Fomm e oo - B R +
| x | double | |
Fomm oo - Fomm e oo - B R +

[l ocal host:21000] > insert into rl values (1.5), (cast (2.2 as double));
[l ocal host:21000] > select cast (le6 as real);

T +
| cast(1000000.0 as double) |
e +
| 1000000 |
e +

SMALLINT Data Type
A 2-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_name SMALLI NT

Range: -32768 .. 32767. There is no UNSI GNED subtype.

Conversions: Impala automatically converts to a larger integer type (I NT or Bl G NT) or a floating-point type (FLOAT
or DOUBLE) automatically. Use CAST() to convert to TI NYI NT, STRI NG or TI MESTAMP. Casting an integer or
floating-point value Nto TI MESTAMP produces a value that is Nseconds past the start of the epoch date (January 1,
1970). By default, the result value represents a date and time in the UTC time zone. If the setting

--use_local _tz for_unix_timestanp_conversions=true is in effect, the resulting TI| MESTAMP represents a
date and time in the local time zone.

Usage notes:

For a convenient and automated way to check the bounds of the SMALLI NT type, call the functions M N_SMALLI NT()
and MAX_SMALLI NT() .

If an integer value is too large to be represented as a SMALLI NT, use an | NT instead.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x SMALLINT);
SELECT CAST(1000 AS SMALLI NT);

Parquet considerations:

Physically, Parquet files represent TI NYI NT and SMALLI NT values as 32-bit integers. Although Impala rejects attempts
to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE ... LI KE PARQUET
syntax, any TI NYI NT or SMALLI NT columns in the original table turn into | NT columns in the new table.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRI NGrepresentation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 2-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Related information:

Numeric Literals on page 201, TINYINT Data Type on page 170, SMALLINT Data Type on page 155, INT Data Type on page
150, BIGINT Data Type on page 136, DECIMAL Data Type on page 140, Impala Mathematical Functions on page 429

STRING Data Type
A data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE and ALTER TABLE statements:

col um_nanme STRI NG

Length:

If you need to manipulate string values with precise or maximum lengths, in Impala 2.0 and higher you can declare
columns as VARCHAR(max_| engt h) or CHAR(| engt h), but for best performance use STRI NGwhere practical.

Take the following considerations for STRI NGlengths:
¢ The hard limit on the size of a STRI NGand the total size of a row is 2 GB.

If a query tries to process or create a string larger than this limit, it will return an error to the user.

e The limitis 1 GB on STRI NGwhen writing to Parquet files.

e Queries operating on strings with 32 KB or less will work reliably and will not hit significant performance or memory
problems (unless you have very complex queries, very many columns, etc.)

e Performance and memory consumption may degrade with strings larger than 32 KB.

e The row size, i.e. the total size of all string and other columns, is subject to lower limits at various points in query
execution that support spill-to-disk. A few examples for lower row size limits are:

— Rows coming from the right side of any hash join

— Rows coming from either side of a hash join that spills to disk
— Rows being sorted by the SORT operator without a limit

— Rows in a grouping aggregation

In CDH 5.12 and lower, the default limit of the row size in the above cases is 8 MB.

In CDH 5.13 and higher, the max row size is configurable on a per-query basis with the MAX_ROW SI ZE query
option. Rows up to MAX_ROW S| ZE (which defaults to 512 KB) can always be processed in the above cases. Rows
larger than MAX_ROW SI ZE are processed on a best-effort basis. See MAX_ROW_SIZE for more details.

Character sets:

For full support in all Impala subsystems, restrict string values to the ASCII character set. Although some UTF-8 character
data can be stored in Impala and retrieved through queries, UTF-8 strings containing non-ASCIll characters are not
guaranteed to work properly in combination with many SQL aspects, including but not limited to:

¢ String manipulation functions.
e Comparison operators.

e The ORDER BY clause.

¢ Values in partition key columns.

For any national language aspects such as collation order or interpreting extended ASCII variants such as 1ISO-8859-1

or 1S0-8859-2 encodings, Impala does not include such metadata with the table definition. If you need to sort, manipulate,
or display data depending on those national language characteristics of string data, use logic on the application side.

Conversions:

¢ Impala does not automatically convert STRI NGto any numeric type. Impala does automatically convert STRI NG
to TI MESTAMP if the value matches one of the accepted TI MESTAVP formats; see TIMESTAMP Data Type on page
163 for details.

* You can use CAST() to convert STRI NGvalues to TI NYI NT, SMALLI NT, | NT, Bl G NT, FLOAT, DOUBLE, or
TI MESTAMP.

¢ You cannot directly cast a STRI NGvalue to BOOLEAN. You can use a CASE expression to evaluate string values
suchas' T','true', andsoon and return Booleantrue and f al se values as appropriate.

* You can cast a BOOLEANvalue to STRI NG, returning' 1' fortrue valuesand' 0" forf al se values.

Partitioning:

Although it might be convenient to use STRI NGcolumns for partition keys, even when those columns contain numbers,
for performance and scalability it is much better to use numeric columns as partition keys whenever practical. Although
the underlying HDFS directory name might be the same in either case, the in-memory storage for the partition key
columns is more compact, and computations are faster, if partition key columns such as YEAR, MONTH, DAY and so on
are declared as | NT, SMALLI NT, and so on.

Zero-length strings: For purposes of clauses such as DI STI NCT and GROUP BY, Impala considers zero-length strings
("), NULL, and space to all be different values.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit integers
to hold string lengths. In CDH 5.7 / Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRI NGvalue longer than (2**31)-1 bytes in an Avro table, the query fails.
In earlier releases, encountering such long values in an Avro table could cause a crash.

Column statistics considerations: Because the values of this type have variable size, none of the column statistics fields
are filled in until you run the COMPUTE STATS statement.

Examples:

The following examples demonstrate double-quoted and single-quoted string literals, and required escaping for
quotation marks within string literals:

SELECT '|I am a singl e-quoted string';

SELECT "I am a doubl e-quoted string";

SELECT '"I\'m a single-quoted string with an apostrophe';

SELECT "I\'m a doubl e-quoted string with an apostrophe";

SELECT 'I am a "short" single-quoted string containing quotes';
SELECT "I ama \"short\" doubl e-quoted string containing quotes"”;

The following examples demonstrate calls to string manipulation functions to concatenate strings, convert numbers
to strings, or pull out substrings:

SELECT CONCAT("Once upon a time, there were ", CAST(3 AS STRING, ' little pigs.');
SELECT SUBSTR("hello world",7,5);

The following examples show how to perform operations on STRI NG columns within a table:

CREATE TABLE t1 (s1 STRING s2 STRING;
INSERT INTO t1 VALUES ("hello", "world'), (CAST(7 AS STRING, "wonders");
SELECT s1, s2, length(sl) FROMt1l WHERE s2 LIKE ' wo% ;

Related information:

String Literals on page 202, CHAR Data Type (CDH 5.2 or higher only) on page 138, VARCHAR Data Type (CDH 5.2 or
higher only) on page 171, Impala String Functions on page 492, Impala Date and Time Functions on page 455

STRUCT Complex Type (CDH 5.5 or higher only)

A complex data type, representing multiple fields of a single item. Frequently used as the element type of an ARRAY
or the VALUE part of a MAP.

Syntax:
col um_nanme STRUCT < nane : type [COMWENT 'conment_string'], ... >
type ::= primtive_type | conplex_type

The names and number of fields within the STRUCT are fixed. Each field can be a different type. A field within a STRUCT
can also be another STRUCT, or an ARRAY or a MAP, allowing you to create nested data structures with a maximum
nesting depth of 100.

A STRUCT can be the top-level type for a column, or can itself be an item within an ARRAY or the value part of the
key-value pair in a MAP.

When a STRUCT is used as an ARRAY element or a MAP value, you use a join clause to bring the ARRAY or MAP elements
into the result set, and thenrefertoarray_name. | TEM fi el d ormap_nane. VALUE. fi el d. In the case of a STRUCT
directly inside an ARRAY or MAP, you can omit the . | TEMand . VALUE pseudocolumns and refer directly to
array_nane. fiel dormap_nane. field.

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are unfamiliar
with the Impala complex types, start with Complex Types (CDH 5.5 or higher only) on page 174 for background information
and usage examples.

A STRUCT is similar conceptually to a table row: it contains a fixed number of named fields, each with a predefined
type. To combine two related tables, while using complex types to minimize repetition, the typical way to represent
that data is as an ARRAY of STRUCT elements.

Because a STRUCT has a fixed number of named fields, it typically does not make sense to have a STRUCT as the type
of a table column. In such a case, you could just make each field of the STRUCT into a separate column of the table.
The STRUCT type is most useful as an item of an ARRAY or the value part of the key-value pair in a MAP. A nested type

column with a STRUCT at the lowest level lets you associate a variable number of row-like objects with each row of
the table.

The STRUCT type is straightforward to reference within a query. You do not need to include the STRUCT column in a
join clause or give it a table alias, as is required for the ARRAY and MAP types. You refer to the individual fields using
dot notation, such as st ruct _col um_nane. fi el d_name, without any pseudocolumn such as | TEMor VALUE.

You can pass a multi-part qualified name to DESCRI BE to specify an ARRAY, STRUCT, or MAP column and visualize its
structure as if it were a table. For example, if table T1 contains an ARRAY column Al, you could issue the statement
DESCRI BE t 1. al. If table T1 contained a STRUCT column S1, and a field F1 within the STRUCT was a MAP, you could
issue the statement DESCRI BE t 1. s1.f 1. An ARRAY is shown as a two-column table, with | TEMand POS columns.
A STRUCT is shown as a table with each field representing a column in the table. A MAP is shown as a two-column table,
with KEY and VALUE columns.

Internal details:

Within the Parquet data file, the values for each STRUCT field are stored adjacent to each other, so that they can be
encoded and compressed using all the Parquet techniques for storing sets of similar or repeated values. The adjacency
applies even when the STRUCT values are part of an ARRAY or MAP. During a query, Impala avoids unnecessary I/0 by
reading only the portions of the Parquet data file containing the requested STRUCT fields.

Added in: CDH 5.5.0 / Impala 2.3.0

Restrictions:
e Columns with this data type can only be used in tables or partitions with the Parquet file format.
e Columns with this data type cannot be used as partition key columns in a partitioned table.
e The COMPUTE STATS statement does not produce any statistics for columns of this data type.

¢ The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

¢ See Limitations and Restrictions for Complex Types on page 178 for a full list of limitations and associated guidelines
about complex type columns.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.

Examples:

E,i Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted
from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 195 for the table definitions.

The following example shows a table with various kinds of STRUCT columns, both at the top level and nested within
other complex types. Practice the CREATE TABLE and query notation for complex type columns using empty tables,
until you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE struct_deno

id BI G NT,
nane STRI NG

-- A STRUCT as a top-level colum. Denonstrates how the table ID col um
-- and the ID field within the STRUCT can coexi st wi thout a nanme conflict.
enpl oyee_i nfo STRUCT < enployer: STRING id: BIGQ NT, address: STRI NG >,

-- A STRUCT as the element type of an ARRAY.
pl aces_|ived ARRAY < STRUCT <street: STRING city: STRING country: STRI NG >>,

-- A STRUCT as the value portion of the key-value pairs in a MAP.
menor abl e_nmonents MAP < STRING STRUCT < year: INT, place: STRING details: STRI NG

>>
-- A STRUCT where one of the fields is another STRUCT.

current _address STRUCT < street_address: STRUCT <street_nunber: |NT, street_nane:
STRING street_type: STRING>, country: STRING postal _code: STRING >

)
STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more STRUCT columns by
using the DESCRI BE statement. You can visualize each STRUCT as its own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRI BE until the output shows just the STRUCT fields.

DESCRI BE struct _deno;

nanme string

enpl oyee_i nfo struct<
enpl oyer:string,
id:bigint,
address:string

>

pl aces_lived array<struct<
street:string,
city:string,
country:string

>>

menor abl e_nonent s map<string, struct<
year:int,
pl ace: string,
details:string

>>

current _address struct<

street _address: struct<
street _nunber:int,
street _nane: string
street _type:string

>l

country:string

postal _code: string

The top-level column EMPLOYEE | NFOis a STRUCT. Describingt abl e_nane. st ruct _nane displays the fields of the
STRUCT as if they were columns of a table:

DESCRI BE struct _deno. enpl oyee_i nf o;
+

tomme e LTI
| name | type |
tommm e a e Fommm - - +
enployer	string
id	bigint
address	string
tommm e a e Fommm o +

Because PLACES LI VEDis a STRUCT inside an ARRAY, the initial DESCRI BE shows the structure of the ARRAY:

DESCRI BE struct _deno. pl aces_| i ved,;
B R, Fom e e e e oo o - +

| item]| struct< |
| [street:string, |
| [city:string, |

Ask for the details of the | TEMfield of the ARRAY to see just the layout of the STRUCT:

DESCRI BE struct _deno. pl aces_lived.item

Fomm ek Femm e e +
| name | type |
Fomm ek Femm e e +
street	string
city	string
country	string
Fomm ek Femm e +

Likewise, MEMORABLE_MOVENTS has a STRUCT inside a MAP, which requires an extra level of qualified name to see just
the STRUCT part:

DESCRI BE struct _deno. nenor abl e_nonent s;

Fomm - o e - +
| name | type |
Fomma - o +
key string
val ue struct<

pl ace: string,

| I
I _ I
| year:int, [
I I
| details:string |
I I

For a MAP, ask to see the VALUE field to see the corresponding STRUCT fields in a table-like structure:

DESCRI BE struct _deno. nenor abl e_nonent s. val ue;

R oo - +
| nane | type |
S oo - +
year	int
place	string
details	string
S oo - +

For a STRUCT inside a STRUCT, we can see the fields of the outer STRUCT:

DESCRI BE struct _deno. current _address;

street _address | struct< |
[street _nunber:int, |
[street _nane:string, |
[street _type:string |
I I
| |
I I

>
country string
post al _code string

Fom e e e e e oo o e e e e e e e e +

Then we can use a further qualified name to see just the fields of the inner STRUCT:

DESCRI BE struct _deno. current _address. street _address;

street_nunber	int
street_nane	string
street_type	string
o m e Fomm e e - - +

The following example shows how to examine the structure of a table containing one or more STRUCT columns by
using the DESCRI BE statement. You can visualize each STRUCT as its own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRI BE until the output shows just the STRUCT fields.

DESCRI BE struct _deno;

. s R +
| name | type | comment |
S s . +
id bi gi nt
nane string
enpl oyee_info struct<
enpl oyer: string,
i d:bigint,
address: string
>
pl aces_lived array<struct<

street:string,
city:string,
country:string

>>

menor abl e_nmonents | map<string, struct<
year:int,
pl ace: string,
details:string

>>

current _address struct<

street _address:struct<
street _nunber:int,
street _nane:string,
street _type:string

>l

country:string,

postal _code:string

SELECT id, enployee_info.id FROM struct_deno;
SELECT id, enployee_info.id AS enpl oyee_id FROM struct _deno;

SELECT id, enployee_info.id AS enpl oyee_id, enpl oyee_info. enpl oyer
FROM st ruct _deno;

SELECT id, nane, street, city, country
FROM struct _denp, struct_deno. pl aces_|lived;

SELECT id, nane, places_lived. pos, places_lived.street, places_lived.city,
pl aces_| ived. country
FROM struct _denp, struct_deno. pl aces_|ived;

SELECT id, nane, pl.pos, pl.street, pl.city, pl.country
FROM struct _denp, struct_deno. pl aces_lived AS pl;

SELECT id, nane, places_|lived. pos, places_lived.street, places_lived.city,
pl aces_lived. country
FROM struct _denp, struct_deno. pl aces_|ived;

SELECT id, nane, pos, street, city, country
FROM struct _denp, struct_deno. pl aces_|ived;

SELECT id, nane, nenorabl e_nonents. key,
menor abl e_nonent s. val ue. year,
menor abl e_nonent s. val ue. pl ace,
menor abl e_nonent s. val ue. detai l s

FROM struct _deno, struct deno. nenorabl e_nonents
WHERE nenor abl e_nonents. key IN (' Birthday',' Anniversary',' G aduation');

SELECT id, nane, nm key, nmm val ue.year, nmmval ue. place, nmval ue.details
FROM struct _deno, struct _deno. nenorabl e_nmonents AS nm
WHERE mm key IN (' Birthday','Anniversary',' Graduation');

SELECT id, nane, nenorabl e_nonents. key, nenorabl e_nonents. val ue. year,
menor abl e_nonent s. val ue. pl ace, nenorabl e_nonments. val ue. detail s

FROM struct _denp, struct_deno. nenorabl e_nonents

WHERE key IN ('Birthday',' Anniversary',' Graduation');

SELECT id, nane, key, value.year, value.place, value.details
FROM struct _denp, struct_deno. nenorabl e_nonents

WHERE key IN (' Birthday',' Anniversary',' Graduation');

SELECT id, nane, key, year, place, details
FROM struct _denp, struct_deno. nenorabl e_nonents

WHERE key IN (' Birthday',' Anniversary',' Graduation');

SELECT id, nane,
current _address. street _address. street _nunber,
current address. street _address. street_ nane,
current _address. street_address. street _type,
current _address. country,
current_address. postal _code

FROM struct _deno;

For example, this table uses a struct that encodes several data values for each phone number associated with a person.
Each person can have a variable-length array of associated phone numbers, and queries can refer to the category field
to locate specific home, work, mobile, and so on kinds of phone numbers.

CREATE TABLE contact _i nfo_many_structs

id BIGA NT, nane STRI NG,
phone_nunbers ARRAY < STRUCT <cat egory: STRING country_code: STRING area_code: SVALLI NT,
full _nunber: STRING npbil e: BOOLEAN, carrier:STRING > >

) STORED AS PARQUET;

Because structs are naturally suited to composite values where the fields have different data types, you might use
them to decompose things such as addresses:

CREATE TABLE contact _info_detail ed_address

id BI G NT, nane STRI NG
address STRUCT < house_nunber: | NT, street: STRING street_type: STRING apartnent: STRI NG

city: STRING region: STRING country: STRI NG >

In a big data context, splitting out data fields such as the number part of the address and the street name could let
you do analysis on each field independently. For example, which streets have the largest number range of addresses,
what are the statistical properties of the street names, which areas have a higher proportion of “Roads”, “Courts” or
“Boulevards”, and so on.

Related information:

Complex Types (CDH 5.5 or higher only) on page 174, ARRAY Complex Type (CDH 5.5 or higher only) on page 133, MAP
Complex Type (CDH 5.5 or higher only) on page 151

TIMESTAMP Data Type
A data type used in CREATE TABLE and ALTER TABLE statements, representing a point in time.

Syntax:

In the column definition of a CREATE TABLE statement:
col um_nane Tl MESTAMP

Range: Allowed date values range from 1400-01-01 to 9999-12-31; this range is different from the Hive TI MESTAMP
type. Internally, the resolution of the time portion of a TI MESTAMP value is in nanoseconds.

INTERVAL expressions:

You can perform date arithmetic by adding or subtracting a specified number of time units, using the | NTERVAL
keyword and the + and - operators or dat e_add() and dat e_sub() functions. You can specify units as YEAR[§] ,
MONTH[S] , WEEK[S], DAY[S] , HOUR[S] , M NUTE[S] , SECOND[S] , M LLI SECOND[S] , M CROSECOND] S] , and
NANOSECOND] S] . You can only specify one time unit in each interval expression, for example | NTERVAL 3 DAYSor
I NTERVAL 25 HOURS, but you can produce any granularity by adding together successive | NTERVAL values, such as
ti mestanmp_val ue + I NTERVAL 3 WEEKS - | NTERVAL 1 DAY + | NTERVAL 10 M CROSECONDS.

For example:

sel ect now() + interval 1 day;
sel ect date_sub(now(), interval 5 ninutes);
insert into auction_details
sel ect auction_id, auction_start_time, auction_start_time + interval 2 days + interval
12 hours
from new_aucti ons;

Time zones:

By default, Impala does not store timestamps using the local timezone, to avoid undesired results from unexpected
time zone issues. Timestamps are stored and interpreted relative to UTC, both when written to or read from data files,
or when converted to or from Unix time values through functions suchasf r om uni xt i me() oruni x_ti mest anp().
To convert such a TI MESTAMP value to one that represents the date and time in a specific time zone, convert the
original value with the from ut c_t i mest anp() function.

Because Impala does not assume that TI MESTAMP values are in any particular time zone, you must be conscious of
the time zone aspects of data that you query, insert, or convert.

For consistency with Unix system calls, the TI MESTAMP returned by the now() function represents the local time in
the system time zone, rather than in UTC. To store values relative to the current time in a portable way, convert any
now() return values usingtheto_ut c_ti mest anp() function first. For example, the following example shows that
the current time in California (where this Impala cluster is located) is shortly after 2 PM. If that value was written to a
data file, and shipped off to a distant server to be analyzed alongside other data from far-flung locations, the dates
and times would not match up precisely because of time zone differences. Therefore, thet o_ut c_t i mest anp()
function converts it using a common reference point, the UTC time zone (descended from the old Greenwich Mean
Time standard). The' PDT' argument indicates that the original value is from the Pacific time zone with Daylight Saving
Time in effect. When servers in all geographic locations run the same transformation on any local date and time values
(with the appropriate time zone argument), the stored data uses a consistent representation. Impala queries can use
functions such as EXTRACT(), M N(), AVH), and so on to do time-series analysis on those timestamps.

[l ocal host:21000] > select now();
Feeee e iaaiaeetaesaasaee s e +

N LR \

| 2015-04-09 14:07: 46. 580465000 |

[1 ocal host - 21000] > sel ect to_utc_ti mestanp(now(), ' PDT')
| to_utc_timestamp(now(). ©pdt') |

[' 2015-04-09 21:08: 07. 664547000]

The converse function, f rom ut c_ti mest anp(), lets you take stored TI MESTAMP data or calculated results and
convert back to local date and time for processing on the application side. The following example shows how you might
represent some future date (such as the ending date and time of an auction) in UTC, and then convert back to local

time when convenient for reporting or other processing. The final query in the example tests whether this arbitrary
UTC date and time has passed yet, by converting it back to the local time zone and comparing it against the current
date and time.

[l ocal host:21000] > select to_utc_tinmestanp(now() + interval 2 weeks, 'PDT');
o m e +

| to_utc_tinmestanp(now() + interval 2 weeks, 'pdt') |
+

| 2015-04-23 21: 08 34, 152023000 7 |

(1 ocal host - 21000] > sel ect {1 om ut o {1 mest anp(® 2015- 04- 23 21: 08: 34. 152023000', POT')
| fromuic_iimestanp(2015-04-23 21. 08. 34, 162623000, " pi') |

| 20150423 1408 34, 152023000 T |

(1 ocal host : 21000] > sel ect from ut .t mest anp(- 2015- 04- 23 21 08: 34, 152023000' " PDT') <
B SRR R

| fromutc_timestanp('2015-04-23 21:08: 34. 152923000', 'pdt') < now() |

faise T |

o o m e o e e o e e e e e e e e e e e e e e e e e eee—aao oo +

If you have data files written by Hive, those TI MESTAMP values represent the local timezone of the host where the
data was written, potentially leading to inconsistent results when processed by Impala. To avoid compatibility problems
or having to code workarounds, you can specify one or both of these i npal ad startup flags:

--use_local _tz_for_unix_timestanp_conversions=true

-convert _| egacy_hi ve_parquet _utc_ti mestanps=true.

o Important: - convert _| egacy_hi ve_parquet _utc_ti mest anps isturned off by default to avoid
a potentially severe performance overhead. We do not recommend setting this option to true in CDH
6.0 and lower. The performance issue is fixed in CDH 6.1.

The --use_l ocal _tz_for_uni x_timestanp_conver si ons setting affects conversions from TI MESTAMP to

Bl G NT, or from Bl G NT to TI MESTAMP. By default, Impala treats all TI MESTAMP values as UTC, to simplify analysis
of time-series data from different geographic regions. When you enable the

--use_local _tz_for_unix_tinmestanp_conversi ons setting, these operations treat the input values as if they
are in the local time zone of the host doing the processing. See Impala Date and Time Functions on page 455 for the
list of functions affected by the - - use_| ocal _tz_for_uni x_ti mest anp_conver si ons setting.

The following sequence of examples shows how the interpretation of TI MESTAMP values in Parquet tables is affected
by the setting of the - convert _| egacy_hi ve_par quet _utc_ti mest anps setting.

Regardless of the - convert _| egacy_hi ve_par quet _ut c_t i mest anps setting, TI MESTAMP columns in text tables
can be written and read interchangeably by Impala and Hive:

Inpal a DDL and queries for text table:

[l ocal host:21000] > create table t1 (x tinmestanp);
[l ocal host:21000] > insert into t1l values (now)), (now() + interval 1 day);
[l ocal host:21000] > select x fromti;

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |
o m e e e e eeoeoaao--- +

[l ocal host:21000] > select to_utc_timestanp(x, '"PDI") fromtl,
T +

+
| 2015-04-07 22:43:02. 892403000 |
| 2015-04-08 22:43:02. 892403000 |

H ve query for text table:
hi ve> select * fromtl;
(04

2015- 04- 07 15:43:02. 892403
2015- 04- 08 15:43:02. 892403
Ti me taken: 1.245 seconds, Fetched: 2 row(s)

When the table uses Parquet format, Impala expects any time zone adjustment to be applied prior to writing, while
TI MESTAMP values written by Hive are adjusted to be in the UTC time zone. When Hive queries Parquet data files that
it wrote, it adjusts the TI MESTAMP values back to the local time zone, while Impala does no conversion. Hive does no
time zone conversion when it queries Impala-written Parquet files.

I npal a DDL and queries for Parquet table:

[l ocal host:21000] > create table pl stored as parquet as select x fromt1;
o e e aa +

| summary |

o e e e e i +

| I'nserted 2 row(s) |
o e e e +

[l ocal host:21000] > select x from pil;
o e m e e e e e e e e e aaaa +
| x |
o e e e e e e e e e e e e e aaaa +
| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |
o +

H ve DDL and queries for Parquet table:

hive> create table hl (x tinestanp) stored as parquet;
K

hive> insert into hl select * from pl;

Ti me taken: 35.573 seconds

hi ve> select x from pl;

XK

2015- 04- 07 15:43: 02. 892403

2015- 04- 08 15: 43: 02. 892403

Ti me taken: 0.324 seconds, Fetched: 2 row(s)
hi ve> select x from hil;

(0.4

2015-04- 07 15: 43: 02. 892403

2015- 04- 08 15:43: 02. 892403

Ti me taken: 0.197 seconds, Fetched: 2 row(s)

The discrepancy arises when Impala queries the Hive-created Parquet table. The underlying values in the TI MESTAMP
column are different from the ones written by Impala, even though they were copied from one table to another by an
I NSERT ... SELECT statement in Hive. Hive did an implicit conversion from the local time zone to UTC as it wrote
the values to Parquet.

I mpal a query for TIMESTAMP val ues fromInpala-witten and Hive-witten data:

[l ocal host:21000] > select * from pl;
+

| 2015-04-07 15:43:02. 892403000 |
| 2015-04-08 15:43:02. 892403000 |

Fetched 2 row(s) in 0.29s
[l ocal host:21000] > select * from hi;

| 2015-04-07 22:43:02. 892403000 |
| 2015-04-08 22:43:02. 892403000 |

Fetched 2 row(s) in 0.41s
Under |l ying integer values for Inpala-witten and Hi ve-witten data:

[l ocal host: 21000] > sel ect cast(x as bigint) frompl;

e e e e e e e e .=
| cast(x as bigint) |
e +
| 1428421382 |
| 1428507782 |
o e e e e e e oo n +

Fetched 2 rowms) in 0.38s
[l ocal host:21000] > select cast(x as bigint) fromhil;
+

e e e e e e e e .=
| cast(x as bigint) |
e +
| 1428446582 |
| 1428532982 |
o e e e e e e oo n +

Fetched 2 rowms) in 0.20s

When the - convert _| egacy_hi ve_par quet _ut c_ti nest anps setting is enabled, Impala recognizes the Parquet
data files written by Hive, and applies the same UTC-to-local-timezone conversion logic during the query as Hive uses,
making the contents of the Impala-written P1 table and the Hive-written H1 table appear identical, whether represented
as Tl MESTAMP values or the underlying Bl G NT integers:

[l ocal host:21000] > select x from p1;

| 2015-04-07 15:43:02. 892403000 |
| 2015-04-08 15:43:02. 892403000 |

Fetched 2 rowms) in 0.37s
[l ocal host:21000] > select x from hi;

| 2015-04-07 15:43:02. 892403000 |
| 2015-04-08 15:43:02. 892403000 |

Fetched 2 rowms) in 0.19s
[l ocal host:21000] > sel ect cast(x as bigint) from pl;

e e e e e e e e e e . m -
| cast(x as bigint) |
o a e +
| 1428446582 |
| 1428532982 |
o e e e e e aa o n +

Fetched 2 rowms) in 0.29s
[l ocal host:21000] > select cast(x as bigint) fromhil;

o e e aa +
| cast(x as bigint) |
o a e +
| 1428446582 |
| 1428532982 |
o e e e e e aa o n +

Fetched 2 rowms) in 0.22s

Conversions:

Impala automatically converts STRI NGliterals of the correct format into TI MESTAMP values. Timestamp values are
accepted in the format ' yyyy- Mt dd HH: nm ss. SSSSSS' , and can consist of just the date, or just the time, with
or without the fractional second portion. For example, you can specify TI MESTAMP values such as ' 1966- 07- 30",
' 08:30:00',0r"'1985-09-25 17:45: 30. 005" .

Leading zeroes are not required in the numbers representing the date component, such as month and date, or the
time component, such as hour, minute, second. For example, Impala accepts both' 2018-1-1 01: 02: 03' and
'2018-01-01 1:2:3' asvalid.

In STRI NGto TI MESTANMP conversions, leading and trailing white spaces, such as a space, a tab, a newline, or a carriage
return, are ignored. For example, Impala treats the following as equivalent: '1999-12-01 01:02:03 ', ' 1999-12-01
01:02:03', '1999-12-01 01:02:03\r\n\t".

When you convert or cast a STRI NGliteral to TI MESTAMP, you can use the following separators between the date part
and the time part:

e One or more space characters

Example: CAST (' 2001-01-09 01:05:01' AS TI MESTAMP)

¢ The character “T”

Example: CAST (' 2001- 01-09T01: 05: 01' AS TI MESTAMP)

Casting an integer or floating-point value Nto TI MESTAMP produces a value that is Nseconds past the start of the
epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use_local _tz for_unix_timestanp_conversions=true is in effect, the resulting TI MESTAMP represents a
date and time in the local time zone.

In Impala 1.3 and higher, the FROM_UNI XTI ME() and UNI X_TI MESTAMP() functions allow a wider range of format
strings, with more flexibility in element order, repetition of letter placeholders, and separator characters. In CDH 5.5
/ Impala 2.3 and higher, the UNI X_TI MESTAMP() function also allows a numeric timezone offset to be specified as
part of the input string. See Impala Date and Time Functions on page 455 for details.

In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TI MESTAMP values use the
Bl G NT type for parameters and return values, rather than | NT. This change lets the date and time functions avoid
an overflow error that would otherwise occur on January 19th, 2038 (known as the “Year 2038 problem” or “Y2K38
problem”). This change affects the FROM_UNI XTI ME() and UNI X_TI MESTAMP() functions. You might need to change
application code that interacts with these functions, change the types of columns that store the return values, or add
CAST() calls to SQL statements that call these functions.

Partitioning:

Although you cannot use a TI MESTAMP column as a partition key, you can extract the individual years, months, days,
hours, and so on and partition based on those columns. Because the partition key column values are represented in
HDFS directory names, rather than as fields in the data files themselves, you can also keep the original TI MESTAMP
values if desired, without duplicating data or wasting storage space. See Partition Key Columns on page 651 for more
details on partitioning with date and time values.

[l ocal host:21000] > create table tineline (event string) partitioned by (happened

ti nmestanp);

ERROR: Anal ysi sException: Type ' TI MESTAM® is not supported as partition-colum type in
col um: happened

NULL considerations: Casting any unrecognized STRI NGvalue to this type produces a NULL value.

Partitioning: Because this type potentially has so many distinct values, it is often not a sensible choice for a partition
key column. For example, events 1 millisecond apart would be stored in different partitions. Consider using the TRUNC()
function to condense the number of distinct values, and partition on a new column with the truncated values.

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 16-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

Sqoop considerations:

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETI ME, or TI MESTAMP columns. The underlying values are represented as the Parquet | NT64 type, which is
represented as Bl G NT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets Bl G NT as the time in seconds. Therefore, if you have a Bl G NT column in a Parquet table that was imported
this way from Sqoop, divide the values by 1000 when interpreting as the TI MESTAMP type.

Restrictions:

If you cast a STRI NGwith an unrecognized format to a TI MESTAMP, the result is NULL rather than an error. Make sure
to test your data pipeline to be sure any textual date and time values are in a format that Impala TI MESTAMP can
recognize.

Currently, Avro tables cannot contain TI MESTAMP columns. If you need to store date and time values in Avro tables,
as a workaround you can use a STRI NGrepresentation of the values, convert the values to Bl G NT with the

UNI X_TI MESTAMP() function, or create separate numeric columns for individual date and time fields using the
EXTRACT() function.

Kudu considerations:

In CDH 5.12 / Impala 2.9 and higher, you can include TI MESTAMP columns in Kudu tables, instead of representing the
date and time as a BI G NT value. The behavior of TI MESTAMP for Kudu tables has some special considerations:

¢ Any nanoseconds in the original 96-bit value produced by Impala are not stored, because Kudu represents date/time
columns using 64-bit values. The nanosecond portion of the value is rounded, not truncated. Therefore, a
TI MESTAMP value that you store in a Kudu table might not be bit-for-bit identical to the value returned by a query.

¢ The conversion between the Impala 96-bit representation and the Kudu 64-bit representation introduces some
performance overhead when reading or writing TI MESTAMP columns. You can minimize the overhead during
writes by performing inserts through the Kudu API. Because the overhead during reads applies to each query, you
might continue to use a Bl G NT column to represent date/time values in performance-critical applications.

e The Impala TI MESTAMP type has a narrower range for years than the underlying Kudu data type. Impala can
represent years 1400-9999. If year values outside this range are written to a Kudu table by a non-Impala client,
Impala returns NULL by default when reading those TI MESTAMP values during a query. Or, if the ABORT_ON_ERRCR
guery option is enabled, the query fails when it encounters a value with an out-of-range year.

Examples:

The following examples demonstrate using TI MESTAMP values with built-in functions:

sel ect cast('1966-07-30" as tinestanp);
sel ect cast('1985-09-25 17: 45:30. 005" as timestanp);
sel ect cast('08:30:00' as tinestanp);

sel ect hour('1970-01-01 15:30:00'); -- Succeeds, returns 15.

sel ect hour('1970-01-01 15:30'); -- Returns NULL because seconds field

required.

sel ect hour('1970-01-01 27:30:00'); -- Returns NULL because hour value out of

range.

sel ect dayof week(' 2004-06-13'); -- Returns 1, representing Sunday.

sel ect daynane(' 2004-06-13"); -- Returns ' Sunday'.

sel ect date_add(' 2004-06-13', 365); -- Returns 2005-06-13 with zeros for hh: mm ss
fields.

sel ect day('2004-06-13"); -- Returns 13.

sel ect datediff('1989-12-31",'1984-09-01'); -- How nmany days between these 2 dates?

sel ect now); -- Returns current date and tine in |ocal

ti mezone.

The following examples demonstrate using TI MESTAMP values with HDFS-backed tables:

create table dates_and_tinmes (t tinestanp);
insert into dates_and_tines val ues
(' 1966-07-30"), ('1985-09-25 17:45:30.005'), ('08:30:00"), (now));

The following examples demonstrate using TI MESTAMP values with Kudu tables:

create table tinestanp_t (x int primary key, s string, t tinmestanp, b bigint)
partition by hash (x) partitions 16
stored as kudu;

-- The default value of now() has microsecond precision, so the final 3 digits
-- representing nanoseconds are all zero.
insert into tinestanp_t values (1, cast(now() as string), now), unix_tinmestanp(now)));

-- Values with 1-499 nanoseconds are rounded down in the Kudu TI MESTAMP col um.

insert into timestanp_t values (2, cast(now() + interval 100 nanoseconds as string),
now() + interval 100 nanoseconds, unix_tinmestanmp(now() + interval 100 nanoseconds));
insert into timestanp_t values (3, cast(now() + interval 499 nanoseconds as string),
now() + interval 499 nanoseconds, unix_tinestanp(now) + interval 499 nanoseconds))

-- Val ues wi th 500-999 nanoseconds are rounded up in the Kudu TI MESTAMP col um.

insert into timestanp_t values (4, cast(now() + interval 500 nanoseconds as string),
now() + interval 500 nanoseconds, unix_tinmestanmp(now() + interval 500 nanoseconds));
insert into timestanp_t values (5, cast(now() + interval 501 nanoseconds as string),
now() + interval 501 nanoseconds, unix_tinestanp(now) + interval 501 nanoseconds))

-- The string representati on shows how underlying | npala Tl MESTAMP can have nanosecond

pr eci si on.

-- The TI MESTAMP col um shows how tinestanps in a Kudu table are rounded to nmcrosecond
preci si on.

-- The BI QA NT colum represents seconds past the epoch and so if not affected nuch by

nanoseconds.

select s, t, b fromtinestanp_t order by t;

o e e e e e e e e e e e o e e e e e e e e e e e e S +

| s | t | b I

o o e e e e e e e e e e S +
2017-05-31 15:30: 05.107157000 2017-05-31 15:30: 05.107157000 1496244605
2017-05-31 15: 30: 28. 868151100 2017-05-31 15: 30: 28. 868151000 1496244628

2017-05-31 15: 35: 04. 769166500 2017-05-31 15: 35: 04. 769167000 1496244904

I I I I
I I I I
| 2017-05-31 15:34:33. 674692499 | 2017-05-31 15:34: 33. 674692000 | 1496244873 |
I I I I
| 2017-05-31 15:35:33. 033082501 | 2017-05-31 15:35: 33. 033083000 | 1496244933 |

Related information:

e Timestamp Literals on page 204.

¢ To convert to or from different date formats, or perform date arithmetic, use the date and time functions described
in Impala Date and Time Functions on page 455. In particular, the f r om_uni xti me() function requires a
case-sensitive format string such as " yyyy- Mt dd HH: mm ss. SSSS", matching one of the allowed variations
of a TI MESTAMP value (date plus time, only date, only time, optional fractional seconds).

e See SQL Differences Between Impala and Hive on page 571 for details about differences in TI| MESTAMP handling
between Impala and Hive.

TINYINT Data Type
A 1-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane TI NYI NT

Range: -128 .. 127. There is no UNSI GNED subtype.

Conversions: Impala automatically converts to a larger integer type (SMALLI NT, | NT, or Bl G NT) or a floating-point
type (FLOAT or DOUBLE) automatically. Use CAST() to convert to STRI NGor TI MESTAMP. Casting an integer or
floating-point value Nto TI MESTAMP produces a value that is Nseconds past the start of the epoch date (January 1,
1970). By default, the result value represents a date and time in the UTC time zone. If the setting

--use_local _tz for_unix_timestanp_conversions=true is in effect, the resulting TI MESTAMP represents a
date and time in the local time zone.

Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and overflow
conditions similar to how they do so with traditional database systems. Impala returns the largest or smallest value in
the range for the type. For example, valid values for ati nyi nt range from -128 to 127. In Impala, ati nyi nt with a

value of -200 returns -128 rather than NULL. At i nyi nt with a value of 200 returns 127.

Usage notes:

For a convenient and automated way to check the bounds of the Tl NYI NT type, call the functions M N_TI NYI NT()
and MAX_TI NYI NT() .

If an integer value is too large to be represented as a TI NYI NT, use a SMALLI NT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x TINYINT);
SELECT CAST(100 AS TI NYI NT);

Parquet considerations:

Physically, Parquet files represent TI NYI NT and SMALLI NT values as 32-bit integers. Although Impala rejects attempts
to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE ... LI KE PARQUET
syntax, any TI NYI NT or SMALLI NT columns in the original table turn into | NT columns in the new table.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 1-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Related information:

Numeric Literals on page 201, TINYINT Data Type on page 170, SMALLINT Data Type on page 155, INT Data Type on page
150, BIGINT Data Type on page 136, DECIMAL Data Type on page 140, Impala Mathematical Functions on page 429

VARCHAR Data Type (CDH 5.2 or higher only)

A variable-length character type, truncated during processing if necessary to fit within the specified length.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane VARCHAR(max_| engt h)

The maximum length you can specify is 65,535.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (I NT, Bl G NT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.
Parquet considerations:

e This type can be read from and written to Parquet files.
e There is no requirement for a particular level of Parquet.

e Parquet files generated by Impala and containing this type can be freely interchanged with other components
such as Hive and MapReduce.

e Parquet data files can contain values that are longer than allowed by the VARCHAR(n) length limit. Impalaignores
any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files can contain values that are longer than allowed by the VARCHAR(n) length limit. Any extra trailing
characters are ignored when Impala processes those values during a query.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit integers
to hold string lengths. In CDH 5.7 / Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRI NGvalue longer than (2**31)-1 bytes in an Avro table, the query fails.
In earlier releases, encountering such long values in an Avro table could cause a crash.

Schema evolution considerations:

You can use ALTER TABLE ... CHANGE to switch column data types to and from VARCHAR. You can convert from
STRI NGto VARCHAR(n), or from VARCHAR(n) to STRI NG, or from CHAR(n) to VARCHAR(n), or from VARCHAR(n)
to CHAR(n) . When switching back and forth between VARCHAR and CHAR, you can also change the length value. This
schema evolution works the same for tables using any file format. If a table contains values longer than the maximum
length defined for a VARCHAR column, Impala does not return an error. Any extra trailing characters are ignored when
Impala processes those values during a query.

Compatibility:

This type is available in CDH 5.2 / Impala 2.0 or higher.

Internal details: Represented in memory as a byte array with the minimum size needed to represent each value.
Added in: CDH 5.2.0 / Impala 2.0.0

Column statistics considerations: Because the values of this type have variable size, none of the column statistics fields
are filled in until you run the COVPUTE STATS statement.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Restrictions:

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRI NG column to hold it.

Examples:

The following examples show how long and short VARCHAR values are treated. Values longer than the maximum
specified length are truncated by CAST(), or when queried from existing data files. Values shorter than the maximum
specified length are represented as the actual length of the value, with no extra padding as seen with CHAR values.

create table varchar_1 (s varchar(1l));
create table varchar_4 (s varchar(4));
create table varchar_20 (s varchar(20));

insert into varchar_1 values (cast('a' as varchar(1l))), (cast('b" as varchar(1))),
(cast('hell o' as varchar(1))), (cast('world" as varchar(1l)));

insert into varchar_4 values (cast('a' as varchar(4))), (cast('b'" as varchar(4))),
(cast('hello' as varchar(4))), (cast('world as varchar(4)));

insert into varchar_20 values (cast('a' as varchar(20))), (cast('b' as varchar(20))),
(cast('hello' as varchar(20))), (cast('world" as varchar(20)));

select * fromvarchar_1;
+---+

select * fromvarchar_4;

Hommm o - +

| s I
oo +

| a I

| b I

| hell |

| worl |
Fomm oo - +

[l ocal host:21000] > select * from varchar_20;
Fomm - +

| s I

B +

| a |

| b I

| hello |

| world |
. +
select concat('[',s,']') as s fromvarchar_20;
R +
| s I
S +
| [a] |
| [b] I
| [hello] |
| [world] |
S +

The following example shows how identical VARCHAR values compare as equal, even if the columns are defined with
different maximum lengths. Both tables contain' a' and' b' values. The longer' hel | o' and' wor| d' values from
the VARCHAR 20 table were truncated when inserted into the VARCHAR 1 table.

select s fromvarchar_1 join varchar_20 using (s);

Fom e - +
| s I
N +
| a I
| b |
Fomme - +

The following examples show how VARCHAR values are freely interchangeable with STRI NGvalues in contexts such
as comparison operators and built-in functions:

select length(cast('foo' as varchar(100))) as |ength;
S RS +
| length |
S RS +
| 3 I
S RS +

sel ect cast('xyz' as varchar(5)) > cast('abc' as varchar(10)) as greater;

| greater |

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Related information:

STRING Data Type on page 156, CHAR Data Type (CDH 5.2 or higher only) on page 138, String Literals on page 202, Impala
String Functions on page 492

Complex Types (CDH 5.5 or higher only)

Complex types (also referred to as nested types) let you represent multiple data values within a single row/column
position. They differ from the familiar column types such as Bl G NT and STRI NG known as scalar types or primitive
types, which represent a single data value within a given row/column position. Impala supports the complex types
ARRAY, MAP, and STRUCT in CDH 5.5 / Impala 2.3 and higher. The Hive UNI ONtype is not currently supported.

Once you understand the basics of complex types, refer to the individual type topics when you need to refresh your
memory about syntax and examples:

e ARRAY Complex Type (CDH 5.5 or higher only) on page 133
e STRUCT Complex Type (CDH 5.5 or higher only) on page 158
e MAP Complex Type (CDH 5.5 or higher only) on page 151

Benefits of Impala Complex Types
The reasons for using Impala complex types include the following:

¢ You already have data produced by Hive or other non-Impala component that uses the complex type column
names. You might need to convert the underlying data to Parquet to use it with Impala.

¢ Your data model originates with a non-SQL programming language or a NoSQL data management system. For
example, if you are representing Python data expressed as nested lists, dictionaries, and tuples, those data
structures correspond closely to Impala ARRAY, MAP, and STRUCT types.

¢ Your analytic queries involving multiple tables could benefit from greater locality during join processing. By packing
more related data items within each HDFS data block, complex types let join queries avoid the network overhead
of the traditional Hadoop shuffle or broadcast join techniques.

The Impala complex type support produces result sets with all scalar values, and the scalar components of complex
types can be used with all SQL clauses, such as GROUP BY, ORDER BY, all kinds of joins, subqueries, and inline views.
The ability to process complex type data entirely in SQL reduces the need to write application-specific code in Java or
other programming languages to deconstruct the underlying data structures.

Overview of Impala Complex Types

The ARRAY and MAP types are closely related: they represent collections with arbitrary numbers of elements, where
each element is the same type. In contrast, STRUCT groups together a fixed number of items into a single element.
The parts of a STRUCT element (the fields) can be of different types, and each field has a name.

The elements of an ARRAY or MAP, or the fields of a STRUCT, can also be other complex types. You can construct
elaborate data structures with up to 100 levels of nesting. For example, you can make an ARRAY whose elements are
STRUCTSs. Within each STRUCT, you can have some fields that are ARRAY, MAP, or another kind of STRUCT. The Impala
documentation uses the terms complex and nested types interchangeably; for simplicity, it primarily uses the term
complex types, to encompass all the properties of these types.

When visualizing your data model in familiar SQL terms, you can think of each ARRAY or MAP as a miniature table, and
each STRUCT as a row within such a table. By default, the table represented by an ARRAY has two columns, PCS to
represent ordering of elements, and | TEMrepresenting the value of each element. Likewise, by default, the table
represented by a MAP encodes key-value pairs, and therefore has two columns, KEY and VALUE.

The | TEMand VALUE names are only required for the very simplest kinds of ARRAY and MAP columns, ones that hold
only scalar values. When the elements within the ARRAY or MAP are of type STRUCT rather than a scalar type, then the
result set contains columns with names corresponding to the STRUCT fields rather than | TEMor VALUE.

You write most queries that process complex type columns using familiar join syntax, even though the data for both
sides of the join resides in a single table. The join notation brings together the scalar values from a row with the values
from the complex type columns for that same row. The final result set contains all scalar values, allowing you to do all
the familiar filtering, aggregation, ordering, and so on for the complex data entirely in SQL or using business intelligence
tools that issue SQL queries.

Behind the scenes, Impala ensures that the processing for each row is done efficiently on a single host, without the
network traffic involved in broadcast or shuffle joins. The most common type of join query for tables with complex
type columnsis | NNER JO N, which returns results only in those cases where the complex type contains some elements.
Therefore, most query examples in this section use either the | NNER JO Nclause or the equivalent comma notation.

E,i Note:

Although Impala can query complex types that are present in Parquet files, Impala currently cannot
create new Parquet files containing complex types. Therefore, the discussion and examples presume
that you are working with existing Parquet data produced through Hive, Spark, or some other source.
See Constructing Parquet Files with Complex Columns Using Hive on page 196 for examples of
constructing Parquet data files with complex type columns.

For learning purposes, you can create empty tables with complex type columns and practice query
syntax, even if you do not have sample data with the required structure.

Design Considerations for Complex Types

When planning to use Impala complex types, and designing the Impala schema, first learn how this kind of schema
differs from traditional table layouts from the relational database and data warehousing fields. Because you might
have already encountered complex types in a Hadoop context while using Hive for ETL, also learn how to write
high-performance analytic queries for complex type data using Impala SQL syntax.

How Complex Types Differ from Traditional Data Warehouse Schemas

Complex types let you associate arbitrary data structures with a particular row. If you are familiar with schema design
for relational database management systems or data warehouses, a schema with complex types has the following
differences:

e Logically, related values can now be grouped tightly together in the same table.
In traditional data warehousing, related values were typically arranged in one of two ways:

— Split across multiple normalized tables. Foreign key columns specified which rows from each table were
associated with each other. This arrangement avoided duplicate data and therefore the data was compact,
but join queries could be expensive because the related data had to be retrieved from separate locations.
(In the case of distributed Hadoop queries, the joined tables might even be transmitted between different
hosts in a cluster.)

— Flattened into a single denormalized table. Although this layout eliminated some potential performance
issues by removing the need for join queries, the table typically became larger because values were repeated.
The extra data volume could cause performance issues in other parts of the workflow, such as longer ETL
cycles or more expensive full-table scans during queries.

Complex types represent a middle ground that addresses these performance and volume concerns. By physically
locating related data within the same data files, complex types increase locality and reduce the expense of join
queries. By associating an arbitrary amount of data with a single row, complex types avoid the need to repeat
lengthy values such as strings. Because Impala knows which complex type values are associated with each row,
you can save storage by avoiding artificial foreign key values that are only used for joins. The flexibility of the
STRUCT, ARRAY, and MAP types lets you model familiar constructs such as fact and dimension tables from a data
warehouse, and wide tables representing sparse matrixes.

Physical Storage for Complex Types

Physically, the scalar and complex columns in each row are located adjacent to each other in the same Parquet data
file, ensuring that they are processed on the same host rather than being broadcast across the network when
cross-referenced within a query. This co-location simplifies the process of copying, converting, and backing all the
columns up at once. Because of the column-oriented layout of Parquet files, you can still query only the scalar columns
of a table without imposing the 1/0O penalty of reading the (possibly large) values of the composite columns.

Within each Parquet data file, the constituent parts of complex type columns are stored in column-oriented format:

e Each field of a STRUCT type is stored like a column, with all the scalar values adjacent to each other and encoded,
compressed, and so on using the Parquet space-saving techniques.

e For an ARRAY containing scalar values, all those values (represented by the | TEMpseudocolumn) are stored
adjacent to each other.

e For a MAP, the values of the KEY pseudocolumn are stored adjacent to each other. If the VALUE pseudocolumn is
a scalar type, its values are also stored adjacent to each other.

¢ If an ARRAY element, STRUCT field, or MAP VALUE part is another complex type, the column-oriented storage
applies to the next level down (or the next level after that, and so on for deeply nested types) where the final
elements, fields, or values are of scalar types.

The numbers represented by the POS pseudocolumn of an ARRAY are not physically stored in the data files. They are
synthesized at query time based on the order of the ARRAY elements associated with each row.
File Format Support for Impala Complex Types

Currently, Impala queries support complex type data only in the Parquet file format. See Using the Parquet File Format
with Impala Tables on page 664 for details about the performance benefits and physical layout of this file format.

Because Impala does not parse the data structures containing nested types for unsupported formats such as text, Avro,
SequenceFile, or RCFile, you cannot use data files in these formats with Impala, even if the query does not refer to the
nested type columns. Also, if a table using an unsupported format originally contained nested type columns, and then
those columns were dropped from the table using ALTER TABLE ... DROP COLUMN, any existing data files in the
table still contain the nested type data and Impala queries on that table will generate errors.

The one exception to the preceding rule is COUNT(*) queries on RCFile tables that include complex types. Such queries
are allowed in CDH 5.8 / Impala 2.6 and higher.

You can perform DDL operations for tables involving complex types in most file formats other than Parquet. You cannot
create tables in Impala with complex types using text files.

You can have a partitioned table with complex type columns that uses a non-Parquet format, and use ALTER TABLE
to change the file format to Parquet for individual partitions. When you put Parquet data files into those partitions,
Impala can execute queries against that data as long as the query does not involve any of the non-Parquet partitions.

If you use the par quet - t ool s command to examine the structure of a Parquet data file that includes complex types,
you see that both ARRAY and MAP are represented as a Bag in Parquet terminology, with all fields marked Opt i onal
because Impala allows any column to be nullable.

Impala supports either 2-level and 3-level encoding within each Parquet data file. When constructing Parquet data
files outside Impala, use either encoding style but do not mix 2-level and 3-level encoding within the same data file.

Choosing Between Complex Types and Normalized Tables

Choosing between multiple normalized fact and dimension tables, or a single table containing complex types, is an
important design decision.

¢ If you are coming from a traditional database or data warehousing background, you might be familiar with how
to split up data between tables. Your business intelligence tools might already be optimized for dealing with this
kind of multi-table scenario through join queries.

e Ifyou are pulling data from Impala into an application written in a programming language that has data structures
analogous to the complex types, such as Python or Java, complex types in Impala could simplify data interchange
and improve understandability and reliability of your program logic.

¢ You might already be faced with existing infrastructure or receive high volumes of data that assume one layout
or the other. For example, complex types are popular with web-oriented applications, for example to keep
information about an online user all in one place for convenient lookup and analysis, or to deal with sparse or
constantly evolving data fields.

e |f some parts of the data change over time while related data remains constant, using multiple normalized tables
lets you replace certain parts of the data without reloading the entire data set. Conversely, if you receive related
data all bundled together, such as in JSON files, using complex types can save the overhead of splitting the related
items across multiple tables.

e From a performance perspective:

— In Parquet tables, Impala can skip columns that are not referenced in a query, avoiding the 1/0 penalty of
reading the embedded data. When complex types are nested within a column, the data is physically divided
at a very granular level; for example, a query referring to data nested multiple levels deep in a complex type
column does not have to read all the data from that column, only the data for the relevant parts of the column
type hierarchy.

— Complex types avoid the possibility of expensive join queries when data from fact and dimension tables is
processed in parallel across multiple hosts. All the information for a row containing complex types is typically
to be in the same data block, and therefore does not need to be transmitted across the network when joining
fields that are all part of the same row.

— The tradeoff with complex types is that fewer rows fit in each data block. Whether it is better to have more
data blocks with fewer rows, or fewer data blocks with many rows, depends on the distribution of your data
and the characteristics of your query workload. If the complex columns are rarely referenced, using them
might lower efficiency. If you are seeing low parallelism due to a small volume of data (relatively few data
blocks) in each table partition, increasing the row size by including complex columns might produce more
data blocks and thus spread the work more evenly across the cluster. See Scalability Considerations for Impala
on page 630 for more on this advanced topic.

Differences Between Impala and Hive Complex Types

Impala can query Parquet tables containing ARRAY, STRUCT, and MAP columns produced by Hive. There are some
differences to be aware of between the Impala SQL and HiveQL syntax for complex types, primarily for queries.

Impala supports a subset of the syntax that Hive supports for specifying ARRAY, STRUCT, and MAP types in the CREATE
TABLE statements.

Because Impala STRUCT columns include user-specified field names, you use the NAMED_STRUCT() constructor in
Hive rather than the STRUCT() constructor when you populate an Impala STRUCT column using a Hive | NSERT
statement.

The Hive UNI ONtype is not currently supported in Impala.

While Impala usually aims for a high degree of compatibility with HiveQL query syntax, Impala syntax differs from Hive
for queries involving complex types. The differences are intended to provide extra flexibility for queries involving these
kinds of tables.

¢ Impala uses dot notation for referring to element names or elements within complex types, and join notation for
cross-referencing scalar columns with the elements of complex types within the same row, rather than the LATERAL
VI EWclause and EXPLCODE() function of HiveQL.

¢ Using join notation lets you use all the kinds of join queries with complex type columns. For example, you can use
aLEFT OQUTER JO N, LEFT ANTI JA N, or LEFT SEM JO Nquery to evaluate different scenarios where the
complex columns do or do not contain any elements.

¢ You can include references to collection types inside subqueries and inline views. For example, you can construct
a FROMclause where one of the “tables” is a subquery against a complex type column, or use a subquery against
a complex type column as the argument to an | Nor EXI STS clause.

e The Impala pseudocolumn PCS lets you retrieve the position of elements in an array along with the elements
themselves, equivalent to the POSEXPLCODE() function of HiveQL. You do not use index notation to retrieve a
single array element in a query; the join query loops through the array elements and you use WHERE clauses to
specify which elements to return.

¢ Join clauses involving complex type columns do not require an ON or US| NGclause. Impala implicitly applies the
join key so that the correct array entries or map elements are associated with the correct row from the table.

¢ Impala does not currently support the UNI ON complex type.

Limitations and Restrictions for Complex Types
Complex type columns can only be used in tables or partitions with the Parquet file format.
Complex type columns cannot be used as partition key columns in a partitioned table.

When you use complex types with the ORDER BY, GROUP BY, HAVI NG, or WHERE clauses, you cannot refer to the
column name by itself. Instead, you refer to the names of the scalar values within the complex type, such as the | TEM
PGS, KEY, or VALUE pseudocolumns, or the field names from a STRUCT.

The maximum depth of nesting for complex types is 100 levels.

The maximum length of the column definition for any complex type, including declarations for any nested types, is
4000 characters.

For ideal performance and scalability, use small or medium-sized collections, where all the complex columns contain
at most a few hundred megabytes per row. Remember, all the columns of a row are stored in the same HDFS data
block, whose size in Parquet files typically ranges from 256 MB to 1 GB.

Including complex type columns in a table introduces some overhead that might make queries that do not reference
those columns somewhat slower than Impala queries against tables without any complex type columns. Expect at
most a 2x slowdown compared to tables that do not have any complex type columns.

Currently, the COMPUTE STATS statement does not collect any statistics for columns containing complex types. Impala
uses heuristics to construct execution plans involving complex type columns.

Currently, Impala built-in functions and user-defined functions cannot accept complex types as parameters or produce
them as function return values. (When the complex type values are materialized in an Impala result set, the result set
contains the scalar components of the values, such as the POS or | TEMfor an ARRAY, the KEY or VALUE for a MAP, or
the fields of a STRUCT; these scalar data items can be used with built-in functions and UDFs as usual.)

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to
complex type columns, such as CREATE TABLE AS SELECT or | NSERT ... SELECT. To create data files containing
complex type data, use the Hive | NSERT statement, or another ETL mechanism such as MapReduce jobs, Spark jobs,
Pig, and so on.

Currently, Impala can query complex type columns only from Parquet tables or Parquet partitions within partitioned
tables. Although you can use complex types in tables with Avro, text, and other file formats as part of your ETL pipeline,
for example as intermediate tables populated through Hive, doing analytics through Impala requires that the data
eventually ends up in a Parquet table. The requirement for Parquet data files means that you can use complex types
with Impala tables hosted on other kinds of file storage systems such as Isilon and Amazon S3, but you cannot use
Impala to query complex types from HBase tables. See File Format Support for Impala Complex Types on page 176 for
more details.

Using Complex Types in SQL

When using complex types through SQL in Impala, you learn the notation for < > delimiters for the complex type
columns in CREATE TABLE statements, and how to construct join queries to “unpack” the scalar values nested inside
the complex data structures. You might need to condense a traditional RDBMS or data warehouse schema into a
smaller number of Parquet tables, and use Hive, Spark, Pig, or other mechanism outside Impala to populate the tables
with data.

Complex Type Syntax for DDL Statements

The definition of data_type, as seen in the CREATE TABLEand ALTER TABLE statements, now includes complex types
in addition to primitive types:

prinmtive_type
| array_type
| map_type
| struct_type

Unions are not currently supported.

Array, struct,and map column type declarations are specified in the CREATE TABLE statement. You can also add
or change the type of complex columns through the ALTER TABLE statement.

Currently, Impala queries allow complex types only in tables that use the Parquet format. If an Impala query encounters
complex types in a table or partition using another file format, the query returns a runtime error.

You canuse ALTER TABLE ... SET FI LEFORMAT PARQUET to change the file format of an existing table containing
complex types to Parquet, after which Impala can query it. Make sure to load Parquet files into the table after changing
the file format, because the ALTER TABLE ... SET FI LEFORMAT statement does not convert existing data to the
new file format.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.

Because use cases for Impala complex types require that you already have Parquet data files produced outside of
Impala, you can use the Impala CREATE TABLE LI KE PARQUET syntax to produce a table with columns that match
the structure of an existing Parquet file, including complex type columns for nested data structures. Remember to
include the STORED AS PARQUET clause in this case, because even with CREATE TABLE LI KE PARQUET, the default
file format of the resulting table is still text.

You cannot use the CREATE TABLE AS SELECT syntax to create a table with nested type columns because the
complex columns are omitted from the result set of an Impala SELECT * or SELECT col _name query, and because
Impala currently does not support writing Parquet files with complex type columns,

E,i Note:

Once you have a table set up with complex type columns, use the DESCRI BE and SHOW CREATE
TABLE statements to see the correct notation with <and > delimiters and comma and colon separators
within the complex type definitions. If you do not have existing data with the same layout as the table,
you can query the empty table to practice with the notation for the SELECT statement. In the SELECT
list, you use dot notation and pseudocolumns such as | TEM KEY, and VALUE for referring to items
within the complex type columns. In the FROMclause, you use join notation to construct table aliases
for any referenced ARRAY and MAP columns.

For example, when defining a table that holds contact information, you might represent phone numbers differently
depending on the expected layout and relationships of the data, and how well you can predict those properties in
advance.

Here are different ways that you might represent phone numbers in a traditional relational schema, with equivalent
representations using complex types.

The traditional, simplest way to represent phone numbers in a relational table is to store all contact info in a single
table, with all columns having scalar types, and each potential phone number represented as a separate column. In
this example, each person can only have these 3 types of phone numbers. If the person does not have a particular kind
of phone number, the corresponding column is NULL for that row.

CREATE TABLE contacts_fi xed_phones

id BIGNT
, nanme STRI NG
, address STRI NG
, home_phone STRI NG
, wor k_phone STRI NG
, mobi |l e_phone STRI NG
) STORED AS PARQUET;

Figure 1: Traditional Relational Representation of Phone Numbers: Single Table

Using a complex type column to represent the phone numbers adds some extra flexibility. Now there could be an
unlimited number of phone numbers. Because the array elements have an order but not symbolic names, you could

decide in advance that phone_number[0] is the home number, [1] is the work number, [2] is the mobile number, and
so on. (In subsequent examples, you will see how to create a more flexible naming scheme using other complex type
variations, such as a MAP or an ARRAY where each element is a STRUCT.)

CREATE TABLE contacts_array_of _phones

id BIG NT
, nane STRI NG
, address STRI NG
, phone_nunber ARRAY < STRI NG >
) STORED AS PARQUET;

Figure 2: An Array of Phone Numbers

Another way to represent an arbitrary set of phone numbers is with a MAP column. With a MAP, each element is
associated with a key value that you specify, which could be a numeric, string, or other scalar type. This example uses
a STRI NGkey to give each phone number a name, such as' hone' or' nobi | e' . A query could filter the data based
on the key values, or display the key values in reports.

CREATE TABLE contacts_unlimted_phones

id BIA NT, nane STRING address STRING phone_number MAP < STRI NG, STRI NG >
) STORED AS PARQUET;

Figure 3: A Map of Phone Numbers

If you are an experienced database designer, you already know how to work around the limitations of the single-table
schema from Figure 1: Traditional Relational Representation of Phone Numbers: Single Table on page 179. By normalizing
the schema, with the phone numbers in their own table, you can associate an arbitrary set of phone numbers with
each person, and associate additional details with each phone number, such as whether it is a home, work, or mobile
phone.

The flexibility of this approach comes with some drawbacks. Reconstructing all the data for a particular person requires
ajoin query, which might require performance tuning on Hadoop because the data from each table might be transmitted
from a different host. Data management tasks such as backups and refreshing the data require dealing with multiple
tables instead of a single table.

This example illustrates a traditional database schema to store contact info normalized across 2 tables. The fact table
establishes the identity and basic information about person. A dimension table stores information only about phone
numbers, using an ID value to associate each phone number with a person ID from the fact table. Each person can
have 0, 1, or many phones; the categories are not restricted to a few predefined ones; and the phone table can contain
as many columns as desired, to represent all sorts of details about each phone number.

CREATE TABLE fact_contacts (id BIG NT, nane STRING address STRING STORED AS PARQUET,;
CREATE TABLE di m phones

(

contact _id BIG NT

category STRING

i nternational _code STRI NG
area_code STRI NG

exchange STRI NG

extensi on STRI NG

nmobi | e BOOLEAN

carrier STRI NG

current BOOLEAN
service_start_date TI MESTAMP
servi ce_end_date TI MESTAMP

)
STORED AS PARQUET;
Figure 4: Traditional Relational Representation of Phone Numbers: Normalized Tables

To represent a schema equivalent to the one from Figure 4: Traditional Relational Representation of Phone Numbers:
Normalized Tables on page 180 using complex types, this example uses an ARRAY where each array element is a STRUCT.
As with the earlier complex type examples, each person can have an arbitrary set of associated phone numbers. Making
each array element into a STRUCT lets us associate multiple data items with each phone number, and give a separate
name and type to each data item. The STRUCT fields of the ARRAY elements reproduce the columns of the dimension
table from the previous example.

You can do all the same kinds of queries with the complex type schema as with the normalized schema from the
previous example. The advantages of the complex type design are in the areas of convenience and performance. Now
your backup and ETL processes only deal with a single table. When a query uses a join to cross-reference the information
about a person with their associated phone numbers, all the relevant data for each row resides in the same HDFS data
block, meaning each row can be processed on a single host without requiring network transmission.

CREATE TABLE cont acts_det ai | ed_phones

id BIA NT, nanme STRI NG address STRI NG
, phone ARRAY < STRUCT <
category: STRI NG
, international _code: STRI NG
, area_code: STRI NG
, exchange: STRI NG
, extension: STRI NG
, nhobile: BOOLEAN
, carrier: STRING
, current: BOOLEAN
, service_start_date: TIMESTAMP
, service_end_date: TI MESTAWP
>>
) STORED AS PARQUET;

Figure 5: Phone Numbers Represented as an Array of Structs

SQL Statements that Support Complex Types

The Impala SQL statements that support complex types are currently CREATE TABLE, ALTER TABLE, DESCRI BE,
LOAD DATA, and SELECT. That s, currently Impala can create or alter tables containing complex type columns, examine
the structure of a table containing complex type columns, import existing data files containing complex type columns
into a table, and query Parquet tables containing complex types.

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to
complex type columns, such as CREATE TABLE AS SELECT or | NSERT ... SELECT. To create data files containing
complex type data, use the Hive | NSERT statement, or another ETL mechanism such as MapReduce jobs, Spark jobs,
Pig, and so on.

DDL Statements and Complex Types

Column specifications for complex or nested types use < and > delimiters:

-- What goes inside the < > for an ARRAY is a single type, either a scalar or another
-- conpl ex type (ARRAY, STRUCT, or MAP).
CREATE TABLE array_t
(
id Bl G NT,
al ARRAY <STRI NG,
a2 ARRAY <BI @ NT>,
a3 ARRAY <TI| MESTAWVP>,
a4 ARRAY <STRUCT <f1l: STRING f2: INT, f3: BOOLEAN>>

)
STORED AS PARQUET

-- What goes inside the < > for a MAP is two comma-separated types specifying the types
of the key-val ue pair:
-- a scalar type representing the key, and a scalar or conplex type representing the
val ue.
CREATE TABLE map_t
(
id Bl G NT,
MAP <STRI NG STRI NG,
MAP <STRI NG BI @ NT>,
MAP <BI G NT, STRI NG>,
MAP <BI G NT, BI d NT>,
MAP <STRI NG ARRAY <STRI NG>>

CECEYS

)
STORED AS PARQUET;

-- What goes inside the <> for a STRUCT is a conma-separated |list of fields, each field
defined as

-- nane:type. The type can be a scalar or a conplex type. The field nanes for each STRUCT
do not clash

-- with the nanes of table colums or fields in other STRUCTs. A STRUCT is nobst often
used inside

-- an ARRAY or a MAP rather than as a top-level colum.

CREATE TABLE struct _t

id Bl G NT,

sl STRUCT <f1l: STRING f2: BIG NT>,

s2 ARRAY <STRUCT <f1: INT, f2: TIMESTAMP>>,

s3 MAP <BI G NT, STRUCT <nane: STRING birthday: TI MESTAMP>>

)
STORED AS PARQUET;

Queries and Complex Types

The result set of an Impala query always contains all scalar types; the elements and fields within any complex type
queries must be “unpacked” using join queries. A query cannot directly retrieve the entire value for a complex type
column. Impala returns an error in this case. Queries using SELECT * are allowed for tables with complex types, but
the columns with complex types are skipped.

The following example shows how referring directly to a complex type column returns an error, while SELECT * on
the same table succeeds, but only retrieves the scalar columns.

E,’ Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted
from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 195 for the table definitions.

SELECT c_orders FROM custoner LIMT 1;

ERROR Anal ysi sException: Expr 'c_orders' in select list returns a conplex type

' ARRAY<STRUCT<o0_or derkey: Bl G NT, o_orderstatus: STRING ...

| _recei ptdate: STRING | _shi pi nstruct: STRING | _shi pnode: STRI NG | _coment : STRI NG>>>" .
Only scalar types are allowed in the select list.

-- Oiginal colum has several scalar and one conpl ex col um.
DESCRI BE cust omer ;

S o e e e e e e e e e e e e e e +

| nane | type

e e e o e e e e e e e e e e e e e e e e e +

| c_custkey | bigint |

| c_name | string |
c_orders array<struct<

o_orderstatus: string,

I I
| o_order key: bi gi nt, |
I I
[o_total price:deciml (12, 2), |

I | >> I

-- When we SELECT * fromthat table, only the scal ar columms cone back in the result
set.
CREATE TABLE sel ect _star_customer STORED AS PARQUET AS SELECT * FROM cust oner;

-- The c_orders colum, being of conplex type, was not included in the SELECT * result
set.
DESC sel ect _star_cust oner;

. . +
| nane | type |
. N +
c_custkey	bigint
c_name	string
c_address	string
c_nationkey	smallint
c_phone	string [
c_acct bal	decimal (12,2)
c_nmktsegnent	string
c_coment	string [
e e e e S +

References to fields within STRUCT columns use dot notation. If the field name is unambiguous, you can omit qualifiers
such as table name, column name, or even the | TEMor VALUE pseudocolumn names for STRUCT elements inside an
ARRAY or a VAP.

SELECT id, address.city FROM custonmers WHERE address. zip = 94305;

References to elements within ARRAY columns use the | TEMpseudocolumn:

sel ect r_nane, r_nations.itemn_nanme fromregion, region.r_nations limt 7;

| r_nane | item n_nane |
tomm - . +
EURCPE	UNI TED Kl NGDOM
EURCPE	RUSSI A
EURCPE	ROVANI A
EURCPE	GERMANY
EUROPE	FRANCE
ASIA	VIETNAM
ASIA	CHINA
tomm e - . +

References to fields within MAP columns use the KEY and VALUE pseudocolumns. In this example, once the query
establishes the alias MAP_FI ELD for a MAP column with a STRI NGkey and an | NT value, the query can refer to
MAP_FI ELD. KEY and MAP_FI ELD. VALUE, which have zero, one, or many instances for each row from the containing
table.

DESCRI BE t abl e_0;

ield_O0 | string |
| field 1 | map<string,int> |

SELECT field_
FROM t abl e

VWHERE | engt h

LIMT 10;

.key, map_field.value
ield_1 AS map_field

| field 0 | key | val ue |

b gshsgkvd NULL
b twtcxj 6 18
b 2vp5 39
b fhOs 13
v 2 41
\% 8b58nk 20
Y hw 16
Y 65l 388pyt 29
% 03k68g91z 30
Y r2hl g5b NULL
B R S B +

When complex types are nested inside each other, you use a combination of joins, pseudocolumn names, and dot
notation to refer to specific fields at the appropriate level. This is the most frequent form of query syntax for complex
columns, because the typical use case involves two levels of complex types, such as an ARRAY of STRUCT elements.

SELECT id, phone_nunbers. area_code FROM contact _i nfo_nany_structs |INNER JO N
contact _i nfo_many_structs. phone_nunbers phone_nunbers LIMT 3;

You can express relationships between ARRAY and MAP columns at different levels as joins. You include comparison
operators between fields at the top level and within the nested type columns so that Impala can do the appropriate
join operation.

’ Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted
El from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 195 for the table definitions.

For example, the following queries work equivalently. They each return customer and order data for customers that
have at least one order.

SELECT c.c_nane, o.0_orderkey FROM custonmer ¢, c.c_orders o LIMT 5;
+

Custoner#000072578	558821
Custoner #000072578	2079810
Custonmer#000072578	5768068
Custoner #000072578	1805604
Custoner#000072578	3436389

| c_name | o_orderkey |
o e e e e e e oo R +
Custoner#000072578	558821
Custoner#000072578	2079810
Custoner#000072578	5768068
Custoner#000072578	1805604
Custoner#000072578	3436389
o e e e e e e e oo R +

The following query using an outer join returns customers that have orders, plus customers with no orders (no entries
in the C_ORDERS array):

SELECT c. c_custkey, o.o0_orderkey
FROM custoner ¢ LEFT QUTER JO N c.c_orders o

LIMT 5;

S S +
| c_custkey | o_orderkey |
S R +
| 60210 | NuULL |
| 147873 | NULL |
| 72578 | 558821 [

| 72578 | 2079810 |
| 72578 | 5768068 |

The following query returns only customers that have no orders. (With LEFT ANTI JO Nor LEFT SEM JA N, the
query can only refer to columns from the left-hand table, because by definition there is no matching information in
the right-hand table.)

SELECT c. c_custkey, c.c_nane
FROM custoner ¢ LEFT ANTI JON c.c_orders o

LIMT 5;

S o e e e e ea oo +
| c_custkey | c_nane [
R o e e e e e e oo +
60210	Custoner #000060210
147873	Custoner#000147873
141576	Custoner#000141576
85365	Custoner #000085365
70998	Custoner #000070998
S o e e e e ea oo +

You can also perform correlated subqueries to examine the properties of complex type columns for each row in the
result set.

Count the number of orders per customer. Note the correlated reference to the table alias C. The COUNT(*) operation
applies to all the elements of the C_ORDERS array for the corresponding row, avoiding the need for a GROUP BY clause.

sel ect c_nanme, howrany FROM custoner c, (SELECT COUNT(*) howrany FROM c.c_orders) v
limt 5;

o eeee e e Fommm e - +
| c_name | howmany |
T Fommm e e +
| Custoner #000030065 | 15 [
Customer#000065455	18
Custoner#000113644	21
Custoner#000111078	0
Custoner#000024621	O [
R R - +

Count the number of orders per customer, ignoring any customers that have not placed any orders:

SELECT c_nane, howrany_orders
FROM
customer c,
(SELECT COUNT(*) howmany_orders FROM c.c_orders) subql
WHERE hownmany_orders > 0
LIMT 5;

| Custoner #000072578 | 7
| Custoner#000046378 | 2
| Custoner #000069815 | 1
| Custoner#000079058 | 1
| Custoner#000092239 | 2

I
I
I
|
Count the number of line items in each order. The reference to C. C_ORDERS in the FROMclause is needed because

the O_ORDERKEY field is a member of the elements in the C_ORDERS array. The subquery labelled SUBQL is correlated:
it is re-evaluated for the C_ORDERS. O LI NEI TEMS array from each row of the CUSTOVERS table.

SELECT c_nane, o_orderkey, howrany_line_itens
FROM

custoner c,

c.c_orders t2,

(SELECT COUNT(*) howmany_line_itenms FROM c.c_orders.o_lineitens) subql
VWHERE howmany_line_itens > 0

LIMT 5;

o e e e e e e e [o e e e e e e oo +
| c_name | o_orderkey | howmany_line_itens |
o e e e e e m e B o e e e a e oo +
| Custoner #000020890 | 1884930 | 95 [
| Custoner #000020890 | 4570754 | 95 [
| Custoner#000020890 | 3771072 | 95 |
| Custoner#000020890 | 2555489 | 95 [
| Custoner#000020890 | 919171 | 95 |
o e e e e e e e oo B o e e e e e e oo +

Get the number of orders, the average order price, and the maximum items in any order per customer. For this example,
the subqueries labelled SUBQL and SUBQ are correlated: they are re-evaluated for each row from the original CUSTOVER
table, and only apply to the complex columns associated with that row.

SELECT c_nane, howmrany, average_price, npst_itens

FROM
custoner c,
(SELECT COUNT(*) howmany, AVG o_total price) average price FROM c.c_orders) subql,
(SELECT MAX(Il _quantity) nost_items FROM c.c_orders.o_lineitens) subqg2

LIMT 5;

o e e e e e aaa s [P R +
| c_nane | howrany | average_price | nost_itens |
e e e e e e e Fom e e o m e e oo n o e e m o +
Custoner#000030065	15	128908. 34	50.00
Custoner #000088191	0	NULL	NULL
Custoner#000101555	10	164250. 31	50.00
Custoner #000022092	0	NULL	NULL
Custoner#000036277	27	166040. 06	50.00
e e e e e e e Fom e e o m e e oo n o e e m o +

For example, these queries show how to access information about the ARRAY elements within the CUSTOVER table
from the “nested TPC-H” schema, starting with the initial ARRAY elements and progressing to examine the STRUCT
fields of the ARRAY, and then the elements nested within another ARRAY of STRUCT:

-- How many orders does each custoner have?
-- The type of the ARRAY columm doesn't matter, this is just counting the el enents.
SELECT c_cust key, count(*)
FROM cust oner, custoner.c_orders
GROUP BY c_cust key

LIMT 5;

Foeeeme e tomm e +
| c_custkey | count(*) |
Foeeeme e tomm e a e +
61081	21
115987	15
69685	19
109124	15
50491	12
Foeeemee e tommm e a e +

-- How many line itens are part of each custoner order?
-- Now we exanmine a field froma STRUCT nested inside the ARRAY.
SELECT c_custkey, c_orders. o_orderkey, count(*)

FROM custoner, customer.c_orders c_orders, c_orders.o_lineitens
GROUP BY c_custkey, c_orders. o_orderkey

LIMT 5;

Foeeeme e . Fommee e +
| c_custkey | o_orderkey | count(*) |
Foeeeme e R Feommee e

63367	4985959	7
53989	1972230	2
143513	5750498	5
17849	4857989	1
89881	1046437	1
Foeeemee e T Fommee e +

-- What are the line itens in each custoner order?

-- One of the STRUCT fields inside the ARRAY is another
-- ARRAY containing STRUCT el ements. The join finds
-- all the related items fromboth | evel s of ARRAY.
SELECT c_cust key, o_orderkey, | _partkey

FROM cust omer, customer.c_orders, c_orders.o_|lineitens

LIMT 5;

Foeemme e . Fommmeea e +
| c_custkey | o_orderkey | |_partkey |
Foeemmee e B e
113644	2738497	175846
113644	2738497	27309
113644	2738497	175873
113644	2738497	88559
113644	2738497	8032
Foeemmea e . Fommmeaaaaa +

Pseudocolumns for ARRAY and MAP Types

Each element in an ARRAY type has a position, indexed starting from zero, and a value. Each element in a MAP type
represents a key-value pair. Impala provides pseudocolumns that let you retrieve this metadata as part of a query, or
filter query results by including such things in a WHERE clause. You refer to the pseudocolumns as part of qualified
column names in queries:

e | TEM The value of an array element. If the ARRAY contains STRUCT elements, you can refer to either
array_nane. | TEM fi el d_nane or use the shorthand array_nane. fi el d_nare.

e POS: The position of an element within an array.

e KEY: The value forming the first part of a key-value pair in a map. It is not necessarily unique.

e VALUE: The data item forming the second part of a key-value pair in a map. If the VALUE part of the MAP element
isa STRUCT, you can refer to eithermap_name. VALUE. f i el d_nane or use the shorthand map_nare. fi el d_nane.

ITEM and POS Pseudocolumns

When an ARRAY column contains STRUCT elements, you can refer to a field within the STRUCT using a qualified name
of the form array_col umm. fi el d_nane. If the ARRAY contains scalar values, Impala recognizes the special name
array_col um. | TEMto represent the value of each scalar array element. For example, if a column contained an
ARRAY where each element was a STRI NG, you would use ar r ay_nane. | TEMto refer to each scalar value in the
SELECT list, or the WHERE or other clauses.

This example shows a table with two ARRAY columns whose elements are of the scalar type STRI NG When referring
to the values of the array elements in the SELECT list, WHERE clause, or ORDER BY clause, you use the | TEM
pseudocolumn because within the array, the individual elements have no defined names.

create TABLE persons_of _interest

(

person_i d Bl G NT,

al i ases ARRAY <STRI NG,
associ at es ARRAY <STRI NG,
real _name STRI NG

)
STORED AS PARQUET;,

-- Get all the aliases of each person.
SELECT real _name, aliases.|TEM

FROM persons_of _interest, persons_of _interest.aliases
ORDER BY real _nane, aliases.item

-- Search for particul ar associ ates of each person.
SELECT real name, associates.|TEM

FROM persons_of _interest, persons_of _interest.associates
VHERE associ ates.item LI KE ' % MacGQuffin';

Because an array is inherently an ordered data structure, Impala recognizes the special name ar r ay_col um. PCS to
represent the numeric position of each element within the array. The PGS pseudocolumn lets you filter or reorder the
result set based on the sequence of array elements.

The following example uses a table from a flattened version of the TPC-H schema. The REG ONtable only has a few
rows, such as one row for Europe and one for Asia. The row for each region represents all the countries in that region
as an ARRAY of STRUCT elements:

[l ocal host:21000] > desc region;

Fom e e o m m ee e eem o +
| name | type I
S o m eem o +
| r_regionkey | smallint |
| r_nane | string [
| r_coment | string |
| r_nations | array<struct<n_nationkey:snallint,n_nanme:string, n_comrent:string>> |
. R T e e e e ... +

To find the countries within a specific region, you use a join query. To find out the order of elements in the array, you
also refer to the PCS pseudocolumn in the select list:

[l ocal host:21000] > SELECT rl.r_name, r2.n_nanme, r2.PCS
> FROMregion rl INNER JON rl.r_nations r2
> WHERE r1.r_nane = 'ASIA'";

Fomm e e oo [Homm - - +
| r_name | n_nane | pos |
Fomm e e e o - B Homm - - +
| ASIA | VIETNAM | O [
| ASIA | CHI NA | 1 [
| ASIA | JAPAN | 2 [
| ASIA | INDONESIA | 3 [
| ASIA | IND A | 4 [
Fomm o m e oo [Homm - - +

Once you know the positions of the elements, you can use that information in subsequent queries, for example to
change the ordering of results from the complex type column or to filter certain elements from the array:

[l ocal host:21000] > SELECT rl.r_name, r2.n_nane, r2.PCS
> FROM region rl INNER JON rl.r_nations r2
> WHERE r1.r_nanme = 'ASIA
> ORDER BY r2. POS DESC,

S RS [Ry [. +

| r_name | n_nane | pos |

S RS Foemmamaaeaa [e +

| ASIA | INDA | 4 |

| ASIA | INDONESIA | 3 [

| ASIA | JAPAN | 2 |

| ASIA | CH NA | 1 |

| ASIA | VIETNAM | O [

S RS [Ry e +

[l ocal host:21000] > SELECT rl.r_nane, r2.n_nanme, r2.PCS
> FROMregion rl INNER JON rl.r_nations r2
> WHERE rl.r_nane = "ASIA° AND r2. PCS BETVWEEN 1 and 3;

S RS [Ry [. +
| r_name | n_nane | pos |
S RS Foemmamaaeaa [e +
| ASIA | CHI NA | 1 |
| ASIA | JAPAN | 2

| ASIA | INDONESIA | 3 [
S RS [Ry e +

KEY and VALUE Pseudocolumns

The MAP data type is suitable for representing sparse or wide data structures, where each row might only have entries
for a small subset of named fields. Because the element names (the map keys) vary depending on the row, a query
must be able to refer to both the key and the value parts of each key-value pair. The KEY and VALUE pseudocolumns
let you refer to the parts of the key-value pair independently within the query, as map_col um. KEY and

map_col um. VALUE.

The KEY must always be a scalar type, such as STRI NG Bl G NT, or TI MESTAMP. It can be NULL. Values of the KEY field
are not necessarily unique within the same MAP. You apply any required DI STI NCT, GROUP BY, and other clauses in
the query, and loop through the result set to process all the values matching any specified keys.

The VALUE can be either a scalar type or another complex type. If the VALUE is a STRUCT, you can construct a qualified
name map_col um. VALUE. struct _fi el d to refer to the individual fields inside the value part. If the VALUE is an
ARRAY or another MAP, you must include another join condition that establishes a table alias for map_col urm. VALUE,
and then construct another qualified name using that alias, for example t abl e_al i as. | TEMort abl e_al i as. KEY
andtabl e_al i as. VALUE

The following example shows different ways to access a MAP column using the KEY and VALUE pseudocolumns. The
DETAI LS column has a STRI NGfirst part with short, standardized values such as' Recurring',' Lucid', or

" Anxi et y' . This is the “key” that is used to look up particular kinds of elements from the MAP. The second part, also
a STRI NG is a longer free-form explanation. Impala gives you the standard pseudocolumn names KEY and VAL UE for
the two parts, and you apply your own conventions and interpretations to the underlying values.

E,i Note: If you find that the single-item nature of the VALUE makes it difficult to model your data

accurately, the solution is typically to add some nesting to the complex type. For example, to have
several sets of key-value pairs, make the column an ARRAY whose elements are MAP. To make a set
of key-value pairs that holds more elaborate information, make a MAP column whose VALUE part
contains an ARRAY or a STRUCT.

CREATE TABLE dr eam j our nal

dream.id Bl G NT,
details MAP <STRI NG STRI NG

)
STORED AS PARQUET;

-- What are all the types of dreans that are recorded?
SELECT DI STI NCT details. KEY FROM dream journal, dreamjournal.details;

-- How many lucid dreans were recorded?
-- Because there is no GROUP BY, we count the 'Lucid keys across all rows.
SELECT COUNT(det ai | s. KEY)
FROM dream journal, dreamjournal.details
WHERE details. KEY = 'Lucid';

-- Print a report of a subset of dreans, filtering based on both the | ookup key
-- and the detailed val ue.
SELECT dream.id, details.KEY AS "Dream Type", details.VALUE AS "Dream Sunmary"
FROM dream journal, dreamjournal.details
VWHERE
details.KEY IN (' Happy', 'Pleasant', 'Joyous')
AND details. VALUE LIKE ' %hil dhood% ;

The following example shows a more elaborate version of the previous table, where the VALUE part of the MAP entry
is @ STRUCT rather than a scalar type. Now instead of referring to the VALUE pseudocolumn directly, you use dot
notation to refer to the STRUCT fields inside it.

CREATE TABLE better_dreamj ournal

dream.id Bl G NT,
details MAP <STRI NG STRUCT <summary: STRING when_happened: TI MESTAMP, durati on:
DECI MAL(5, 2), woke_up: BOOLEAN> >

)
STORED AS PARQUET;,

-- Do nore elaborate reporting and filtering by examining nultiple attributes wthin
t he same dream
SELECT dream.id, details.KEY AS "Dream Type", details.VALUE. sunmary AS "Dream Sunmary",
details. VALUE. duration AS "Duration"
FROM better_dream journal, better_dreamjournal.details

VWHERE
details. KEY IN (' Anxiety', 'Ni ghtnare')
AND det ai | s. VALUE. duration > 60
AND det ai | s. VALUE. woke_up = TRUE;

-- Renenber that if the I TEM or VALUE contains a STRUCT, you can reference
-- the STRUCT fields directly without the .1 TEM or .VALUE qualifier.
SELECT dream.id, details.KEY AS "Dream Type", details.sunmmary AS "Dream Sunmary",
details.duration AS "Duration”
FROM better_dream journal, better_dreamjournal.details
VWHERE
details. KEY IN (' Anxiety', 'Ni ghtnare')
AND detail s.duration > 60
AND det ai | s. woke_up = TRUE;

Loading Data Containing Complex Types

Because the Impala | NSERT statement does not currently support creating new data with complex type columns, or
copying existing complex type values from one table to another, you primarily use Impala to query Parquet tables with
complex types where the data was inserted through Hive, or create tables with complex types where you already have
existing Parquet data files.

If you have created a Hive table with the Parquet file format and containing complex types, use the same table for
Impala queries with no changes. If you have such a Hive table in some other format, use a Hive CREATE TABLE AS
SELECT ... STORED AS PARQUET or I NSERT ... SELECT statement to produce an equivalent Parquet table that
Impala can query.

If you have existing Parquet data files containing complex types, located outside of any Impala or Hive table, such as
data files created by Spark jobs, you can use an Impala CREATE TABLE ... STORED AS PARQUET statement,
followed by an Impala LOAD DATA statement to move the data files into the table. As an alternative, you can use an
Impala CREATE EXTERNAL TABLE statement to create a table pointing to the HDFS directory that already contains
the data files.

Perhaps the simplest way to get started with complex type data is to take a denormalized table containing duplicated
values, and use an | NSERT ... SELECT statement to copy the data into a Parquet table and condense the repeated
values into complex types. With the Hive | NSERT statement, you use the COLLECT_LI ST(), NAMED_STRUCT(), and
MAP() constructor functions within a GROUP BY query to produce the complex type values. COLLECT_LI ST() turns
a sequence of values into an ARRAY. NAMED_STRUCT() uses the first, third, and so on arguments as the field names
for a STRUCT, to match the field names from the CREATE TABLE statement.

E,’ Note: Because Hive currently cannot construct individual rows using complex types through the
I NSERT ... VALUES syntax, you prepare the data in flat form in a separate table, then copy it to
the table with complex columns using | NSERT ... SELECT and the complex type constructors. See
Constructing Parquet Files with Complex Columns Using Hive on page 196 for examples.

Using Complex Types as Nested Types

The ARRAY, STRUCT, and MAP types can be the top-level types for “nested type” columns. That is, each of these types
can contain other complex or scalar types, with multiple levels of nesting to a maximum depth of 100. For example,
you can have an array of structures, a map containing other maps, a structure containing an array of other structures,
and so on. At the lowest level, there are always scalar types making up the fields of a STRUCT, elements of an ARRAY,
and keys and values of a MAP.

Schemas involving complex types typically use some level of nesting for the complex type columns.

For example, to model a relationship like a dimension table and a fact table, you typically use an ARRAY where each
array element is a STRUCT. The STRUCT fields represent what would traditionally be columns in a separate joined
table. It makes little sense to use a STRUCT as the top-level type for a column, because you could just make the fields
of the STRUCT into regular table columns.

Perhaps the only use case for a top-level STRUCT would be to to allow STRUCT fields with the same name as columns
to coexist in the same table. The following example shows how a table could have a column named | D, and two separate

STRUCT fields also named I D. Because the STRUCT fields are always referenced using qualified names, the identical
I Dnames do not cause a conflict.

CREATE TABLE struct _nanespaces

id BIG NT
, 81 STRUCT < id: BIGNT, fieldl: STRING >
s2 STRUCT < id: BIGQ NT, when_happened: TIMESTAMP >

)
STORED AS PARQUET;

select id, sl.id, s2.id from struct_nanespaces;

It is common to make the value portion of each key-value pair in a MAP a STRUCT, ARRAY of STRUCT, or other complex
type variation. That way, each key in the MAP can be associated with a flexible and extensible data structure. The key
values are not predefined ahead of time (other than by specifying their data type). Therefore, the MAP can accommodate
a rapidly evolving schema, or sparse data structures where each row contains only a few data values drawn from a
large set of possible choices.

Although you can use an ARRAY of scalar values as the top-level column in a table, such a simple array is typically of
limited use for analytic queries. The only property of the array elements, aside from the element value, is the ordering
sequence available through the POS pseudocolumn. To record any additional item about each array element, such as
a TI MESTAMP or a symbolic name, you use an ARRAY of STRUCT rather than of scalar values.

If you are considering having multiple ARRAY or MAP columns, with related items under the same position in each
ARRAY or the same key in each MAP, prefer to use a STRUCT to group all the related items into a single ARRAY or MAP.
Doing so avoids the additional storage overhead and potential duplication of key values from having an extra complex
type column. Also, because each ARRAY or MAP that you reference in the query SELECT list requires an additional join
clause, minimizing the number of complex type columns also makes the query easier to read and maintain, relying
more on dot notation to refer to the relevant fields rather than a sequence of join clauses.

For example, here is a table with several complex type columns all at the top level and containing only scalar types.
To retrieve every data item for the row requires a separate join for each ARRAY or MAP column. The fields of the STRUCT
can be referenced using dot notation, but there is no real advantage to using the STRUCT at the top level rather than
just making separate columns FI ELD1 and FI ELD2.

CREATE TABLE conpl ex_types_top_I evel

id Bl G NT,
al ARRAY<I| NT>,
a2 ARRAY<STRI NG>,
s STRUCT<fieldl: INT, field2: STRI NG,
-- Nureric | ookup key for a string val ue.
nml MAP<I NT, STRI NG>,
-- String | ookup key for a numeric val ue.
n2 MAP<STRI NG, | NT>

)
STORED AS PARQUET

descri be conpl ex_types_top_|l evel;
+

oo oo
| name | type |
S oo +
id bi gi nt
al array<int>
a2 array<string>
S struct<
fieldl:int,
field2:string
>
ml map<i nt, string>
1% map<string,int>
S oo +
sel ect

al.item
a2.item
s.fieldl,
s.field2,
ml. key,
ml. val ue,
2. key,
n2. val ue

from
conpl ex_types_top_| evel,
conpl ex_types_top_| evel .
conpl ex_types_top_l evel .
conpl ex_types_top_| evel .
conpl ex_types_top_l evel .

For example, here is a table with columns containing an ARRAY of STRUCT, a MAP where each key value is a STRUCT,
and a MAP where each key value is an ARRAY of STRUCT.

CREATE TABLE nesting_denpo

user _id BI G NT,

fam | y_nenbers ARRAY < STRUCT < nane: STRING enmil: STRING date_joined: TI MESTAWP

>>

foo map < STRING STRUCT < f1: INT, f2: INT, f3: TIMESTAMP, f4: BOOLEAN >>,
ganmeplay MAP < STRING , ARRAY < STRUCT <

nane: STRING highest: BIGNT, |ives_used:

>>>

)
STORED AS PARQUET;

I NT, total _spent: DECI MAL(16, 2)

The DESCRI BE statement rearranges the < and > separators and the field names within each STRUCT for easy readability:

DESCRI BE nesti ng_deno;

e e e e e e e e e e e e e
| name
e e e e e e e e e e e e e
user _id
fam |y_menbers
foo
ganepl ay
e e e e e e e e m - -

+

bi gi nt
array<struct<

nane: string,

emai |l : string,

date_j oi ned: ti mest anp
>>

map<string, struct<
i
i

nt,

nt,
ti mest anp,
4: bool ean

p<
f1:
f2:
f3:
f
>>
map<string, array<struct<

nane: string,

hi ghest : bi gi nt,

l'ives_used:int,

tot al _spent: deci mal (16, 2)

>>>

To query the complex type columns, you use join notation to refer to the lowest-level scalar values. If the value is an
ARRAY element, the fully qualified name includes the | TEMpseudocolumn. If the value is inside a MAP, the fully qualified
name includes the KEY or VALUE pseudocolumn. Each reference to a different ARRAY or MAP (even if nested inside
another complex type) requires an additional join clause.

SELECT

-- The |l one scal ar

user _id

field doesn't require any dot notation or join clauses.

-- Retrieve the fields of a STRUCT inside an ARRAY.
-- The FAM LY _MEMBERS nane refers to the FAMLY MEMBERS table alias defined later in

t he FROM cl ause.
fam |y_nenbers.item nane
, famly_nmenbers.item emil
fam |y_nenbers.item date_joi ned
-- Retrieve the KEY and VALUE fields of a MAP, with the val ue being a STRUCT consi sting
of nore fields.
-- The FOO nane refers to the FOO table alias defined later in the FROM cl ause.
, foo. key
, foo.value.f1
, foo.value.f2
, foo.value.f3
, foo.value.f4
-- Retrieve the KEY fields of a MAP, and expand the VALUE part into ARRAY itens consisting
of STRUCT fi el ds.
-- The GAMEPLAY nane refers to the GAMEPLAY table alias defined later in the FROM cl ause
(referring to the MAP iten).
-- The GAME N nane refers to the GAME N table alias defined later in the FROM cl ause
(referring to the ARRAY
-- inside the MAP item s VALUE part.)
, gamepl ay. key
, game_n. name
, game_n. hi ghest
, gane_n.lives_used
, game_n.total _spent
FROM
nesting_deno
nesting_deno.fanm | y_nenbers AS fam |y_nenbers
nesti ng_deno. foo AS foo
nesti ng_deno. ganepl ay AS ganepl ay
nesti ng_deno. ganepl ay. val ue AS gane_n;

Once you understand the notation to refer to a particular data item in the SELECT list, you can use the same qualified
name to refer to that data item in other parts of the query, such as the WHERE clause, ORDER BY or GROUP BY clauses,
or calls to built-in functions. For example, you might frequently retrieve the VALUE part of each MAP item in the SELECT
list, while choosing the specific MAP items by running comparisons against the KEY part in the WHERE clause.

Accessing Complex Type Data in Flattened Form Using Views

The layout of complex and nested types is largely a physical consideration. The complex type columns reside in the
same data files rather than in separate normalized tables, for your convenience in managing related data sets and
performance in querying related data sets. You can use views to treat tables with complex types as if they were
flattened. By putting the join logic and references to the complex type columns in the view definition, you can query
the same tables using existing queries intended for tables containing only scalar columns. This technique also lets you
use tables with complex types with Bl tools that are not aware of the data types and query notation for accessing
complex type columns.

For example, the variation of the TPC-H schema containing complex types has a table REG ON. This table has 5 rows,
corresponding to 5 regions such as NORTH AMERI CA and AFRI CA. Each row has an ARRAY column, where each array
item is a STRUCT containing details about a country in that region.

DESCRI BE r egi on;

Fem e e e e m e e e e e eee e oo +
| name | type |
Fem e e oo e e m e e e e eeeeaan +

r_regi onkey smal | i nt

r_name string

r_conment string

r_nations array<struct<

n_name: string,
n_conmment: string

| |
I I
| |
| n_nationkey:smal lint, |
I I
| |
| >> I

The same data could be represented in traditional denormalized form, as a single table where the information about
each region is repeated over and over, alongside the information about each country. The nested complex types let
us avoid the repetition, while still keeping the data in a single table rather than normalizing across multiple tables.

To use this table with a JDBC or ODBC application that expected scalar columns, we could create a view that represented
the result set as a set of scalar columns (three columns from the original table, plus three more from the STRUCT fields
of the array elements). In the following examples, any column with an R_* prefix is taken unchanged from the original
table, while any column with an N_* prefix is extracted from the STRUCT inside the ARRAY.

CREATE VI EWr egi on_vi ew AS
SELECT
r_regi onkey,
r_nane,
r_comment,
array_field.itemn_nati onkey AS n_nati onkey,
array_field.itemn_name AS n_nane,
array_field.n_coment AS n_conment

region, region.r_nations AS array_field;

Then we point the application queries at the view rather than the original table. From the perspective of the view,
there are 25 rows in the result set, one for each nation in each region, and queries can refer freely to fields related to
the region or the nation.

-- Retrieve info such as the nation nane fromthe original R NATIONS array el enents.
sel ect n_nanme fromregion_view where r_nane in (' EUROPE , 'ASIA");

UNI TED KI NGDOM
RUSSI A

ROVANI A
GERMANY

FRANCE

VI ETNAM

CHI NA

JAPAN

| NDONESI A

I NDI A

-- UNI TED STATES in AMERI CA and UNI TED Kl NGDOM i n EUROPE.
SELECT DI STI NCT r_nane FROM regi on_vi ew WHERE n_nane LI KE ' UNI TED% ;

| r_nane |
Fomm e e oo n +
| AMERI CA |
| EURCPE |
- +

-- For conciseness, we only list sone view colums in the SELECT I|ist.

-- SELECT * would bring back all the data, unlike SELECT *

-- queries on the original table with conplex type col ums.

SELECT r_regi onkey, r_nane, n_nationkey, n_nane FROMregion_view LIMT 7;
S R S oo +

o e +
3	EURCPE	23	UNI TED KI NGDOM
3	EURCPE	22	RUSSI A
3	EURCPE	19	ROVANI A
3	EURCPE	7	GERVANY
3	EUROPE	6	FRANCE
2	ASIA	21	VI ETNAM
2	ASIA	18	CHI NA
oo e a - oo o +

Tutorials and Examples for Complex Types

The following examples illustrate the query syntax for some common use cases involving complex type columns.

Sample Schema and Data for Experimenting with Impala Complex Types

The tables used for earlier examples of complex type syntax are trivial ones with no actual data. The more substantial
examples of the complex type feature use these tables, adapted from the schema used for TPC-H testing:

SHOW TABLES

| custoner
| part I
| region |
| supplier

S o e e e e e e e e e e e e e e e e e +
| name | type
e e e Fo e e e e e e e e e e e e e e e oo +
c_cust key bi gi nt
c_namne string
c_address string
c_nati onkey smal | int
c_phone string
c_acct bal deci mal (12, 2)
c_nkt segnent string
c_coment string
c_orders array<struct<

o_order key: bi gi nt,
o_orderstatus:string,
o_total price:decimal (12, 2),
o_orderdate:string
o_orderpriority:string,
o_clerk:string,
o_shippriority:int,
o_coment:string,
o_lineitems:array<struct<

| _partkey: bigint,

| _suppkey: bi gi nt,

| _I'i nenunber:int,

| _quantity:decinmal (12, 2),

| _ext endedpri ce: deci nal (12, 2),

| _di scount:decinal (12, 2),

| _tax:decimal (12, 2),

| _returnflag:string,

| _linestatus:string,

| _shi pdate: string,
| _commitdate:string
| _receiptdate:string
| _shipinstruct:string,
| _shi pnode: stri ng,
| _commrent:string

>>
>>

e e e o e e e e e e e e e e e m e e e +
DESCRI BE part;
oo e +
| name | type
T ——_ e +

p_partkey bi gi nt

p_nane string

p_nfgr string

p_brand string

p_type string

p_si ze i nt

p_cont ai ner string

p_retail price deci mal (12, 2)

p_conment string
e . +

S o m eem o +
| r_regionkey | smallint |
| r_nane | string [
| r_coment | string |
| r_nations | array<struct<n_nationkey:snallint,n_nanme:string, n_comrent:string>> |
. R T e e e e ...

Fom e e o ee i eao o +
| name | type
S o e m e e e e e e e e e e e e e e e e e e e memea— o +
s_suppkey bi gi nt
S_namne string
s_address string
s_nat i onkey smal i nt
s_phone string
s_acct bal deci mal (12, 2)
s_coment string
S_partsupps array<struct <ps_partkey: bi gi nt,
ps_avail qty:int, ps_suppl ycost: deci mal (12, 2),
ps_comment : string>>

The volume of data used in the following examples is:

SELECT count (*) FROM cust omer;
[SR, +

| count(*) |

T +
| count(*) |
Fem e e +
| 200000 |
Fom e e +

T +
| count(*) |
Fem e e +
| 10000 |
Fom e e +

Constructing Parquet Files with Complex Columns Using Hive

The following examples demonstrate the Hive syntax to transform flat data (tables with all scalar columns) into Parquet
tables where Impala can query the complex type columns. Each example shows the full sequence of steps, including
switching back and forth between Impala and Hive. Although the source table can use any file format, the destination
table must use the Parquet file format.

Create table with ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hi ve shell or beel i ne) for the data loading step. The data starts in flattened, denormalized form in a text table.

Hive writes the corresponding Parquet data, including an ARRAY column. Then Impala can run analytic queries on the
Parquet table, using join notation to unpack the ARRAY column.

/* Initial DDL and | oading of flat, denormalized data happens in inpal a-shell */CREATE
TABLE flat _array (country STRING city STRING ;| NSERT I NTO flat_array VALUES
(' Canada', 'Toronto') , ('Canada', 'Vancouver') , ('Canada', "St. John\'s")

, (' Canada', 'Saint John') , ('Canada', 'Mntreal') , ('Canada', 'Halifax')
, (' Canada', 'Wnnipeg') , ('Canada', 'Calgary') , ('Canada', 'Saskatoon')
, ('Canada', 'Otawa') , ('Canada', 'Yellowknife') , ('France', 'Paris')

, ("France', "Nice') , ('France', 'Marseilles') , ('France', 'Cannes')

, ("Geece', "Athens') , ('Geece', 'Piraeus') , ('Geece', '"Hania')

, ("Geece', "Heraklion') , ('Geece', 'Rethymon') , ('Geece', "Fira');

CREATE TABLE conpl ex_array (country STRING city ARRAY <STRI NG>) STORED AS PARQUET;

/* Conversion to Parquet and conpl ex and/or nested col ums happens in Hive */

I NSERT | NTO conpl ex_array SELECT country, collect_list(city) FROMflat_array GROUP BY
country;

Query 1D = dev_20151108160808_84477ff 2- 82bd- 4ba4- 9a77- 554f a7b8c0ch

Total jobs =1

Launching Job 1 out of 1

/* Back to inmpal a-shell again for analytic queries */

REFRESH conpl ex_array;
SELECT country, city.item FROM conpl ex_array, conplex_array.city
+

o oo

| country | item |

Fommm e o +
Canada Toronto
Canada Vancouver

Canada St. John's
Canada Sai nt John
Canada Mont r eal
Canada Hal i f ax
Canada W nni peg
Canada Cal gary
Canada Saskat oon
Canada O tawa
Canada Yel | onwkni f e

France Pari s

France Ni ce

France Mar sei |l | es

France Cannes

Gr eece At hens

Greece Pi r aeus

Gr eece Hani a

G eece Her akl i on

G eece Ret hymrmon

G eece Fira
o o +

Create table with STRUCT and ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hi ve shell or beel i ne) for the data loading step. The data starts in flattened, denormalized form in a text table.
Hive writes the corresponding Parquet data, including a STRUCT column with an ARRAY field. Then Impala can run
analytic queries on the Parquet table, using join notation to unpack the ARRAY field from the STRUCT column.

/* Initial DDL and | oading of flat, denormalized data happens in inpal a-shell */
CREATE TABLE fl at_struct_array (continent STRING country STRING city STRI NG ;

I NSERT | NTO fl at_struct_array VALUES
(' North Anerica', 'Canada', 'Toronto') , ('North America', 'Canada', 'Vancouver')

, ("North Amnerica', 'Canada', "St. John\'s") , ('North Anerica', 'Canada', ' Saint
John")

, ("North Anerica', 'Canada', 'Montreal') , ('North Anerica', 'Canada', 'Halifax')

, ("North Anerica', 'Canada', 'Wnnipeg') ("North Anerica', 'Canada', 'Calgary')

, ("North Anerica', 'Canada', 'Saskatoon') , ('North Arerica', 'Canada', 'Otawa')

, ("North Anmerica', 'Canada', 'Yellowknife') , ('Europe', 'France', 'Paris')

, (" Europe', 'France', "Nice') , ('Europe', 'France', 'Marseilles")

, (' Europe', 'France', 'Cannes') , ('Europe', 'Geece', 'Athens')

, (" Europe', 'Geece', 'Piraeus') , ('Europe', 'Geece', 'Hania')

, (' Europe', 'Geece', '"Heraklion') , ('Europe', 'Geece', 'Rethymon')

, (' Europe', 'Geece', 'Fira');

CREATE TABLE conpl ex_struct_array (continent STRING country STRUCT <name: STRING city:
ARRAY <STRI NG> >) STORED AS PARQUET;

/* Conversion to Parquet and conpl ex and/or nested col ums happens in Hve */

I NSERT | NTO conpl ex_struct _array SELECT conti nent, named_struct (' nane',
collect list(city)) FROMflat_array_array GROUP BY conti nent, country;

Query |1 D = dev_20151108163535_11a4f a53- 0003- 4638- 97e6- ef 13cdb8e09e

Total jobs =1

Launching Job 1 out of 1

country, 'city',

/* Back to inpal a-shell again for analytic queries */
REFRESH conpl ex_struct _array;
SELECT t1l.continent, tl.country.nane, t2.item

FROM conpl ex_struct _array t1, tl.country.city t2

oo oo D +
| continent | country.name | item [
oo oo oo +

Eur ope France Paris

Eur ope France Ni ce

Eur ope France Mar sei | | es

Eur ope France Cannes

Eur ope G eece At hens

Eur ope G eece Pi r aeus

Eur ope G eece Hani a

Eur ope G eece Her akl i on

Eur ope G eece Ret hymon

Eur ope G eece Fira

North Anerica | Canada Toronto

North Anerica Canada Vancouver

North Anerica | Canada St. John's

North Anerica Canada Sai nt John

North Anerica | Canada Mont r eal

North Anerica Canada Hal i f ax

North Anerica Canada W nni peg

North Anerica Canada Cal gary

North Anerica | Canada Saskat oon

North Anerica Canada Ot awa

North Anerica | Canada Yel | owkni fe
oo oo oo +

Flattening Normalized Tables into a Single Table with Complex Types

One common use for complex types is to embed the contents of one table into another. The traditional technique of
denormalizing results in a huge number of rows with some column values repeated over and over. With complex types,
you can keep the same number of rows as in the original normalized table, and put all the associated data from the
other table in a single new column.

In this flattening scenario, you might frequently use a column that is an ARRAY consisting of STRUCT elements, where
each field within the STRUCT corresponds to a column name from the table that you are combining.

The following example shows a traditional normalized layout using two tables, and then an equivalent layout using
complex types in a single table.

/* Traditional relational design */

-- This table just stores nunbers, allowing us to | ook up details about the enpl oyee
-- and details about their vacation tinme using a three-table join query.
CREATE t abl e enpl oyee_vacati ons
(
enpl oyee_id Bl G NT,
vacation_id Bl G NT

)
STORED AS PARQUET;

-- Each kind of information to track gets its own "fact table".
CREATE t abl e vacation_details
(

vacation_id Bl G NT,

vacation_start TI MESTAWP,

duration I NT

)
STORED AS PARQUET;

-- Any tine we print a human-readable report, we join with this table to
-- display info about enployee #1234.
CREATE TABLE enpl oyee_cont act
(
enpl oyee_i d Bl G NT,
nane STRI NG
addr ess STRI NG
phone STRI NG
emai | STRI NG
address_type STRING /* '"hone', 'work', 'remote', etc. */

)
STORED AS PARQUET;
/* Equivalent flattened schema using conplex types */

-- For analytic queries using conplex types, we can bundle the dinension table
-- and multiple fact tables into a single table.
CREATE TABLE enpl oyee_vacati ons_nested_t ypes

-- W& might still use the enployee_id for other join queries.
-- The table needs at | east one scalar colum to serve as an identifier
-- for the conplex type col ums.

enpl oyee_i d Bl G NT,

-- Colums of the VACATI ON DETAILS table are folded into a STRUCT.
-- W drop the VACATION_I D col um because | npal a doesn't need
-- synthetic IDs to join a conplex type col um.
-- Each row from the VACATI ON_DETAILS tabl e becomes an array el enent.
vacati on ARRAY < STRUCT <
vacation_start: TI MESTAWP,
duration: | NT
>>,
-- The ADDRESS_TYPE columm, with a small nunber of predefined values that are distinct
-- for each enpl oyee, makes the EMPLOYEE CONTACT table a good candidate to turn into a
MAP,
-- with each row represented as a STRUCT. The string val ue from ADDRESS _TYPE becones
t he
-- "key" (the anonymous first field) of the NAP.
contact MAP < STRING STRUCT <
address: STRI NG
phone: STRI NG
emai | : STRI NG
>>

)
STORED AS PARQUET;

Interchanging Complex Type Tables and Data Files with Hive and Other Components

You can produce Parquet data files through several Hadoop components and APIs, as explained in
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_parquet.html.

If you have a Hive-created Parquet table that includes ARRAY, STRUCT, or MAP columns, Impala can query that same
table in CDH 5.5 / Impala 2.3 and higher, subject to the usual restriction that all other columns are of data types
supported by Impala, and also that the file type of the table must be Parquet.

If you have a Parquet data file produced outside of Impala, Impala can automatically deduce the appropriate table
structure using the syntax CREATE TABLE ... LIKE PARQUET ' hdfs_path_of parquet file'.InCDH5.5/
Impala 2.3 and higher, this feature works for Parquet files that include ARRAY, STRUCT, or MAP types.

/* I'n inpala-shell, find the HDFS data directory of the original table.
DESCRI BE FORVATTED t pch_nest ed_par quet . cust oner;

i "Locat i on: | hdfs://1ocal host: 20500/t est - war ehouse/t pch_nest ed_par quet. db/ cust oner
| NULL |

In the Unix shell, find the path of any Parquet data file in that HDFS directory.
$ hdfs dfs -1Is hdfs://Ilocal host: 20500/ t est - war ehouse/ t pch_nest ed_par quet . db/ cust oner

Found 4 itens
- T WXT - XT - X 3 dev supergroup 171298918 2015-09-22 23: 30
hdf s: //1 ocal host: 20500/ bl ah/t pch_nest ed_par quet . db/ cust oner/ 000000_0

/* Back in inpala-shell, use the HDFS path in a CREATE TABLE LI KE PARQUET statenent. */
CREATE TABLE customer _ctlp
LI KE PARQUET ' hdfs:/ /| ocal host: 20500/ bl ah/ t pch_nest ed_par quet . db/ cust orrer / 000000_0"
STORED AS PARQUET;

/* Confirmthat ol d and new tabl es have the same colum | ayout, including conpl ex types.
*/

R T T . e +
| name | type | comment |
. TS S +

c_cust key bi gi nt

c_namne string

c_address string

c_nati onkey smal | int

c_phone string

c_acct bal deci mal (12, 2)

c_nkt segnent string

c_coment string

c_orders array<struct<

o_order key: bi gi nt,
o_orderstatus:string,
o_total price:deciml (12, 2),
o_orderdate: string,
o_orderpriority:string,
o_clerk:string,
o_shippriority:int,
o_coment:string,
o_lineitems:array<struct<

| _partkey: bi gint,

| _suppkey: bi gi nt,

| _I'i nenunber:int,

| _quantity:deciml (12, 2),

| _ext endedpri ce: deci nal (12, 2),

| _di scount: decimal (12, 2),

| _tax:decimal (12, 2),

| _returnflag:string,

| _linestatus:string,

| _shipdate:string,
| _commitdate:string,
| _receiptdate:string,
| _shipinstruct:string,
| _shi pnode: string,
| _coment:string
>>

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_parquet.html

c_cust key bi gi nt
c_namne string
c_address string
c_nati onkey i nt
c_phone string
c_acct bal deci mal (12, 2)
c_nkt segnent string
c_coment string
c_orders array<struct<
o_order key: bi gi nt,
o_orderstatus:string,
o_total price:deciml (12, 2),
o_orderdate:string
o_orderpriority:string,
o_clerk:string,
o_shippriority:int,
o_coment:string,
o_lineitems:array<struct<
| _partkey: bi gint,
| _suppkey: bi gi nt,
| _l'i nenunber:int,
| _quantity:deciml (12, 2),
| _ext endedpri ce: deci nal (12, 2),
| _di scount:decimal (12, 2),
| _tax:decimal (12, 2),
| _returnflag:string,
I
I
I
I
I
I
I

nferred from Parquet fi
nferred from Parquet fi
nferred from Parquet fi
nferred from Parquet fi
nferred from Parquet fi
nferred from Parquet fi
nferred from Parquet fi
nferred from Parquet fi
nferred from Parquet fi

POOODDD®DO

_linestatus:string,
_shi pdat e: string,
_conmi tdate: string,
_receiptdate:string,
_shipinstruct:string,
_shi prnode: stri ng,
_conment : string
>>
>>

Literals

Each of the Impala data types has corresponding notation for literal values of that type. You specify literal values in
SQL statements, such as in the SELECT list or WHERE clause of a query, or as an argument to a function call. See Data
Types on page 132 for a complete list of types, ranges, and conversion rules.

Numeric Literals

To write literals for the integer types (T1 NYI NT, SMALLI NT, I NT, and Bl G NT), use a sequence of digits with optional
leading zeros.

To write literals for the floating-point types (DECI MAL, FLOAT, and DOUBLE), use a sequence of digits with an optional
decimal point (. character). To preserve accuracy during arithmetic expressions, Impala interprets floating-point literals
as the DECI MAL type with the smallest appropriate precision and scale, until required by the context to convert the
result to FLOAT or DOUBLE.

Integer values are promoted to floating-point when necessary, based on the context.

You can also use exponential notation by including an e character. For example, 1e6 is 1 times 10 to the power of 6
(2 million). A number in exponential notation is always interpreted as floating-point.

When Impala encounters a numeric literal, it considers the type to be the “smallest” that can accurately represent the
value. The type is promoted to larger or more accurate types if necessary, based on subsequent parts of an expression.

For example, you can see by the types Impala defines for the following table columns how it interprets the corresponding
numeric literals:

[l ocal host: 21000] > create table ten as select 10 as x;

e e e e e e et . =
| summary |

o e e e e e e e oo n +

| I'nserted 1 rows) |

e e e e e e et . =

[ocal host 21000] > desc ten
B e Fomm e e o

| name | type | comment |
B L Ty, +
| x | tinyint | |
Fomm oo - Fomm e e o [+

e e e e e e e e .=
| sunmary |
. +

| I'nserted 1 rows) |
- +

[ocal host 21000] > desc four _k;
R e L D

| name | type | conmment |

B e T B +

| x | smal lint | |
+o-mm - Fommem e B +

e e e e e e et . =
| summary |

o e e e e e e e oo n +

| I'nserted 1 rows) |

e e e e e e et . =

[ocal host 21000] > desc one_poi nt _five;
e

| name | type | conment |

B T TSy B R +

| x | decimal (2,1) | |

Fomm oo - B Ty +

e e e e e e e e .=
| sunmmary |

. +

| I'nserted 1 rows) |

- +

[l ocal host 21000] > desc one_poi nt _three_three_three;
e

| name | type | conment |

B L L e B +

| x | deci mal (4, 3) | |

+o-mm - - B +

String Literals

String literals are quoted using either single or double quotation marks. You can use either kind of quotes for string
literals, even both kinds for different literals within the same statement.

Quoted literals are considered to be of type STRI NG. To use quoted literals in contexts requiring a CHAR or VARCHAR
value, CAST() the literal to a CHAR or VARCHAR of the appropriate length.

Escaping special characters:
To encode special characters within a string literal, precede them with the backslash (\) escape character:

e \t represents a tab.

¢ \ nrepresents a newline or linefeed. This might cause extra line breaks in i npal a- shel | output.

e \r represents a carriage return. This might cause unusual formatting (making it appear that some content is
overwritten) ini npal a- shel | output.

¢ \ b represents a backspace. This might cause unusual formatting (making it appear that some content is overwritten)
ini nmpal a- shel | output.

e \ 0 represents an ASCIl nul character (not the same as a SQL NULL). This might not be visible in i npal a- shel |
output.

e \ Zrepresents a DOS end-of-file character. This might not be visible in i npal a- shel | output.

e \%and\ _can be used to escape wildcard characters within the string passed to the LI KE operator.

¢ \ followed by 3 octal digits represents the ASCII code of a single character; for example, \ 101 is ASCII 65, the
character A.

e Use two consecutive backslashes (\ \) to prevent the backslash from being interpreted as an escape character.

e Use the backslash to escape single or double quotation mark characters within a string literal, if the literal is
enclosed by the same type of quotation mark.

e If the character following the \ does not represent the start of a recognized escape sequence, the character is
passed through unchanged.

Quotes within quotes:

To include a single quotation character within a string value, enclose the literal with either single or double quotation
marks, and optionally escape the single quote asa\' sequence. Earlier releases required escaping a single quote inside
double quotes. Continue using escape sequences in this case if you also need to run your SQL code on older versions
of Impala.

To include a double quotation character within a string value, enclose the literal with single quotation marks, no
escaping is necessary in this case. Or, enclose the literal with double quotation marks and escape the double quote as
a\" sequence.

[l ocal host:21000] > select "What\'s happeni ng?" as single_wthin_double,

> "I\"mnot sure.' as single_wthin_single,

> "Hormer wote \"The Iliad\"." as doubl e_wi thi n_doubl e,

> "Homer al so wote "The Odyssey".' as doubl e_within_single;
e oo S g B +

| single_within_double | single_within_single | double_within_double [
doubl e_wi t hi n_si ngl e

e e S o e +
| What's happeni ng? | 1'"mnot sure. | Homer wrote "The Iliad". | Homer also
wrote "The Gdyssey". |

e e oo e o e o +

Field terminator character in CREATE TABLE:

E’; Note: The CREATE TABLEclauses FI ELDS TERM NATED BY, ESCAPED BY, and LI NES TERM NATED
BY have special rules for the string literal used for their argument, because they all require a single
character. You can use a regular character surrounded by single or double quotation marks, an octal
sequence such as' \ 054" (representing a comma), or an integer in the range '-127'..'128' (with
guotation marks but no backslash), which is interpreted as a single-byte ASCII character. Negative
values are subtracted from 256; for example, FI ELDS TERM NATED BY ' - 2' sets the field delimiter
to ASCII code 254, the “Icelandic Thorn” character used as a delimiter by some data formats.

impala-shell considerations:

When dealing with output that includes non-ASCIl or non-printable characters such as linefeeds and backspaces, use
the i npal a- shel | options to save to a file, turn off pretty printing, or both rather than relying on how the output
appears visually. See impala-shell Configuration Options on page 580 for a list of i npal a- shel | options.

Boolean Literals

For BOOLEAN values, the literals are TRUE and FALSE, with no quotation marks and case-insensitive.

Examples:

sel ect true; _
select * fromtl where assertion = false;
sel ect case bool _col when true then 'yes' when false 'no' else "null' end fromtl1,

Timestamp Literals

Impala automatically converts STRI NGliterals of the correct format into TI MESTAMP values. Timestamp values are
accepted in the format ' yyyy- Mt dd HH: nm ss. SSSSSS' , and can consist of just the date, or just the time, with
or without the fractional second portion. For example, you can specify TI MESTAMP values such as ' 1966- 07- 30",
' 08:30: 00", or' 1985-09-25 17: 45: 30. 005' .

Leading zeroes are not required in the numbers representing the date component, such as month and date, or the
time component, such as hour, minute, second. For example, Impala accepts both' 2018-1-1 01: 02: 03' and
'2018-01-01 1:2:3' asvalid.

In STRI NGto TI MESTAMP conversions, leading and trailing white spaces, such as a space, a tab, a newline, or a carriage
return, are ignored. For example, Impala treats the following as equivalent: '1999-12-01 01:02:03 ', ' 1999-12-01
01:02:03', '1999-12-01 01:02:03\r\n\t".

When you convert or cast a STRI NGliteral to TI MESTAMP, you can use the following separators between the date part
and the time part:

e One or more space characters

Example: CAST (' 2001-01-09 01:05:01' AS TI MESTAMP)
e The character “T”

Example: CAST (' 2001-01-09T01: 05: 01' AS TI MESTAMP)

You can also use | NTERVAL expressions to add or subtract from timestamp literal values, such as CAST(' 1966- 07- 30
AS TI MESTAMP) + | NTERVAL 5 YEARS + | NTERVAL 3 DAYS. See TIMESTAMP Data Type on page 163 for details.

Depending on your data pipeline, you might receive date and time data as text, in notation that does not exactly match
the format for Impala TI MESTAMP literals. See Impala Date and Time Functions on page 455 for functions that can
convert between a variety of string literals (including different field order, separators, and timezone notation) and
equivalent TI MESTAMP or numeric values.

NULL

The notion of NULL values is familiar from all kinds of database systems, but each SQL dialect can have its own behavior
and restrictions on NULL values. For Big Data processing, the precise semantics of NULL values are significant: any
misunderstanding could lead to inaccurate results or misformatted data, that could be time-consuming to correct for
large data sets.

e NULL is a different value than an empty string. The empty string is represented by a string literal with nothing
inside, """ or

¢ In a delimited text file, the NULL value is represented by the special token \ N.

e When Impala inserts data into a partitioned table, and the value of one of the partitioning columns is NULL or the
empty string, the data is placed in a special partition that holds only these two kinds of values. When these values
are returned in a query, the result is NULL whether the value was originally NULL or an empty string. This behavior
is compatible with the way Hive treats NULL values in partitioned tables. Hive does not allow empty strings as
partition keys, and it returns a string value such as__HI VE_DEFAULT_PARTI TI ON__ instead of NULL when such
values are returned from a query. For example:

create table t1 (i int) partitioned by (x int, y string);

-- Select an INT colum fromanother table, with all rows going into a special HDFS
subdirectory

-- named __H VE _DEFAULT_PARTI TI ON__. Dependi ng on whet her one or both of the partitioning
keys

-- are null, this special directory name occurs at different |evels of the physical data
directory

-- for the table.

insert into tl partition(x=NULL, y=NULL) select cl from sone_other_table;

insert into tl partition(x, y=NULL) select c1, c2 from some_other_tabl e;

insert into tl partition(x=NULL, y) select cl1, ¢c3 from sone_other_table;

e Thereis no NOT NULL clause when defining a column to prevent NULL values in that column.

e There is no DEFAULT clause to specify a non-NULL default value.

e If an | NSERT operation mentions some columns but not others, the unmentioned columns contain NULL for all
inserted rows.

* InlImpala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASCqueries, and
at the beginning of the result set for ORDER BY ... DESCqueries. In effect, NULL is considered greater than all
other values for sorting purposes. The original Impala behavior always put NULL values at the end, even for ORDER
BY ... DESCqueries. The new behavior in Impala 1.2.1 makes Impala more compatible with other popular
database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL by adding
the clause NULLS FI RST or NULLS LAST at the end of the ORDER BY clause.

E,’ Note: Because the NULLS FI RST and NULLS LAST keywords are not currently available in Hive
queries, any views you create using those keywords will not be available through Hive.

¢ Inall other contexts besides sorting with ORDER BY, comparing a NULL to anything else returns NULL, making
the comparison meaningless. For example, 10 > NULL produces NULL, 10 < NULL also produces NULL, 5
BETWEEN 1 AND NULL produces NULL, and so on.

Several built-in functions serve as shorthand for evaluating expressions and returning NULL, 0, or some other substitution
value depending on the expression result:i fnul I (),isnull (), nvI(),nullif(),nullifzero(),and
zeroi fnul | (). See Impala Conditional Functions on page 487 for details.

Kudu considerations:

Columns in Kudu tables have an attribute that specifies whether or not they can contain NULL values. A column with
a NULL attribute can contain nulls. A column with a NOT NULL attribute cannot contain any nulls, and an | NSERT,
UPDATE, or UPSERT statement will skip any row that attempts to store a null in a column designated as NOT NULL.
Kudu tables default to the NULL setting for each column, except columns that are part of the primary key.

In addition to columns with the NOT NULL attribute, Kudu tables also have restrictions on NULL values in columns that
are part of the primary key for a table. No column that is part of the primary key in a Kudu table can contain any NULL
values.

SQL Operators

SQL operators are a class of comparison functions that are widely used within the WHERE clauses of SELECT statements.

Arithmetic Operators

The arithmetic operators use expressions with a left-hand argument, the operator, and then (in most cases) a right-hand
argument.

Syntax:

| eft _hand_arg binary_operator right_hand_arg
unary_operator single_arg

e +and - : Can be used either as unary or binary operators.

— With unary notation, such as +5, - 2. 5, or - col _nane, they multiply their single numeric argument by +1
or - 1. Therefore, unary + returns its argument unchanged, while unary - flips the sign of its argument.
Although you can double up these operators in expressions such as ++5 (always positive) or - +2 or +- 2 (both

always negative), you cannot double the unary minus operator because - - is interpreted as the start of a
comment. (You can use a double unary minus operator if you separate the - characters, for example with a
space or parentheses.)

— With binary notation, such as 2+2,5- 2. 5,orcol 1 + col 2,they add or subtract respectively the right-hand
argument to (or from) the left-hand argument. Both arguments must be of numeric types.

e * and/ : Multiplication and division respectively. Both arguments must be of numeric types.

When multiplying, the shorter argument is promoted if necessary (such as SMALLI NT to | NT or Bl G NT, or FLOAT
to DOUBLE), and then the result is promoted again to the next larger type. Thus, multiplying a TI NYI NT and an

I NT produces a Bl G NT result. Multiplying a FLOAT and a FLOAT produces a DOUBLE result. Multiplying a FLOAT
and a DOUBLE or a DOUBLE and a DOUBLE produces a DECI MAL(38, 17) , because DECI MAL values can represent
much larger and more precise values than DOUBLE.

When dividing, Impala always treats the arguments and result as DOUBLE values to avoid losing precision. If you
need to insert the results of a division operation into a FLOAT column, use the CAST() function to convert the
result to the correct type.

e DI V: Integer division. Arguments are not promoted to a floating-point type, and any fractional result is discarded.
For example, 13 DIV 7 returns1,14 DIV 7 returns 2,and 15 DI V 7 returns 2. This operator is the same as
the QUOTI ENT() function.

¢ % Modulo operator. Returns the remainder of the left-hand argument divided by the right-hand argument. Both
arguments must be of one of the integer types.

e & |,~, and”: Bitwise operators that return the logical AND, logical OR, NOT, or logical XOR (exclusive OR) of their
argument values. Both arguments must be of one of the integer types. If the arguments are of different type, the
argument with the smaller type is implicitly extended to match the argument with the longer type.

You can chain a sequence of arithmetic expressions, optionally grouping them with parentheses.

The arithmetic operators generally do not have equivalent calling conventions using functional notation. For example,
prior to CDH 5.4 / Impala 2.2, there is no MOD() function equivalent to the %modulo operator. Conversely, there are
some arithmetic functions that do not have a corresponding operator. For example, for exponentiation you use the
POW) function, but there is no ** exponentiation operator. See Impala Mathematical Functions on page 429 for the
arithmetic functions you can use.

Complex type considerations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the individual
elements using join notation in the query, and then apply the function to the final scalar item, field, key, or value at
the bottom of any nested type hierarchy in the column. See Complex Types (CDH 5.5 or higher only) on page 174 for
details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation. The
array elements are referenced using the | TEMpseudocolumn, and the structure fields inside the array elements are
referenced using dot notation. Numeric values such as SUM) and AVGE) are computed using the numeric R_NATI ONKEY
field, and the general-purpose MAX() and M N() values are computed from the string N_NAME field.

descri be region;

Fem e oo m e e e eeeeoon Femm e ek +
| name | type | conmment |
e e oo m e eeeooos Fomm e +

r_regi onkey smal | i nt

r_name string

r_conment string

n_nati onkey: smal lint,
n_nane: string,
n_conment:string

I I

| |

| r_nations | array<struct<
I I

I I

I I

| | >>

sel ect r_nane, r_nations.itemn_nationkey

fromregion, region.r_nations as r_nations
order by r_name, r_nations.item n_nationkey;
+ +

_______________________________ +
| r_name | item n_nationkey |
Fom e e e T +

AFRI CA 0

AFRI CA 5

AFRI CA 14

AFRI CA 15

AFRI CA 16

AMERI CA 1

AMERI CA 2

AMERI CA 3

AMERI CA 17

AMERI CA 24

ASI A 8

ASI A 9

ASI A 12

ASI A 18

ASI A 21

EURCPE 6

EUROPE 7

EURCPE 19

EUROPE 22

EUROCPE 23

M DDLE EAST | 4

M DDLE EAST 10

M DDLE EAST | 11

M DDLE EAST 13

M DDLE EAST | 20

sel ect
r_nane,
count (r_nations.item n_nationkey) as count,
sunm(r_nations.item n_nati onkey) as sum
avg(r_nations.itemn_nationkey) as avg,
m n(r_nations.itemn_nanme) as m ni mum
max(r_nations.itemn_nanme) as maxi mum
ndv(r_nations.item n_nationkey) as distinct_vals
from
region, region.r_nations as r_nations
group by r_nane
order by r_nane;

Fom e e Fomm - +-- o - - R R, [R S +
| r_name | count | sum| avg | mnimum | maxi mum | distinct_vals |
Fom e e e B +--m - - Fomm oo - [S o e e oo +
AFRI CA	5	50	10	ALCERIA	MOZAMBI QUE	5
AMERI CA	5	47	9.4	ARGENTINA	UNITED STATES	5
ASIA	5	68	13.6	CHI NA	VI ETNAM	5
EURCPE	5	77	15.4	FRANCE	UNITED KINGDOM	5
MDDLE EAST	5	58	11.6	EGYPT	SAUDI ARABIA	5
S B +--m - - Fomm o - [S o e +

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an item
within an ARRAY column. Once the scalar numeric value R_NATI ONKEY is extracted, it can be used in an arithmetic
expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
descri be region;

r_regionkey | smallint

r_name | string
r_conment string
array<struct<

n_nane: string,
n_coment:string

|

I

| !

| r_nations
I

I

I

| >>

|
| n_nationkey: smal | i nt,
I
I
I

-- When we refer to the scal ar val ue using dot notation,

-- We can use arithmetic and conpari son operators on it

-- like any other nunber.

sel ect r_name, nation.itemn_name, nation.itemn_nationkey * 10
fromregion, region.r_nations as nation

where nation.itemn_nationkey < 5;

S Fom e e o e e e e e e e e e e e oo +
| r_name | itemn_nanme | nation.itemn_nationkey * 10 |
Fom e e e Fom e e o m e e e e e e e e e e oo +
| AMERI CA | CANADA | 30 [
AMERI CA	BRAZIL	20
AMERI CA	ARGENTINA	10
M DDLE EAST	EGYPT	40
AFRI CA	ALGERI A	O
S S o m e e e e e e e e e e e e oo +

BETWEEN Operator

In a WHERE clause, compares an expression to both a lower and upper bound. The comparison is successful is the
expression is greater than or equal to the lower bound, and less than or equal to the upper bound. If the bound values
are switched, so the lower bound is greater than the upper bound, does not match any values.

Syntax:
expressi on BETWEEN | ower _bound AND upper _bound

Data types: Typically used with numeric data types. Works with any data type, although not very practical for BOOLEAN
values. (BETWEEN f al se AND t rue will match all BOOLEAN values.) Use CAST() if necessary to ensure the lower
and upper bound values are compatible types. Call string or date/time functions if necessary to extract or transform
the relevant portion to compare, especially if the value can be transformed into a number.

Usage notes:

Be careful when using short string operands. A longer string that starts with the upper bound value will not be included,
because it is considered greater than the upper bound. For example, BETWEEN ' A' and ' M would not match the
stringvalue' M dway' . Use functions such asupper (),l ower (),substr(),tri m(),andsoonif necessary to ensure
the comparison works as expected.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

Examples:

-- Retr