
Cloudera Distribution of
Kafka



Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Distribution of Apache Kafka
Date: July 20, 2021



Table of Contents

Apache Kafka Overview...........................................................................................4

Cloudera Distribution of Kafka Release Notes...........................................................5
New Features in Cloudera Distribution of Kafka 1.2.0.........................................................................................5
New Features in Cloudera Distribution of Kafka 1.1.0...........................................................................................................5

Known Issues in Cloudera Distribution of Kafka 1.2.0..........................................................................................5
— High CPU utilization...........................................................................................................................................................5

— NPE in Flume Kafka Source................................................................................................................................................5

Issues Fixed in Cloudera Distribution of Kafka 1.2.0............................................................................................6
Upstream Issues Fixed............................................................................................................................................................6

Cloudera Distribution of Kafka Version and Packaging Information..........................7
Examples of Versions............................................................................................................................................7

Cloudera Distribution of Kafka Versions...............................................................................................................7

Installing Kafka.........................................................................................................8
Kafka Command-line Tools...................................................................................................................................8

Logs......................................................................................................................................................................9

More Information...............................................................................................................................................10

Kafka Administration..............................................................................................11
Using Kafka with Flume......................................................................................................................................11

Using Kafka with Spark Streaming......................................................................................................................14

Kafka High Availability and Consistency.............................................................................................................15

Kafka Performance and Resource Considerations..............................................................................................16
Partitions and Memory Usage.............................................................................................................................................17

Garbage Collection..............................................................................................................................................................17

Handling Large Messages....................................................................................................................................................17

Appendix: Apache License, Version 2.0...................................................................19



Apache Kafka Overview

Part of the Hadoop ecosystem, Apache Kafka is a distributed commit log service that functions much like a
publish/subscribe messaging system, but with better throughput, built-in partitioning, replication, and fault tolerance.
Increasingly popular for log collection and stream processing, it is often (but not exclusively) used in tandem with
Apache Hadoop, Apache Storm, and Spark Streaming.

A log can be considered as a simple storage abstraction. Because newer entries are appended to the log over time,
from left to right, the log entry number is a convenient proxy for a timestamp. Conceptually, a log can be thought of
as a time-sorted file or table.

Kafka integrates this unique abstraction with traditional publish/subscribe messaging concepts (such as producers,
consumers, and brokers), parallelism, and enterprise features for improved performance and fault tolerance. The result
is an architecture that, at a high level, looks like the following figure. (A topic is a category of messages that share
similar characteristics.)

Kafka provides the following:

• Persistent messaging with O(1) disk structures that provide constant time performance, even with terabytes of
stored messages.

• High throughput, supporting hundreds of thousands of messages per second, even with modest hardware.
• Explicit support for partitioning messages over Kafka servers and distributing consumption over a cluster of

consumer machines while maintaining per-partition ordering semantics.
• Support for parallel data load into Hadoop.

4 | Cloudera Distribution of Kafka

Apache Kafka Overview

http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://data.linkedin.com/opensource/kafka


Cloudera Distribution of Kafka Release Notes

New Features in Cloudera Distribution of Kafka 1.2.0
This release fixes some important issues; for details, see Issues Fixed in Cloudera Distribution of Kafka 1.2.0 on page
6.

New Features in Cloudera Distribution of Kafka 1.1.0

• New producer

The newKafka producer added in ClouderaDistribution of Kafka 1.1.0 combines features of the existing synchronous
and asynchronous producers. Send requests are batched, allowing the new producer to perform as well as the
asynchronous producer under load. Every send request returns a response object that can be used to retrieve
status and exceptions.

• Ability to delete topics

You can now delete topics using the kafka-topics --delete command.

• Offset management

In previous versions, consumers that wanted to keep track of which messages were consumed did so by updating
the offset of the last consumed message in Zookeeper. With this new feature, Kafka itself tracks the offsets. Using
offset management can significantly improve consumer performance.

• Automatic leader rebalancing

Each partition starts with a randomly selected leader replica that handles requests for that partition. When a
cluster first starts, the leaders are evenly balanced among nodes.When a broker restarts, leaders from that broker
are distributed to other brokers, which results in an unbalanced distribution. With this feature enabled, leaders
are assigned to the original replica after a restart.

• Connection quotas

Kafka administrators can limit the number of connections allowed from a single IP address. By default, this limit
is 10 connections per IP address. This preventsmisconfigured ormalicious clients from destabilizing a Kafka broker
by opening a large number of connections and using all available file handles.

Known Issues in Cloudera Distribution of Kafka 1.2.0

—High CPU utilization

Brokers with high partition count (approximately 2000) experience high CPU usage.

Bug: KAFKA-1952

Severity:Medium

Workaround: None

—NPE in Flume Kafka Source

Note: Although not an issue with Apache Kafka, the following issue applies to Kafka sinks in Flume.

Cloudera Distribution of Kafka | 5

Cloudera Distribution of Kafka Release Notes

https://issues.apache.org/jira/browse/KAFKA-1952


A Kafka source in Flume throws a NullPointerException if it processes a message with no key.

Bug: FLUME-2578

Severity:Medium

Workaround: Ensure that all messages have a key.

Issues Fixed in Cloudera Distribution of Kafka 1.2.0

Upstream Issues Fixed

The following upstream issues are fixed in Apache Kafka 1.2.0:

• KAFKA-1642 - [Java New Producer Kafka Trunk] CPU Usage Spike to 100% when network connection is lost
• KAFKA-1650 - avoid data loss when mirror maker shutdown uncleanly
• KAFKA-1797 - add the serializer/deserializer api to the new java client -
• KAFKA-1667 - topic-level configuration not validated
• KAFKA-1815 - ServerShutdownTest fails in trunk
• KAFKA-1861 - Publishing kafka-client:test in order to utilize the helper utils in TestUtils
• KAFKA-1729 - Add constructor to javaapi to allow constructing explicitly versioned offset commit requests
• KAFKA-1902 - fix MetricName so that Yammer reporter can work correctly
• KAFKA-1890 - Fix bug preventing Mirror Maker from successful rebalance
• KAFKA-1891 - MirrorMaker hides consumer exception - making troubleshooting challenging
• KAFKA-1706 - Add a byte bounded blocking queue utility
• KAFKA-1879 - Log warning when receiving produce requests with acks > 1
• KAFKA-1876 - pom file for scala 2.11 should reference a specific version
• KAFKA-1761 - num.partitions documented default is 1 while actual default is 2
• KAFKA-1210 - Windows Bat files are not working properly
• KAFKA-1864 - Revisit defaults for the internal offsets topic
• KAFKA-1870 - Cannot commit with simpleConsumer on Zookeeper only with Java API
• KAFKA-1868 - ConsoleConsumer shouldn't override dual.commit.enabled to false if not explicitly set
• KAFKA-1841 - OffsetCommitRequest API - timestamp field is not versioned
• KAFKA-1723 - make the metrics name in new producer more standard
• KAFKA-1819 Cleaner gets confused about deleted and re-created topics
• KAFKA-1851 - OffsetFetchRequest returns extra partitions when input only contains unknown partitions
• KAFKA-1512 - Fixes for limit the maximum number of connections per ip address
• KAFKA-1624 - bump up default scala version to 2.11.4 to compile with java 8
• KAFKA-742 - Existing directories under the Kafka data directory without any data cause process to not start
• KAFKA-1698 - Validator.ensureValid() only validates default config value
• KAFKA-1799 - ProducerConfig.METRIC_REPORTER_CLASSES_CONFIG doesn't work
• KAFKA-1743 - ConsumerConnector.commitOffsets in 0.8.2 is not backward compatible
• KAFKA-1769 - javadoc should only include client facing packages
• KAFKA-1481 - Stop using dashes AND underscores as separators in MBean names
• KAFKA-1721 - Snappy compressor is not thread safe
• KAFKA-1764 - ZookeeperConsumerConnector should not put multiple shutdown commands to the same data

chunk queue
• KAFKA-1733 - Producer.send will block indeterminately when broker is unavailable
• KAFKA-1742 - ControllerContext removeTopic does not correctly update state
• KAFKA-1738 - Partitions for topic not created after restart from forced shutdown
• KAFKA-1647 - Replication offset checkpoints (high water marks) can be lost on hard kills and restarts
• KAFKA-1732 - DumpLogSegments tool fails when path has a '.'

6 | Cloudera Distribution of Kafka

Cloudera Distribution of Kafka Release Notes

https://issues.apache.org/jira/browse/FLUME-2578
https://issues.apache.org/jira/browse/KAFKA-1642
https://issues.apache.org/jira/browse/KAFKA-1650
https://issues.apache.org/jira/browse/KAFKA-1797
https://issues.apache.org/jira/browse/KAFKA-1667
https://issues.apache.org/jira/browse/KAFKA-1815
https://issues.apache.org/jira/browse/KAFKA-1861
https://issues.apache.org/jira/browse/KAFKA-1729
https://issues.apache.org/jira/browse/KAFKA-1902
https://issues.apache.org/jira/browse/KAFKA-1890
https://issues.apache.org/jira/browse/KAFKA-1891
https://issues.apache.org/jira/browse/KAFKA-1706
https://issues.apache.org/jira/browse/KAFKA-1879
https://issues.apache.org/jira/browse/KAFKA-1876
https://issues.apache.org/jira/browse/KAFKA-1761
https://issues.apache.org/jira/browse/KAFKA-1210
https://issues.apache.org/jira/browse/KAFKA-1864
https://issues.apache.org/jira/browse/KAFKA-1870
https://issues.apache.org/jira/browse/KAFKA-1868
https://issues.apache.org/jira/browse/KAFKA-1841
https://issues.apache.org/jira/browse/KAFKA-1723
https://issues.apache.org/jira/browse/KAFKA-1819
https://issues.apache.org/jira/browse/KAFKA-1851
https://issues.apache.org/jira/browse/KAFKA-1512
https://issues.apache.org/jira/browse/KAFKA-1624
https://issues.apache.org/jira/browse/KAFKA-742
https://issues.apache.org/jira/browse/KAFKA-1698
https://issues.apache.org/jira/browse/KAFKA-1799
https://issues.apache.org/jira/browse/KAFKA-1743
https://issues.apache.org/jira/browse/KAFKA-1769
https://issues.apache.org/jira/browse/KAFKA-1481
https://issues.apache.org/jira/browse/KAFKA-1721
https://issues.apache.org/jira/browse/KAFKA-1764
https://issues.apache.org/jira/browse/KAFKA-1733
https://issues.apache.org/jira/browse/KAFKA-1742
https://issues.apache.org/jira/browse/KAFKA-1738
https://issues.apache.org/jira/browse/KAFKA-1647
https://issues.apache.org/jira/browse/KAFKA-1732


Cloudera Distribution of Kafka Version and Packaging Information

Examples of Versions
Cloudera packages are designed to be transparent and easy to understand. Cloudera Distribution of Kafka package
versions are labeled using the following format:

base_version+cloudera_version+patch_level

where,

• base_version is the version of the open-source component included in the Cloudera package
• cloudera_version is the version of the Cloudera package
• patch_level is the number of source commits applied on top of the base version forked from the Apache Kafka

branch. Note that the number of commits does not indicate the number of functional changes or bug fixes in the
release. For example, a commit may be used to amend a version number or make other non-functional changes.

Cloudera Distribution of Kafka Versions

Table 1: Cloudera Distribution of Kafka Version Information

Parcel RepositoryCustom Service
Descriptor

Release NotesVersionComponentCloudera
Distribution of
Kafka Version

Cloudera
Distribution of

Cloudera
Distribution of
Kafka 1.2.0 CSD

Release notes0.8.2.0+kafka1.2.
0+57

Apache Kafka1.2.0

Kafka 1.2.0 Parcel
Repository

Cloudera Distribution of Kafka | 7

Cloudera Distribution of Kafka Version and Packaging Information

http://archive.cloudera.com/kafka/parcels/1.2.0/
http://archive.cloudera.com/kafka/parcels/1.2.0/
http://archive.cloudera.com/csds/kafka-1.2.0/
http://archive.cloudera.com/csds/kafka-1.2.0/
http://archive.cloudera.com/csds/kafka-1.2.0/
http://archive.cloudera.com/kafka/parcels/1.2.0/
http://archive.cloudera.com/kafka/parcels/1.2.0/


Installing Kafka

Important: As of February 1, 2021, all downloads of CDK, CDH, and Cloudera Manager require a
username and password and use a modified URL. You must use the modified URL, including the
username and password when downloading the repository contents described below. You may need
to upgrade Cloudera Manager to a newer version that uses the modified URLs.

This can affect new installations, upgrades, adding new hosts to a cluster, downloading a new parcel,
and adding a new cluster.

For more information, see Updating an existing CDH/Cloudera Manager deployment to access
downloads with authentication.

Warning: This version of Apache Kafka is only supported on Cloudera Manager 5.2.0 and higher on
a parcel-deployed cluster. Do not use it with lower versions of Cloudera Manager or CDH or on a
cluster deployed using packages or a tarball.

Kafka is distributed in a parcel that is independent of the CDH parcel and integrates with Cloudera Manager using a
Custom Service Descriptor (CSD).

Note: If you have installed a Cloudera Labs version of Kafka, you must download a new CSD and
parcel. The Cloudera Labs CSD cannot install the GA Kafka parcel.

To install Apache Kafka:

1. Download the Kafka CSD here.
2. Install the CSD into Cloudera Manager as instructed in Custom Service Descriptor Files. This adds a new parcel

repository to your Cloudera Manager configuration. The CSD can only be installed on parcel-deployed clusters.
3. Download, distribute, and activate the Kafka parcel, following the instructions in Managing Parcels. After you

activate the Kafka parcel, Cloudera Manager prompts you to restart the cluster. Click the Close button to ignore
this prompt. You do not need to restart the cluster after installing Kafka.

4. Add the Kafka service to your cluster, following the instructions in Adding a Service.

Cloudera strongly recommends that you deploy Kafka on dedicated hosts that are not used for other cluster roles.

Kafka Command-line Tools
Important Kafka command-line tools are located in /usr/bin:

• kafka-topics

Create, alter, list, and describe topics. For example:

$ /usr/bin/kafka-topics --list --zookeeper zk01.example.com:2181
sink1
t1
t2

• kafka-console-consumer

Read data from a Kafka topic and write it to standard output. For example:

$ /usr/bin/kafka-console-consumer --zookeeper zk01.example.com:2181 --topic t1

8 | Cloudera Distribution of Kafka

Installing Kafka

https://docs.cloudera.com/documentation/enterprise/release-notes/topics/cm-retrofit-auth-downloads.html#cm_retrofit_auth_downloads
https://docs.cloudera.com/documentation/enterprise/release-notes/topics/cm-retrofit-auth-downloads.html#cm_retrofit_auth_downloads
http://archive.cloudera.com/csds/kafka/
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_mc_addon_services.html#concept_qbv_3jk_bn_unique_1
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_ig_parcels.html#concept_vwq_421_yk_unique_1
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_mc_add_service.html


• kafka-console-producer

Read data from standard output and write it to a Kafka topic. For example:

$ /usr/bin/kafka-console-producer --broker-list 
kafka02.example.com:9092,kafka03.example.com:9092 --topic t1

• kafka-consumer-offset-checker

Check the number of messages read and written, as well as the lag for each consumer in a specific consumer
group. For example:

$ /usr/bin/kafka-consumer-offset-checker --group flume --topic t1 --zookeeper 
zk01.example.com:2181

Logs
The Kafka parcel is configured to log all Kafka logmessages to a single file,  /var/log/kafka/server.log by default.
You can view, filter, and search this log using Cloudera Manager.

For debugging purposes, you can create a separate file with TRACE level logs of a specific component (such as the
controller) or the state changes.

To do so, use the Kafka broker Logging Advanced Configuration Snippet (Safety Valve) field in Cloudera Manager
(Kafka Service > Configuration > Kafka broker Default Group > Advanced) to add new appenders to log4j. For
example, to restore the default Apache Kafka log4j configuration, copy the following into the safety valve:

log4j.appender.kafkaAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.kafkaAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.kafkaAppender.File=${log.dir}/kafka_server.log
log4j.appender.kafkaAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.kafkaAppender.layout.ConversionPattern=[%d] %p %m (%c)%n

log4j.appender.stateChangeAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.stateChangeAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.stateChangeAppender.File=${log.dir}/state-change.log
log4j.appender.stateChangeAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.stateChangeAppender.layout.ConversionPattern=[%d] %p %m (%c)%n

log4j.appender.requestAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.requestAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.requestAppender.File=${log.dir}/kafka-request.log
log4j.appender.requestAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.requestAppender.layout.ConversionPattern=[%d] %p %m (%c)%n

log4j.appender.cleanerAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.cleanerAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.cleanerAppender.File=${log.dir}/log-cleaner.log
log4j.appender.cleanerAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.cleanerAppender.layout.ConversionPattern=[%d] %p %m (%c)%n

log4j.appender.controllerAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.controllerAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.controllerAppender.File=${log.dir}/controller.log
log4j.appender.controllerAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.controllerAppender.layout.ConversionPattern=[%d] %p %m (%c)%n

# Turn on all our debugging info
#log4j.logger.kafka.producer.async.DefaultEventHandler=DEBUG, kafkaAppender
#log4j.logger.kafka.client.ClientUtils=DEBUG, kafkaAppender
#log4j.logger.kafka.perf=DEBUG, kafkaAppender
#log4j.logger.kafka.perf.ProducerPerformance$ProducerThread=DEBUG, kafkaAppender
#log4j.logger.org.I0Itec.zkclient.ZkClient=DEBUG
log4j.logger.kafka=INFO, kafkaAppender

log4j.logger.kafka.network.RequestChannel$=WARN, requestAppender

Cloudera Distribution of Kafka | 9

Installing Kafka



log4j.additivity.kafka.network.RequestChannel$=false

#log4j.logger.kafka.network.Processor=TRACE, requestAppender
#log4j.logger.kafka.server.KafkaApis=TRACE, requestAppender
#log4j.additivity.kafka.server.KafkaApis=false
log4j.logger.kafka.request.logger=WARN, requestAppender
log4j.additivity.kafka.request.logger=false

log4j.logger.kafka.controller=TRACE, controllerAppender
log4j.additivity.kafka.controller=false

log4j.logger.kafka.log.LogCleaner=INFO, cleanerAppender
log4j.additivity.kafka.log.LogCleaner=false

log4j.logger.state.change.logger=TRACE, stateChangeAppender
log4j.additivity.state.change.logger=false

Alternatively, you can add only the appenders you need.

More Information
For more information, see the official Kafka documentation.

When using Kafka, consider the following:

• Use Cloudera Manager to start and stop Kafka and ZooKeeper services. Do not use the kafka-server-start,
kafka-server-stop, zookeeper-server-start, and zookeeper-server-stop commands.

• All Kafka command-line tools are located in /opt/cloudera/parcels/KAFKA/lib/kafka/bin/.
• Set the JAVA_HOME environment variable to your JDK installation directory before using the command-line tools.

For example:

export JAVA_HOME=/usr/java/jdk1.7.0_55-cloudera

10 | Cloudera Distribution of Kafka

Installing Kafka

http://kafka.apache.org/documentation.html


Kafka Administration

This section describes how to configure and manage Kafka, including performance tuning and high availability
considerations.

Using Kafka with Flume
In CDH 5.2.0 and higher, Flume contains a Kafka source and sink. Use these to stream data from Kafka to Hadoop or
from any Flume source to Kafka.

Important: Do not configure a Kafka source to send data to a Kafka sink. If you do, the Kafka source
sets the topic in the event header, overriding the sink configuration and creating an infinite loop,
sending messages back and forth between the source and sink. If you need to use both a source and
a sink, use an interceptor to modify the event header and set a different topic.

Kafka Source

Use the Kafka source to stream data in Kafka topics to Hadoop. The Kafka source can be combined with any Flume
sink, making it easy to write Kafka data to HDFS, HBase, and Solr.

The following Flume configuration example uses a Kafka source to send data to an HDFS sink:

 tier1.sources  = source1
 tier1.channels = channel1
 tier1.sinks = sink1

 tier1.sources.source1.type = org.apache.flume.source.kafka.KafkaSource
 tier1.sources.source1.zookeeperConnect = zk01.example.com:2181
 tier1.sources.source1.topic = weblogs
 tier1.sources.source1.groupId = flume
 tier1.sources.source1.channels = channel1
 tier1.sources.source1.interceptors = i1
 tier1.sources.source1.interceptors.i1.type = timestamp
 tier1.sources.source1.kafka.consumer.timeout.ms = 100

 tier1.channels.channel1.type = memory
 tier1.channels.channel1.capacity = 10000
 tier1.channels.channel1.transactionCapacity = 1000

 tier1.sinks.sink1.type = hdfs
 tier1.sinks.sink1.hdfs.path = /tmp/kafka/%{topic}/%y-%m-%d
 tier1.sinks.sink1.hdfs.rollInterval = 5
 tier1.sinks.sink1.hdfs.rollSize = 0
 tier1.sinks.sink1.hdfs.rollCount = 0
 tier1.sinks.sink1.hdfs.fileType = DataStream
 tier1.sinks.sink1.channel = channel1

For higher throughput, configure multiple Kafka sources to read from the same topic. If you configure all the sources
with the same groupID, and the topic contains multiple partitions, each source reads data from a different set of
partitions, improving the ingest rate.

The following table describes parameters that the Kafka source supports; required properties are listed in bold.

Table 2: Kafka Source Properties

DescriptionDefault
Value

Property Name

Must be set to org.apache.flume.source.kafka.KafkaSource.type

Cloudera Distribution of Kafka | 11

Kafka Administration



DescriptionDefault
Value

Property Name

The URI of the ZooKeeper server or quorum used by Kafka. This can be
a single node (for example, zk01.example.com:2181) or a

zookeeperConnect

comma-separated list of nodes in a ZooKeeper quorum (for example,
zk01.example.com:2181,zk02.example.com:2181,

zk03.example.com:2181).

The Kafka topic from which this source reads messages. Flume supports
only one topic per source.

topic

The unique identifier of the Kafka consumer group. Set the samegroupID
in all sources to indicate that they belong to the same consumer group.

flumegroupID

The maximum number of messages that can be written to a channel in
a single batch.

1000batchSize

The maximum time (in ms) before a batch is written to the channel. The
batch is written when the batchSize limit or batchDurationMillis
limit is reached, whichever comes first.

1000batchDurationMillis

Used to configure the Kafka consumer used by the Kafka source. You can
use any consumer properties supported by Kafka. Prepend the consumer

Other properties supported
by the Kafka consumer

property name with the prefix kafka. (for example,
kafka.fetch.min.bytes). See the Kafka documentation for the full
list of Kafka consumer properties.

Tuning Notes

The Kafka source overrides two Kafka consumer parameters:

1. auto.commit.enable is set to false by the source, and every batch is committed. For improved performance,
set this to true using the kafka.auto.commit.enable setting. This can lead to data loss if the source goes
down before committing.

2. consumer.timeout.ms is set to 10, so when Flume polls Kafka for new data, it waits no more than 10 ms for
the data to be available. Setting this to a higher value can reduce CPU utilization due to less frequent polling, but
introduces latency in writing batches to the channel.

Kafka Sink

Use the Kafka sink to send data to Kafka from a Flume source. You can use the Kafka sink in addition to Flume sinks
such as HBase or HDFS.

The following Flume configuration example uses a Kafka sink with an exec source:

 tier1.sources  = source1
 tier1.channels = channel1
 tier1.sinks = sink1

 tier1.sources.source1.type = exec
 tier1.sources.source1.command = /usr/bin/vmstat 1
 tier1.sources.source1.channels = channel1

 tier1.channels.channel1.type = memory
 tier1.channels.channel1.capacity = 10000
 tier1.channels.channel1.transactionCapacity = 1000

 tier1.sinks.sink1.type = org.apache.flume.sink.kafka.KafkaSink
 tier1.sinks.sink1.topic = sink1
 tier1.sinks.sink1.brokerList = kafka01.example.com:9092,kafka02.example.com:9092
 tier1.sinks.sink1.channel = channel1
 tier1.sinks.sink1.batchSize = 20

12 | Cloudera Distribution of Kafka

Kafka Administration

https://kafka.apache.org/08/configuration.html#consumerconfigs


The following table describes parameters the Kafka sink supports; required properties are listed in bold.

Table 3: Kafka Sink Properties

DescriptionDefault ValueProperty Name

Must be set toorg.apache.flume.sink.kafka.KafkaSink.type

The brokers the Kafka sink uses to discover topic partitions,
formatted as a comma-separated list ofhostname:port entries.

brokerList

You do not need to specify the entire list of brokers, but Cloudera
recommends that you specify at least two for high availability.

The Kafka topic to which messages are published by default. If
the event header contains a topic field, the event is published
to the designated topic, overriding the configured topic.

default-flume-topictopic

The number of messages to process in a single batch. Specifying
a largerbatchSize can improve throughput and increase latency.

100batchSize

The number of replicas that must acknowledge amessage before
it is written successfully. Possible values are 0 (do not wait for an

1requiredAcks

acknowledgement), 1 (wait for the leader to acknowledge only),
and -1 (wait for all replicas to acknowledge). To avoid potential
loss of data in case of a leader failure, set this to -1.

Used to configure the Kafka producer used by the Kafka sink. You
can use any producer properties supported by Kafka. Prepend

Other properties supported
by the Kafka producer

the producer property namewith the prefix kafka. (for example,
kafka.compression.codec). See the Kafka documentation for
the full list of Kafka producer properties.

The Kafka sink uses the topic and key properties from the FlumeEvent headers to determine where to send events
in Kafka. If the header contains the topic property, that event is sent to the designated topic, overriding the configured
topic. If the header contains the key property, that key is used to partition events within the topic. Events with the
same key are sent to the same partition. If the key parameter is not specified, events are distributed randomly to
partitions. Use these properties to control the topics and partitions to which events are sent through the Flume source
or interceptor.

Kafka Channel

CDH 5.3 and higher includes a Kafka channel to Flume in addition to the existing memory and file channels. You can
use the Kafka channel:

• To write to Hadoop directly from Kafka without using a source.
• To write to Kafka directly from Flume sources without additional buffering.
• As a reliable and highly available channel for any source/sink combination.

The following Flume configuration uses a Kafka channel with an exec source and hdfs sink:

tier1.sources = source1
tier1.channels = channel1
tier1.sinks = sink1

tier1.sources.source1.type = exec
tier1.sources.source1.command = /usr/bin/vmstat 1
tier1.sources.source1.channels = channel1

tier1.channels.channel1.type = org.apache.flume.channel.kafka.KafkaChannel
tier1.channels.channel1.capacity = 10000
tier1.channels.channel1.transactionCapacity = 1000
tier1.channels.channel1.brokerList = kafka02.example.com:9092,kafka03.example.com:9092

Cloudera Distribution of Kafka | 13

Kafka Administration

http://kafka.apache.org/08/configuration.html#producerconfigs


tier1.channels.channel1.topic = channel2
tier1.channels.channel1.zookeeperConnect = zk01.example.com:2181
tier1.channels.channel1.parseAsFlumeEvent = true

tier1.sinks.sink1.type = hdfs
tier1.sinks.sink1.hdfs.path = /tmp/kafka/channel
tier1.sinks.sink1.hdfs.rollInterval = 5
tier1.sinks.sink1.hdfs.rollSize = 0
tier1.sinks.sink1.hdfs.rollCount = 0
tier1.sinks.sink1.hdfs.fileType = DataStream
tier1.sinks.sink1.channel = channel1

The following table describes parameters the Kafka channel supports; required properties are listed in bold.

Table 4: Kafka Channel Properties

DescriptionDefault
Value

Property Name

Must be set toorg.apache.flume.channel.kafka.KafkaChannel.type

The brokers the Kafka channel uses to discover topic partitions, formatted
as a comma-separated list of hostname:port entries. You do not need

brokerList

to specify the entire list of brokers, but Cloudera recommends that you
specify at least two for high availability.

The URI of the ZooKeeper server or quorum used by Kafka. This can be
a single node (for example, zk01.example.com:2181) or a

zookeeperConnect

comma-separated list of nodes in a ZooKeeper quorum (for example,
zk01.example.com:2181,zk02.example.com:2181,

zk03.example.com:2181).

The Kafka topic the channel will use.flume-channeltopic

The unique identifier of the Kafka consumer group the channel uses to
register with Kafka.

flumegroupID

Set to true if a Flume source is writing to the channel and expects
AvroDataums with the FlumeEvent schema

trueparseAsFlumeEvent

(org.apache.flume.source.avro.AvroFlumeEvent) in thechannel.
Set to false if other producers are writing to the topic that the channel
is using.

If true, reads all data in the topic. If false, reads only data written after
the channel has started. Only usedwhenparseAsFlumeEvent isfalse.

falsereadSmallestOffset

Polling interval when writing to the sink.100kafka.consumer.timeout.ms

Used to configure the Kafka producer. You can use any producer
properties supported by Kafka. Prepend the producer property name

Other properties supported
by the Kafka producer

with the prefix kafka. (for example, kafka.compression.codec).
See the Kafka documentation for the full list of Kafka producer properties.

Using Kafka with Spark Streaming
For information on how to configure Spark Streaming to receive data from Kafka, see the Spark Streaming + Kafka
Integration Guide.

14 | Cloudera Distribution of Kafka

Kafka Administration

http://kafka.apache.org/08/configuration.html#producerconfigs
http://spark.apache.org/docs/latest/streaming-kafka-integration.html
http://spark.apache.org/docs/latest/streaming-kafka-integration.html


Validating Kafka Integration with Spark Streaming

To validate your Kafka integration with Spark Streaming, run the KafkaWordCount example:

/opt/cloudera/parcels/CDH/lib/spark/bin/run-example streaming.KafkaWordCount <zkQuorum>
<group> <topics> <numThreads>

Replace the variables as follows:

• <zkQuorum> - ZooKeeper quorum URI used by Kafka (for example,
zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181).

• <group> - Consumer group used by the application.
• <topic> - Kafka topic containing the data for the application.
• <numThreads> - Number of consumer threads reading the data. If this is higher than the number of partitions

in the Kafka topic, some threads will be idle.

Note: If multiple applications use the same group and topic, each application receives a subset of
the data.

Building Your Own Spark Streaming Application

To deploy your own application, follow these steps:

1. Build an uber-jar (a single JAR that includes the application and all dependencies, such as Kafka and ZooKeeper)
using a Maven plugin such as Assembly or Shade.

Download an example application here for reference. Kafka and ZooKeeper are specified as dependencies, even
though they are not used directly in the code.

2. Build the project using mvn install and copy the uber-jar to the cluster.
3. To run the application, use spark-submit:

spark-submit --master <master> --class <application_main_class> <JAR> <parameters>

See the Spark documentation for information on which master to use and how to specify it.

To run the provided example application on a local master, run the following:

spark-submit --master local[*] --class com.shapira.examples.streamingavg.StreamingAvg 
uber-StreamingAvg-1.0-SNAPSHOT.jar localhost:2181/kafka group1 topic3 1

Kafka High Availability and Consistency
To achieve high availability and consistency targets, adjust the following parameters to meet your requirements:

Replication Factor

The default replication factor for new topics is 1. For highly-available production systems, Cloudera recommends setting
the replication factor to at least 3. This requires at least 3 Kafka brokers.

To change the replication factor, navigate to Kafka Service > Configuration > Service-Wide. Set Replication factor to
3, click Save Changes, and restart the Kafka service.

Unclean Leader Election

With unclean leader election disabled, if a broker containing the leader replica for a partition becomes unavailable,
and no in-sync replica exists to replace it, the partition becomes unavailable until the leader replica or another in-sync
replica is back online. Enable unclean leader election to allow an out-of-sync replica to become the leader and preserve

Cloudera Distribution of Kafka | 15

Kafka Administration

http://maven.apache.org/plugins/maven-assembly-plugin/
http://maven.apache.org/plugins/maven-shade-plugin/
http://www.cloudera.com/content/cloudera/en/documentation/cloudera-kafka/examples/KafkaStreamingExample.tgz
https://spark.apache.org/docs/1.2.0/submitting-applications.html#master-urls


the availability of the partition. With unclean leader election, messages that were not synced to the new leader are
lost. This provides balance between consistency (guaranteed message delivery) and availability.

To enable unclean leader election, navigate to Kafka Service > Configuration > Service-Wide. Check the box labeled
Enable unclean leader election, click Save Changes, and restart the Kafka service.

Acknowledgements

When writing or configuring a Kafka producer, you can choose how many replicas commit a new message before the
message is acknowledged using the requiredAcks property (see Table 3: Kafka Sink Properties on page 13 for details).

Set requiredAcks to 0 (immediately acknowledge the message without waiting for any brokers to commit), 1
(acknowledge after the leader commits the message), or -1 (acknowledge after all in-sync replicas are committed)
according to your requirements. Setting requiredAcks to -1 provides the highest consistency guarantee at the
expense of slower writes to the cluster.

Minimum In-sync Replicas

You can also set the minimum number of in-sync replicas that must be available for the producer to successfully send
messages to a partition using the min.insync.replicas setting. If min.insync.replicas is set to 2 and
requiredAcks is set to -1, each message must be written successfully to at least two replicas. This guarantees that
the message is not lost unless both hosts crash.

It also means that if one of the nodes crashes, the partition is no longer available for writes. Similarly to the unclean
leader election configuration, setting min.insync.replicas is a balance between higher consistency (requiring
writes to more than one broker) and higher availability (allowing writes when fewer brokers are available).

To configure min.insync.replicas at the cluster level, navigate to Kafka Service > Configuration > Service-Wide.
SetMinimum number of replicas in ISR to the desired value, click Save Changes, and restart the Kafka service.

To set this parameter on a per-topic basis, navigate to Kafka Service > Configuration > Kafka broker Default Group >
Advanced, and add the following to the Kafka broker Advanced Configuration Snippet (Safety Valve) for
kafka.properties:

min.insync.replicas.per.topic=topic_name_1:value,topic_name_2:value

Replace topic_name_nwith the topic names, and replace valuewith the desired minimum number of in-sync replicas.

You can also set this parameter using the /usr/bin/kafka-topics --alter command for each topic. For example:

/usr/bin/kafka-topics --alter --zookeeper zk01.example.com:2181 --topic topicname \
--config min.insync.replicas=2

Kafka MirrorMaker

Kafka mirroring enables maintaining a replica of an existing Kafka cluster. For production use, specify the
--no.data.loss parameter. This automatically sets producer parameters to avoid losing data in unexpected events.
Data duplication is possible in some scenarios. For example, if MirrorMaker crashes, it duplicates messages since its
previous checkpoint.

Checkpoint frequency is controlled with the offset.commit.interval.ms argument. This balances performance
and number of duplicates. Committing more frequently is slower, but results in fewer duplicates.

Kafka Performance and Resource Considerations
Kafka is optimized for small messages. According to benchmarks, the best performance occurs with 1 KB messages.
Larger messages (for example, 10 MB to 100 MB) can decrease throughput and significantly impact operations.

16 | Cloudera Distribution of Kafka

Kafka Administration

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines


Partitions and Memory Usage

Brokers allocate a buffer the size of replica.fetch.max.bytes for each partition they replicate. If
replica.fetch.max.bytes is set to 1 MiB and you have 1000 partitions, about 1 GiB of RAM is required. Ensure
that the number of partitions multiplied by the size of the largest message does not exceed available memory.

The same consideration applies for the consumer fetch.message.max.bytes setting. Ensure that you have enough
memory for the largest message for each partition the consumer replicates. When using larger messages, you may
need to use fewer partitions or provide more RAM.

Garbage Collection

Large messages can cause longer garbage collection (GC) pauses as brokers allocate large chunks. Monitor the GC log
and the server log. If long GC pauses cause Kafka to abandon the ZooKeeper session, youmay need to configure longer
timeout values for zookeeper.session.timeout.ms.

Handling Large Messages

If you need to accommodate large messages, first consider the following options to reduce message size:

• The Kafka producer can compress messages. For example, if the original message is a text-based format (such as
XML), in most cases the compressed message will be sufficiently small.

Use the compression.codec and compressed.topics producer configuration parameters to enable
compression. Both Gzip and Snappy are supported.

• If shared storage (such as NAS, HDFS, or S3) is available, consider placing large files on the shared storage and
using Kafka to send a message with the file location. In many cases, this can be much faster than using Kafka to
send the large file itself.

• Split large messages into 1 KB segments with the producing client, using partition keys to ensure that all segments
are sent to the same Kafka partition in the correct order. The consuming client can then reconstruct the original
large message.

If you still need to send large messages with Kafka, modify the following configuration parameters to match your
requirements:

Broker Configuration

• message.max.bytes

Maximummessage size the brokerwill accept.Must be smaller than the consumerfetch.message.max.bytes,
or the consumer cannot consume the message.

Default value: 1000000 (1 MB)

• log.segments.bytes

Size of a Kafka data file. Must be larger than any single message.

Default value: 1073741824 (1 GiB)

• replica.fetch.max.bytes

Maximummessage size a broker can replicate. Must be larger than message.max.bytes, or a broker can accept
messages it cannot replicate, potentially resulting in data loss.

Default value: 1048576 (1 MiB)

Consumer Configuration

• fetch.message.max.bytes

Maximum message size a consumer can read. Must be at least as large as message.max.bytes.

Cloudera Distribution of Kafka | 17

Kafka Administration



Default value: 1048576 (1 MiB)

18 | Cloudera Distribution of Kafka

Kafka Administration



Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

Cloudera | 19

Appendix: Apache License, Version 2.0



licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

20 | Cloudera

Appendix: Apache License, Version 2.0



While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Cloudera | 21

Appendix: Apache License, Version 2.0


	Table of Contents
	Apache Kafka Overview
	Cloudera Distribution of Kafka Release Notes
	New Features in Cloudera Distribution of Kafka 1.2.0
	New Features in Cloudera Distribution of Kafka 1.1.0

	Known Issues in Cloudera Distribution of Kafka 1.2.0
	— High CPU utilization
	— NPE in Flume Kafka Source

	Issues Fixed in Cloudera Distribution of Kafka 1.2.0
	Upstream Issues Fixed


	Cloudera Distribution of Kafka Version and Packaging Information
	Examples of Versions
	Cloudera Distribution of Kafka Versions

	Installing Kafka
	Kafka Command-line Tools
	Logs
	More Information

	Kafka Administration
	Using Kafka with Flume
	Using Kafka with Spark Streaming
	Kafka High Availability and Consistency
	Kafka Performance and Resource Considerations
	Partitions and Memory Usage
	Garbage Collection
	Handling Large Messages


	Appendix: Apache License, Version 2.0

