cloudera

Apache Kudu User Guide

Important Notice
© 2010-2017 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or service names or slogans contained
in this document are trademarks of Cloudera and its suppliers or licensors, and may not
be copied, imitated or used, in whole or in part, without the prior written permission
of Cloudera or the applicable trademark holder.

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logos mentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Cloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.

1001 Page Mill Road, Bldg 3
Palo Alto, CA 94304
info@cloudera.com

US: 1-888-789-1488

Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Apache Kudu 1.3.0 / CDH 5.11.x
Date: December 6, 2017

Table of Contents

About Apache Kudu.......cciieeeiiiieiiiiiiiiiecircnreecrreecneeecssnsensnsssssnssssenssssensssssnsessed

[@fo] aTol=T o1 K= Vo I KT 4 LU UEURRN 10
(00] [V a T Lo T D e 1 X o T = OSSPSR 10
RASt CONSENSUS AIGOITERIM.........occeeeeeeeeeeeeee et e e e et e e et e e ettt e e e et s e ettt e e e eatsaaeeaatsaeeesssaeeaatsaaeeatssseeansneas 10
TOBIC....ceeeeee ettt ettt ettt ettt et h et bttt eat ettt e et e et e et e et e et e et e e tne e e enares 10
o] o] =1 ST PRRPRN 10
o1 AN Y1 =L TP PPTPPPR 10
1Yo K = OO TSP PPPPPSRPIPPPPPT 10
(00T] (oo I Lo o L= SR 11
[oTo] ole 1IN 2=Te) | Tolo |1 (o) ¢ DO PSP SPPTPN 11
ATCNITECTUNAl OVEIVIEW..eeiuetiieiiie ettt ettt iee sttt s e st e e sttt e s te e e s teeesabeeesabteesasaeeastaeeanseeesnsaeesnseeesnsseesnsseesnsseennns 11
Y [a] o] (SR U A I O 1 TSRS 12
N I (=] o O OO O TP TP PP PPPPPPPPPUUTPTPPPPPPIRE 12

Apache Kudu Release NOtes......c.cccvuiiiieiiiiniiieniiieniiieninieniniesisiesissessssssssssssssens d3

Schema Design and Usage LimMitatioNns.t e e es e e e e e e e e e e s aan e e e e eeeeeesssnnnnnns 13
KUAU 1.3.0 / CDH 5.11.2 REICESE NOTES.....eeeeeeeiiiiieeeeee ettt et e e e e e e e e ae e e et eeeeeessssssaasaaaeeeeeeeesssssansnssraeseeees 13
KUAU 1.3.0 / CDH 5.11.1 ReIEASE NOTES....uuviiiiiieeiiieeeietiieeeeeeteteeeeeettteeesseatateessetareesssstaseeessssasseessassseessssaseeessns 13
KUAU 1.3.0 / CDH 5.11.0 REICESE NOTES. . ..eeeeeeeeeeeeee ettt e e et e e e e e e ettt e eeeeeesasaseeaaeeereeeeseseesaaasareeneeees 13
New Features in KUAU 1.3.0 / CDH 5.11.0.........couuueeeieeeeeeeeeeeieeeee e eeeeeeeeteeeeeeeeeeatteteessesssaasaatteassessssasstasesssesssssssesesssens 13
Optimizations and Improvements in Kudu 1.3.0 / CDH 5.11.0...........cccueeeeereesreeiieeiieesieeiteeeiseteeeeeseesseesseesseesssesseesssessseseans 14
Fixed 1SSUES iN KUAU 1.3.0 / CDH 5.11.0.....uuuuueeeeeeeeeeieeeeeeeeeeieetee e e et tteaeeeseeeaasteteessessssasasttaasssssssasstseessssssssssssseesssers 15
Wire ProtoCO! COMPALIDIIITY..........cc.ueeeeeiieeeeeie ettt et e et e e et e e et e e e st e e st e e e aasta e e e s atteassastsessaassaaesnssseannnes 15
Incompatible Changes in KUdu 1.3.0 / CDH 5.11.0...........ccuveeueeieeeeieeeeiieeeiteeeeteeettesettseetttaeeseessseeseesseassssesssesassseassesassses 15
Known Issues and Limitations in KUdu 1.3.0 / CDH 5.11.0...........cuooueueiieeieeeeeeee ettt setaa e eae e eeataeeeanes 16
Kudu 1.2.0 / CDH 5.10.2 REIEASE NOTES....eueeieieieitteit ettt ettt ette sttt st ettt e bt et e s bt enbesseesbeeneesbeentesseenbeenee e 16
KUudu 1.2.0 / CDH 5.10.1 REIEESE NOTES.....eeeeeeiiiiieeeeee ettt et e e e e e e e e e e eeae e e et eeeeeessssssssaaseereeesessssssnsnsrasseeees 16
Kudu 1.2.0 / CDH 5.10.0 REIEASE NOTES......veeeeureiieirieeeeeeeeteeeeteeeeteeeeteeeeteeeeaeeesteeeseteeeeteeeeeteseseseeesteeesnseeeans 17
New Features and Improvements in KUAu 1.2.0 / CDH 5.10.0.........cc.ueeeueeeceeeireeeieeeieeeeiseeeieeeiseseeseeessseeesssessssssseesissesisees 17
Issues Fixed in KUAU 1.2.0 / CDH 5.10.0..........ccouuoueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e et e e e eataeseeasaessasteesessteesaessaessssteesesseessasnees 18
Incompatible Changes in KUudu 1.2.0 / CDH 5.10.0...........ccuveeueeeiueeeeeeeieeeiieeeeeeetieeeseeeetsseeaeessseessessesesssssessesssssesssseessees 18
Known Issues and Limitations in KUdU 1.2.0 / CDH 5.10.0............ccoeeueeieeeeeeeeeeeeeeeeeee e eeeeeeeeeataereeataasseseaeseeineassesases 19
KUAU 1.1.X REIEASE NOTES.eiieeieiiiie ettt ettt ettt ettt e e bb e e et e e s bt e e e bb e e sabeeesbeeeeabeeesanbeesneeesaneeenans 19
NEW FEALUIES iN KUGU 1.1.0.....cc.oeeeieiieeiiieieeeieeee ettt ettt ettt et ettt s s s st e st e natenae et e e enens 19
ISSUES FIXCU 1N KUGU T.1.0..cc.eeeeneiieeeeeee ettt ettt ettt ettt et e st e st e et e st e et eenaneeans 20

(UL LU 0 TR A 2 T=Y =Y T =l Vo 1 (=TT 20

ISSUES FIXCA IN KUGU J.0.Ducoooeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeaa st aanaaaasasasasesasaseenns 20

KUAU 1.0.0 REIEASE NOTES.....eieerieeiiiie it ettt esiteeesteeesiee ettt e e sitee s tteessaseeentaeesaseesssseesnsseesasseesnsaeessseesnssessnssessne 21
I = o LN =X T I Lo [V O O SRR 21
Incompatible CAANGES iN KUAU 1.0.0..........c...oeeeeeeeeeeeeeeeeeeee et e ettt e e et e e ettt e e ettt e e e ettt e e etsaeeeasseaeaaassaaesssaaasassssaenssseas 22
Known Issues and Limitations Of KUGU 1.0.0..........cccueeeueeniieeieesieeeee ettt ettt ettt ettt e e n 23
ISSUES FIXCA I KUGU 1.0.0......ueeeeieeseiiesieeeiee sttt et ste et e s et s it e st e st e st e ettt e ste e ateeaataess e e saseesattesaseasntsaanstaensseensses 24
KUAU 0.10.0 REIEASE NOLES...ceeeteeiiiieiiiee ettt ee ettt e ettt e et e s bbe e s sabeesbbeesbbeessbbeesabbeesabbeesabbeesasbeesnbaeesseeenans 24
NeW FEQtUIES iN KUGU 0.10.0...........oeeeiieeeeeiiit ettt ettt e e ettt e ettt e e et e e e st e e e atte e e aaatea e e astaaesabeaeassaeaesnaseeas 25
Other Improvements in KUGU 0.10.0...............oeeeuueeeestieeeesieeeeeeeestae e ettt e e et aeeeastaaessasseaessseseaaassaassssssaaesssaasassssseessssnes 25
1SSUES FIXA iN KUAU O.10.0.......cccueeeeeeeeeeeee ettt ettt e e e et e e ettt e e et e e e att e e e et te e e astaaessbeeesasteaesnasneas 26
Incompatible CAANGES iN KUAU 0.10.0.............oeeeueeeeeeiiieeeeeteeeee e etta e e et e et e e e sttt e e ssastaaeassaeesasssaaessssaaeasssaasanssseaenansnes 26
KUAU 0.9.1 REIEASE NOTES. . ceiiiiiiiieeiitiiiee ettt e ettt e e ettt e e e sta e e e s saaaeeeeeassaeeeesasbaeeesaassseeessanssseeesassseeesannsseeeeenn 26
T e B I 0 e [O RSP 27
KUAU 0.9.0 REIEASE NOTES.eieiieeiiiie ittt ettt ettt ettt e ettt e st e e e sabeesbbeesbbeesbbeesabbeesbbeesabbeessbeesnbbeesanseesans 27
NeW FEQUIES iN KUGU 0.9.0........c...ooeeeeeeeeeee ettt ettt ettt e et e et e e et e e e et e e e atte e s aaate e e s aastaaestseaesasteaesnasneas 27
Other Improvements and ChANGes iN KUAU 0.9.0.............cc.uueeeeeueeeeeieieesieeeeeteeee et e eetaeesstaesestaaeesssaaasasseaessnseaennsees 27
ISSUES FIXCA i KUGU 0.9.0........oeeeeeeeeee ettt ettt ettt e et e ettt e e et e e e abt e e e ettt e e aasta e e s st e e e asteaesnasneas 27
Incompatible CAANGES iN KUAU 0.9.0........ccc..uueeeeeeeeeeee ettt e et e e ettt e et e e e ettt e e e st e e e asseaesaassaaeassstaaeanssaaeesssnsaenassees 28
LimMItQtioONS Of KUGU 0.9.0.........ooeoeeeeeeeeeeeeeeeee ettt e e e et e e et e e e et e e et e e e ettt s e e aas e e e eatsaaeeaatsaeeeasssaeeastssaeeasssseeaasneas 28
UpGrade NOLES fOr KUAU 0.9.0..............ueeeeeeeeeeeeeeeeeee e eeee e ettt e ettt e e ettt a e ettt e e et e e eastaaeassaaeaaastaaeasstaaeanssanensssnsaensssnes 28
KUAU 0.8.0 REIEASE NOTES. ..ceeiiuiiiieeiiiiiieeeeiit e ettt e e ettt e e e st e e e s sata e e e e esaaaaeeesasbaeeeeeassseeeeeanssseeesassseeesannsseeaeenn 28
NEW FEALUIES IN KUGU 0.8.0..........ooeueeesieeeiiesiieete ettt ettt s e st e st e st e st e et e e ate e tte e sta e st e saseesataesaseesntaaanseaensseensnes 28
Other IMpProvements iN KUGU 0.8.0...........c..oouuueeeeeeeieeeee ettt ettt ettt ettt et e st e s e et e s e eneas 28
ISSUES FIXCA I KUGU 0.8.0.......coeeiieeiiesieeeiie ettt ettt s st e st e st e st e ettt et e ettt e s st e e s s e e st e s bt e sabeasntsaenstaenaseensses 28
Incompatible ChANGES iN KUAU 0.8.0...........ooouueeeieieieeeee ettt ettt ettt ettt eane st e et e s e enees 29
LimitQtioNS Of KUGU 0.8.0.........ooeeeeeeeeeeeeeeeee et e ettt e et e e et e e e et e e et st e e e e sts e e e eassaeeaatsaaaaaststeaaasssaaeassseaseassssaeaasses 29
UPGrade NOLES fOr KUAU 0.8.0..........cc.eeeueeeeeeieeee ettt ettt ettt e s et et e st e et et e et e nateenineenane e 29
KUU 0.7.1 REIEASE NOTES...ciiiiiiiiiee ittt ettt ettt ettt e s sttt e s ettt e e e s abbt e e e s e abbaeeessabsteeesansbseeesanntseeesannsaeeeesnn 29
ISSUES FIXCA 1N KUDU 0.7. Dottt ettt ettt e e et e e et e ettt e et e et e st e st e st esbneeataensneenanes 29
LiMItQEIONS Of KUGU O.7. 1.ttt e e e et e e e et e e et e e e et s e e tas e e e eatstaeeaatsaeeeasssaeeaatsaaeeasssaeenasneas 29
UPGrade NOLES FOI KUTU 0.7.1.......oueeeeeeeeeieeeeeee e ettt e e et e et e e et a e e ettt e et e e st e e e anssaaeaansseasassssaaesnssanennssneaennnnes 29
KUAU 0.7.0 REIEASE NOTES. ..ceiiiiiiiieeeeiiiiee ettt e ettt e e e sttt e e e et e e e s saaaeeeeeansaeeeesaastaeeesaansbeeeseanssseeesassseeesannsseeaeann 29
NEW FEALUIES IN KUGU 0.7.0.....cc..oveieeesiieeiiesiieete ettt e sia st e sttt e st e st e s tte et e et eetteesata e ateesaseesataesasessataaanstaensseensss 30
Other IMpProvements iN KUGU 0.7.0...........c.ueouueeeueeeieeeee ettt ettt ettt et ettt e st e st e et e nneesneas 30
T e B T I 0 o [V O O TP PPPPR 30
Incompatible ChANGES IN KUAU 0.7.0........cc.ueesuueeeieieieeeee ettt ettt ettt ettt ettt et et sete e et e s e enees 30
LimMitQtiONS Of KUGU 0.7.0........oooeeeeeeeeeeeee ettt e e e ettt e e et e e et e e e et a e et e e e e ats e e e esssaaeaatstaaaastsaaeaasssaaeassseaeassssaeeansnees 30
UPGrade NOtES FOIr KUTU 0.7.0..........ooueeeueeeei ettt ettt ettt ettt e s e e it e st e et e et e et e e ateenineenane e 32
KUU 0.6 REIEASE NOLES.....eiieiiiiiiiee ettt ettt ettt ettt e s sttt e e sttt et e e s sabbe e e e s e sbaeeessanbseeeesansbeeeesantaeeessnnsseeaesan 32
NEW FEALUIES 1N KUGU D.6.......oeeneeeeeeieeeee ettt ettt s et ettt ettt ettt et e e st e st e st e st a st e eaesenaneenans 32
ISSUES FIXCU i KUGU 0.6ttt ettt et e et e e ettt e e st e e e e att e e e et e e e et e e st e e e ssteaesnasneas 32
LimMitQtiONS Of KUGU O.6.....ccc..eveeeeeeeeeeee ettt e et e et a e ettt e e e et e e ettt e e e ettt e e sasstaeeansseaaasssaaeansssaanassanasaanssaannnssees 32
UPGrade NOLES FOI KUGU .6............coouuueeeeeeeeeeeeeeeeeeee ettt e e e ettt e e e e e e ettt e e e eeea e tas e s aaaeeeasasssssaaaeeeessssssesasaaeaaaas 34

KUAU 0.5 REIEASE NOTES... .o iieeiiiiiiiiiieieeeeeeeeeee e e e e e e e et et e e e e e e e e eete et e ettt e aaae st atasasanas e seseeeseesasaasanseeeeenes 34

LIMItAEIONS Of KUGU 0.5ttt et e e ettt e e e et e e ettt e e e et aeeas e e e e atst e e e e ats e e e esssaeeaatsaaeeaansaeeaasnes 34

NS N (=T o PSSP PPPP PP ORPPPPPP 36
Apache Kudu Schema Desigh and Usage Limitations........ccuiiiiiiiiiieiiiieie ettt e e e e 36
SCREMQA DSIGN LIMUEATIONS.coeeeeeeeeieeeee e eeeeeeeeee ettt e e e e ettt e e e e e e et e e e e e e e et st e e aaaeeeasasssasaaaeeeasssssssenaaaeessasssseen 36
PAIrtitiONING LIMITATIONS. ..ccceeeeeiieeeeeeeeeeettee ettt e e e e ettt e e e e e e sttt te e e e e sa st eeaaeaasnssssteaaaesesaansssseaaaessassnstnnesaesnanan 37
Scaling Recommendations ANA LIMUEATIONS.cceeeeeuueeeeesee e et e ettt e e e e e ettt e e e e e e e st eaeeeeesssssaeaaaeeeesssnssneees 37
Server ManAGEeMENT LIMUEATIONS.uveeeeeeseieieieteeeeeeeete e e e ettt et e e e e s ettt ae e e e e s ss sttt e aesessssssttaeaeasssssssssnseaassesssnssssnen 38
Cluster ManAGeMENT LIMITATIONS.vveeeeeeeeeeeeeeee e et e e e e e et e e e e e e e ettt e e e e e eea s e s eaaaeeesesssssaaaaeeessssssasesaaeaanes 38
Replication AN BACKUP LiMIEATIONS.cceeueeeeeeeeeesiieeeete e eete e ettt e e e ettt e e ettt e e e ste e e s sasttaeassaeasanssaaeasssaaeaassaaeanssnsaessnsnes 38
IMPAIA INEEGIALION LIMUEATLIONS.cccceeeeeeeieeeeee ettt e e e ettt e e e e e e e ettt e e e e e ee e aas s eaaaeeessstssaeaaeeeeassssssesesaaeeaaaes 38
RY Lo 10 Qe C=Te Tofa To T T M T o L (o) KT SR 39
RY=1o0 13 A A [0 g] (e 14 (o] (R OO N 39
OLNEE KNOWN ISSUBS. ...ttt ettt ettt s e sttt e e ettt e st e ettt et e e s et e s it e st e st e et e et e e ttaenateenaneenanes 39

Installing and Upgrading Apache Kudu.........ccccceiiieiiiieiiiiiniiiicniinieeccnneeninneeennennna 41

Kudu Installation REQUITEMENTS......uiiiiie e ittt e ee e e e e e e e e s e st e e e e e e e eaee e s e s anessaaeaeeeaeeeessasnsnsrnrnees 41
Install Kudu UsiNg ClOUAEra MaNAgET.......uuiiieiiiieee e eeiteee e eetiee e e e eettee e e e e ettaeeeesebtaeeesaaasaeeessaasaeeeesassseeesanssseeesanns 41
INSEQI KUAU USING POICEIS........eeeneieeieeieeeeee ettt ettt ettt ettt et et e st e st e st e st e et s enineeans 42
INSEAI KUGU USING PACKAGES.c.eveeeeeeeeeeeee et eete ettt e e e ettt e e e et a e et e e e et e e e eaass e e eaatst e e e sssseeaasssaeeassaeaeasssaeeassses 42
Install Kudu Using the CoOmMMAaNd LiNE.......c..uiiiiiiiiiie ettt et e e e et e e e seaate e e e eenbaaeeeeenrneeeeenns 44
VErify the INSTAIlAtioN.uiii e e e e e et e e e s eatt e e e e s sbtaeeessstaeeessansaneeesanstneeesansed 46
Upgrade Kudu using CloUdEra IMANAgET.........uuuiiiiieieeeeeeeiiiiiiiieeeeeeeeeeesesearaaaeseeaeeeesssessnsassaeseeaaesseessnnnssssenneees 47
UPGrade KUGU USING POICEIS.uveeeeeeeeeeeeeeet e ettt e ettt e e ettt e et a e ettt e e e ste e e ettt aeassaaasaassaaeaassaaeassaaaessneaeesssses 47
Upgrade KUAU USING PACKGGESeueeeeeeeeeeeeeeeeee ettt e ettt e e e et e ettt a e e e e e e e e e e e e e e e ssssaeaaaeeessassssasasaaeeaaes 47
Upgrade Kudu Using the CoOmMMAaNd LINE.......ccoiciiiiiiiiiiiee et eete e ettt e e eette e e e e ette e e e e saaaeeeeennaaeeesenneneeesanns 48
N I (=] o LT OO OO O TP PP PP PPPPPPPPPTPTPPPPPPPRt 48

Apache Kudu Configuration..........ccccceiieeiiiieiiiieiiiieeniniencnencenenenerensenenssenenssssensee 49

Configuring the KUAU IMaster.....ccoo i iiiiiiiieee ettt e e e e e e e et a e e e e e e e e e e e e e s aabtataesaeaaaeeeessansssssssesaaaeassannnad 49
(00T) {7 ={V T o =4 - o] [YT V< SRS 50

Apache Kudu Administration........c.ccceieeiiieiieniiieiieiiieiiiesinenenesneeereessessesnssssssesnens D1

Starting and StOPPING KUAU PrOCESSES.uiiiiiiiieiiiiiite e eeit e seiree e e et e e e st e e e e e bbeeeeessbaeeesssnsaeeeeessssaeeeesnnsens 51
KUAU WED INTOITACES. ... eeieiie ettt ettt ettt e e st e e bt e e e aab e e e bt e e s bbeeesabeesbbeeeanbeeenbeesanreeanns 51
Lo [V Y L R =T = oI L L =T o Lol =2 USSR 51
Kudu Tablet SErver Wb INTEITOCE.ocueaieeeeeeeeeee ettt ettt ettt et e e et e et e s eenees 51
COMMON WED INEEIFACE POAGES........ooeeeeeeeeeeeie e eeee ettt e e e e ettt e e e et e e e ettt e e et e e e e asst e e e ssaeeeesseaeaaasseaeeassenasasnsaennssneas 51
KUGU IVIBEIICS .ttt ettt ettt e sttt e sttt e s bt e e s ab e e e sabb e e s ab e e e sabe e e sab e e e sabaeesabeeeaabaeesabeeeanbeeesabeeenns 52
N3 le Mo 1 e 11 o]] (=2 g Tt 1 g ok TP UPPRT 52
(000 L=Tor Lo I e =2 g (oI o B I I R 52

(000)|=Torn [1o W e g T=1 4 [k £ X I oY OO PP UUPPN 53

COMMON KUAU WOTKIIOWS. ...ueeiiiiiiiieee ettt e e ettt e e e e et et e e e s e et bt e e e s s asbaaaeeesssabsan s eesessanansaees 53

Migrating to MUItiDIE KUGU MOSTIS........ccc.ueeeeeeeeeeeteeeeee e et e ettt e e ettt e e ettt e e ettt e e e ettt e e etsaaaeaatsaaeeasssaaeatsaaasassssaenssseas 54
Recovering from a dead Kudu Master in a Multi-Master DePIOYMENT...............coceeerueeeieisieeeiieeieeeiee e 57
Monitoring CIUSTEr HEGITR WIth KSCK.........cc.vveeeeeeee ettt ettt e e et e e ettt a e et e e e et e e e et e e e s tseaeeasssaeessneas 59
RECOVEIING FIrOM DISK FOIIUIE........coeeeiiieeeeeeee ettt ettt et e eat e st e st e st e et e e e 60

Developing Applications With Apache Kudu..........ccccceveiieniiiniiencireierenceennerencennee...61

Viewing the APl DOCUMENTATION.ciiiiiiiiie ettt e et e e e et e e e e e et e e e e e e abaeeeeenbaeeeeennneeeeeennnens 61
BUIIAING The JAVA CHENT....eiiiii ettt et e e et e e e st e e e e e e ttaeeeeeaaaaeeeeesnssseeeeannssseeeannnsreeenns 61
(e [V g g o] ISl AN oY o] [T oF 14 o] o - J RPN 61
Y AT o I AN] - ot £ PR SRRPPN 62
(U e [V Y7 o Vo] s T = oY SO URORRN 62
Example Apache Impala Commands With KUdU.........c.ueiiiiiiiiiiiiiiiiice et et e e e saaae e e e 63
KUdu INtegration WIth SPark..........ceiuiiiii it e e e e e e st e e e e ssataeeesssnsseeeeeansseeessnnsseeesens 63
Integration with MapReduce, YARN, and Other FramewWorks........coooiiiiiiiiic e 64

Using Apache Impala (incubating) with Kudu........ccccceeeuerreeeireniiiiencrieeceieeneeeennes.065

Impala Database ContainmMeENnt IMOAEL..........ooii it e e e et e e e eeba e e e e s eaaaaeeeaans 65
Internal and External IMpPala Tables. .. .o i e e e e et e e e erbt e e e e eebbaeeesenaraeeeeenns 65
Using Impala To QUErY KUdU Tables......ccoe ittt ettt e e e e e e e e e e e e sba e b e e e e e e e e e e e e e e nansaanaeees 66
Querying an Existing Kudu Table from IMPQAIQ.............ccueeiuveeueeiiieeiee sttt ettt st e se e ieesbtesseasniseenanees 66
Creating a New Kudu Table FrOM IMPQIQ...........cc.eeeeeueeieesiieeeeiee ettt e et e e e ate e e s stae e saassaassnasaeesssteaesnasees 67
POIEIEIONING TOBIES.cccc.eeeeeeeee et e et e e et e e et e e ettt e e et e e et e e e easse e e e tsteaaesseaaasssaaeaatstaaaanssaaaasssaaeassseaaaanssaaeansnees 67
Optimizing Performance for Evaluating SQL PrediCOtes...........uuuieeeuiieesciieeesiiteeeeiiee ettt e esiiee s ettt e s sisaaessisaaessssssaessasses 71
INSEIEING O ROW....oveveieeeiieeieieieeeeeeeeeeeteeee ettt s s s e s e s e s s a e s s nasasaansasasasasasassssnens 71
(8T o1 a g e Jo I 1o 1RSSR 72
UPDSEITING O ROW..oeeeeeeeeeeeeeee ettt ettt ettt ettt ettt ettt ettt ettt ettt sttt et te sttt sssnsssasasaaasas 72
[0 =] =2 4oL e I e RSP 73
Failures During INSERT, UPDATE, UPSERT, GNd DELETE OPEIQLIONS.cccvuveeeerieeeeeiesesisieaaassiaeesisssasssssaassssseaessisssaessssses 74
AILEIING TADIE PIrOPEITICS.eveeeeieeeeeet ettt e et e e e et e e ettt e e et e e ettt e e et te e e s staaesastaesesttneannsanaesnasseas 74
Dropping a Kudu TabIE USING IMPGIG.............oueeeeeeeeeeeeeeee et e e e e et e e et e e e ettt e e ettt a e e tsaeeeaatstaeasassaaesstsaaanaasssaesnseens 74
NYTolU g AV e o Ty [[T 1 4 o o USRI 75
KNOWN 1SSUES @Nd LIMItatiONS....ueieieiiiiiee ettt e sttt e e et e e e st b e e e sasbaeeessnsseeeesanssaeeesansseeesans 75
N =] o 1P PPPUPUP IR 75

Apache Kudu SeCUNitY.....ccciieuiiieiieniiieiieniiieiieeiereiieeieraeressssnscrsssssnsssssssssssssssssnses 70

Kudu Authentication WIith KerErOS.......couiiiii it e e e et e e e e sbbae e e s ssaraeeeeeans 76
Internal Private Key INFIASTIUCTUIE (PKI).........cooooueeeeeeeeeeeeee ettt etee e ettt e et e e e et a e e et e e e et a e e e tssaeesatsaeeeaassaeenannes 76
AULNENTICALION TOKEINS. ...c..veeeieieeeeee ettt ettt ettt ettt e s ekt e et e st e et e et e et e e s at e e s e e st e satesesneesteensneeans 76
RYole][] o111 UUUPPNE 76

= aYol Vo oY o DO TP PPPPPPN 77

Coarse-grained AULNOTIZAtION........uiii i e e et e e e st te e e e e sbte e e e e s sbaeeeessbaeaeeennnaeeas 77

LVAVZ=T o O LI =Y ol Y7 o d o TSR 77
L] o W B Y=To I Yot o Yo T OO SUPRTSPURRRTPRNt 77
oY=l 2{CTe F-To [o FEO O T PSSO PP PP PO UPPTUPPPPROTRRIN 78
Configuring a Secure Kudu Cluster using Cloudera Manager.........cceuuveeeiiiiiieeeeiiieeeeesiveeesesieeeesssreeeessnneeens 78
Configuring a Secure Kudu Cluster using the Command LiNE.........cccciuiiiiiiiiiiie e 80

Apache Kudu Schema Design......c.cccceieeiieeiieeiiieiieeiireiieecerneresssrnernssssnssrnssssnsssnsess Q1

ThE PerfeCt SCNEMA. . ittt ettt e sttt e e sabe e s sabe e e bbeesabeeesabeesbbeeesabeesnbeesanbeeenes 81
(070 (W10 T T D T=TY =4 o OSSPSR 81
(000] [V T I g ol Yo [T O USSR 82
COIUMN COMPIESSION. ...ttt ettt sttt e ittt et e et et e ettt et et e s it e st e st e st e et e e bt e eateenaneenanes 82
R T Y A =V 1= 1= o TP UUUUPUPPPPe 82
L L0 Te T VA =3V L Lo L= oSSR 83
e YA L To] o1 o TSP PP PPP R ORSPPPTPPP 83
ROANGE POITITIONING.c.ccceeveseieiiiiieiiiieiieeetetesetete ettt a s a s s s s s s s s s sassaasssasasasasasanens 83
HOSA POIEIEIONING. ...ttt ettt ettt et e at ettt e et e st e et e st e e st e et e et e e it e enateenaneenanes 84
1Y VL= I e T 1 Lo T OSSR 84
POIEIEION PrUNING..c....oveiiiiiieieeee ettt ettt ettt e ettt e ettt e sttt e e ettt e st s e e e st e e et s e e e easts e e s aabn e e e s aitneeenannees 84
PQItItIONING EXAMPIS.......oeeeeeeeeeeeeee ettt ettt e e et e ettt e e ettt e e e et e e ettt e e e ettt s e e st e e e eatstaaaastseaaesssaaeassseaaeaassaaeassnees 84
Yol 1T 0 g AN =T =Y o T OO PO PSP ROTOT PP 87
Yol (YR I DT o g T T T = Yo o [RSP 87

Apache Kudu Transaction SEmMantics.......cceeieeiieeiieniirnierencrencernncrenerencrensernscrenneenss s 88

Single Tablet WL OPErations.......cccceiiiiiiieiee e et e e e e e e e st eeeeeeeeessaaattaaeeeaeeeeeesaaansssssseeeaeaeessannnnns 88
WItING t0 MUILIPIE TABIETS. ... eveie et e e et e e e ettt e e e e esaba e e e e esattaeeesenntaeeeesansaneeeeenses 88
REAA OPEIATIONS (SCANS).ccuriieiutieeiiieeiteeeeteeeeteeeeteeesteeastreeeesaeeasssesessseeasseesassaeesssseaasseeeasseeassessasseesnsseesassesanns 89
KNOWN 1SSUES @Nd LIMItatiONS...ueeieiiiiiiee ittt e e st e s ettt e e s atta e e e sastaeeesssnssseeeeanssaeeesansseeesans 90
0= Lo O Yol T 1 USSR 90
WWVETE@S. ..ottt ettt e e+ttt e e+ e ettt e e e e e ettt e e e e e e ettt et e e e e e e e hatt e et e e e ee e bttt e e aeeeeaaatteeeeas 90

Apache Kudu Background Maintenance Tasks.......cccccceerenirencrnniienccrencrenerencrennenns. 92

Troubleshooting Apache Kudu.........ccceciieiieeiiieiieniiieniieniiencienieeseresnenenesnensesnneees 94

Issues Starting or Restarting the Master or Tablet SErVEI.........cov it e 94
Error dUring ROIE PUNCR TSteeeeeeeeeeeeee ettt e e e ettt e e e e e e ettt e e e e e e e et e s aaaaeeessstssseaaaeeeassasssasasaaeeaaas 94
ClOCK SYNCRIONIZATION ISSUES.......cc.eeeeeeeiiieeeie e eeee e et e e e et e e et e e e ettt e e e asst e e e sasstaaaasts e e esssssaeeassaaasasteaaaansssaenssaaaeasssaeennssees 94
Breakpad MinidUmpPs fOr KUGU......oocuuiiiiiiiiiiee ettt et e et e e s s eabaaeeessataeeesssbaeeessnnsaeeeseans 95
Troubleshooting PerfOrmManCe ISSUES........cuiiiiiiiiiiee e e e e e e e e s e e e e e e e e e s e esaaraataeaeeaaeeeeeessnnsnranenees 96

Q0o [V g [o SR 96

Cloudera Manager Metrics for Kudu.........ccieeiiiieiiiieiiiiiiiiieiiieeniieesenenieneneenenns 99

(U Te [V Y/ 1= Lo 99
0T [U T A T=Y o Lo TN Y L] ok UPP 99
L] o[Y= AV Y/ (=] 4 Lok 110

More Resources for Apache Kudu........cccceiiieeiiieniiiieiiiieiiiieieneeeenensenenssenenssenens 124

About Apache Kudu

Apache Kudu is a columnar storage manager developed for the Hadoop platform. Kudu shares the common technical
properties of Hadoop ecosystem applications: It runs on commodity hardware, is horizontally scalable, and supports
highly available operation.

Apache Kudu is a top-level project in the Apache Software Foundation.

Kudu's benefits include:

Fast processing of OLAP workloads.

Integration with MapReduce, Spark, Flume, and other Hadoop ecosystem components.

Tight integration with Apache Impala (incubating), making it a good, mutable alternative to using HDFS with Apache
Parquet.

Strong but flexible consistency model, allowing you to choose consistency requirements on a per-request basis,
including the option for strict serialized consistency.

Strong performance for running sequential and random workloads simultaneously.

Easy administration and management through Cloudera Manager.

High availability. Tablet Servers and Master use the Raft consensus algorithm, which ensures availability as long
as more replicas are available than unavailable. Reads can be serviced by read-only follower tablets, even in the
event of a leader tablet failure.

Structured data model.

By combining all of these properties, Kudu targets support applications that are difficult or impossible to implement
on currently available Hadoop storage technologies. Applications for which Kudu is a viable solution include:

Reporting applications where new data must be immediately available for end users

Time-series applications that must support queries across large amounts of historic data while simultaneously
returning granular queries about an individual entity

Applications that use predictive models to make real-time decisions, with periodic refreshes of the predictive
model based on all historical data

For more details, see Example Use Cases on page 12.

Kudu-Impala Integration Features

CREATE/ ALTER/ DROP TABLE - Impala supports creating, altering, and dropping tables using Kudu as the persistence
layer. The tables follow the same internal/external approach as other tables in Impala, allowing for flexible data
ingestion and querying.

I NSERT - Data can be inserted into Kudu tables from Impala using the same mechanisms as any other table with
HDFS or HBase persistence.

UPDATE/ DELETE - Impala supports the UPDATE and DELETE SQL commands to modify existing data in a Kudu
table row-by-row or as a batch. The syntax of the SQL commands is designed to be as compatible as possible with
existing solutions. In addition to simple DELETE or UPDATE commands, you can specify complex joins in the FROM
clause of the query, using the same syntax as a regular SELECT statement.

Flexible Partitioning - Similar to partitioning of tables in Hive, Kudu allows you to dynamically pre-split tables by
hash or range into a predefined number of tablets, in order to distribute writes and queries evenly across your
cluster. You can partition by any number of primary key columns, with any number of hashes, a list of split rows,
or a combination of these. A partition scheme is required.

Parallel Scan - To achieve the highest possible performance on modern hardware, the Kudu client used by Impala
parallelizes scans across multiple tablets.

High-efficiency queries - Where possible, Impala pushes down predicate evaluation to Kudu, so that predicates
are evaluated as close as possible to the data. Query performance is comparable to Parquet in many workloads.

Concepts and Terms

Columnar Datastore

Kudu is a columnar datastore. A columnar datastore stores data in strongly-typed columns. With a proper design, a
columnar store can be superior for analytical or data warehousing workloads for the following reasons:

Read Efficiency

For analytical queries, you can read a single column, or a portion of that column, while ignoring other columns. This
means you can fulfill your request while reading a minimal number of blocks on disk. With a row-based store, you
need to read the entire row, even if you only return values from a few columns.

Data Compression

Because a given column contains only one type of data, pattern-based compression can be orders of magnitude
more efficient than compressing mixed data types, which are used in row-based solutions. Combined with the
efficiencies of reading data from columns, compression allows you to fulfill your query while reading even fewer
blocks from disk.

Raft Consensus Algorithm

The Raft consensus algorithm provides a way to elect a leader for a distributed cluster from a pool of potential leaders.
If a follower cannot reach the current leader, it transitions itself to become a candidate. Given a quorum of voters,
one candidate is elected to be the new leader, and the others transition back to being followers. A full discussion of
Raft is out of scope for this documentation, but it is a robust algorithm.

Kudu uses the Raft Consensus Algorithm for the election of masters and leader tablets, as well as determining the
success or failure of a given write operation.

Table

A table is where your data is stored in Kudu. A table has a schema and a totally ordered primary key. A table is split
into segments called tablets, by primary key.

Tablet

A tablet is a contiguous segment of a table, similar to a partition in other data storage engines or relational databases.
A given tablet is replicated on multiple tablet servers, and at any given point in time, one of these replicas is considered
the leader tablet. Any replica can service reads. Writes require consensus among the set of tablet servers serving the
tablet.

Tablet Server

A tablet server stores and serves tablets to clients. For a given tablet, one tablet server acts as a leader and the others
serve follower replicas of that tablet. Only leaders service write requests, while leaders or followers each service read
requests. Leaders are elected using Raft consensus. One tablet server can serve multiple tablets, and one tablet can
be served by multiple tablet servers.

Master

The master keeps track of all the tablets, tablet servers, the catalog table, and other metadata related to the cluster.
At a given pointin time, there can only be one acting master (the leader). If the current leader disappears, a new master
is elected using Raft consensus.

The master also coordinates metadata operations for clients. For example, when creating a new table, the client
internally sends the request to the master. The master writes the metadata for the new table into the catalog table,
and coordinates the process of creating tablets on the tablet servers.

All the master's data is stored in a tablet, which can be replicated to all the other candidate masters.

Tablet servers heartbeat to the master at a set interval (the default is once per second).

http://raftconsensus.github.io/

Catalog Table

The catalog table is the central location for metadata of Kudu. It stores information about tables and tablets. The
catalog table is accessible to clients through the master, using the client API. The catalog table cannot be read or written
directly. Instead, it is accessible only through metadata operations exposed in the client API. The catalog table stores
two categories of metadata:

Contents of the Catalog Table

Tables Table schemas, locations, and states

Tablets The list of existing tablets, which tablet servers have replicas of each tablet, the tablet's current
state, and start and end keys.

Logical Replication

Kudu replicates operations, not on-disk data. This is referred to as logical replication, as opposed to physical replication.
This has several advantages:

e Although inserts and updates transmit data over the network, deletes do not need to move any data. The delete
operation is sent to each tablet server, which performs the delete locally.

e Physical operations, such as compaction, do not need to transmit the data over the network in Kudu. This is
different from storage systems that use HDFS, where the blocks need to be transmitted over the network to fulfill
the required number of replicas.

¢ Tablets do not need to perform compactions at the same time or on the same schedule. They do not even need
to remain in sync on the physical storage layer. This decreases the chances of all tablet servers experiencing high
latency at the same time, due to compactions or heavy write loads.

Architectural Overview

The following diagram shows a Kudu cluster with three masters and multiple tablet servers, each serving multiple
tablets. It illustrates how Raft consensus is used to allow for both leaders and followers for both the masters and tablet
servers. In addition, a tablet server can be a leader for some tablets and a follower for others. Leaders are shown in
gold, while followers are shown in grey.

Kudu network architecture

Master tablet Tablet 1 Tablet 2 e Tablet n
: ST —— 1 |
| — 1 ! |
| | |
Master Master tablet ! Tablet 1 ! I Tablet n ;ab let
Server A LEADER H LEADER 1 ! FOLLOWER erver W
1
1 - !
1
|
I
N — '
! |
1 1 |
Master Master tablet : Tablet 1 1 Tablet 2 1 Tablet
Server B FOLLOWER ! FOLLOWER i FOLLOWER | Server X
! 1
] | \
1
|
|
1
i - | !
! 1
1 1 |
Master Master tablet : Tablet 1 : Tablet 2 1 Tablet n Tablet
Server C FOLLOWER i FOLLOWER | FOLLOWER 1 LEADER Server Y
1] |
! ' |
|
|
: : |
I |
! 1
: : Tablet 2 1 Tablet n Tablet
! i LEADER ' | FoLLoweR ServerZ
! : :
1

Figure 1: Kudu Architectural Overview

Example Use Cases

Streaming Input with Near Real Time Availability

A common business challenge is one where new data arrives rapidly and constantly, and the same data needs to be
available in near real time for reads, scans, and updates. Kudu offers the powerful combination of fast inserts and
updates with efficient columnar scans to enable real-time analytics use cases on a single storage layer.

Time-Series Application with Widely Varying Access Patterns

A time-series schema is one in which data points are organized and keyed according to the time at which they occurred.
This can be useful for investigating the performance of metrics over time or attempting to predict future behavior
based on past data. For instance, time-series customer data might be used both to store purchase click-stream history
and to predict future purchases, or for use by a customer support representative. While these different types of analysis
are occurring, inserts and mutations might also be occurring individually and in bulk, and become available immediately
to read workloads. Kudu can handle all of these access patterns simultaneously in a scalable and efficient manner.

Kudu is a good fit for time-series workloads for several reasons. With Kudu's support for hash-based partitioning,
combined with its native support for compound row keys, it is simple to set up a table spread across many servers
without the risk of "hotspotting" that is commonly observed when range partitioning is used. Kudu's columnar storage
engine is also beneficial in this context, because many time-series workloads read only a few columns, as opposed to
the whole row.

In the past, you might have needed to use multiple datastores to handle different data access patterns. This practice
adds complexity to your application and operations, and duplicates your data, doubling (or worse) the amount of
storage required. Kudu can handle all of these access patterns natively and efficiently, without the need to off-load
work to other datastores.

Predictive Modeling

Data scientists often develop predictive learning models from large sets of data. The model and the data might need
to be updated or modified often as the learning takes place or as the situation being modeled changes. In addition,
the scientist might want to change one or more factors in the model to see what happens over time. Updating a large
set of data stored in files in HDFS is resource-intensive, as each file needs to be completely rewritten. In Kudu, updates
happen in near real time. The scientist can tweak the value, re-run the query, and refresh the graph in seconds or
minutes, rather than hours or days. In addition, batch or incremental algorithms can be run across the data at any
time, with near-real-time results.

Combining Data In Kudu With Legacy Systems

Companies generate data from multiple sources and store it in a variety of systems and formats. For instance, some
of your data might be stored in Kudu, some in a traditional RDBMS, and some in files in HDFS. You can access and query
all of these sources and formats using Impala, without the need to change your legacy systems.

Next Steps

¢ Read about installing Kudu.
e Learn about using Kudu with Impala.

Apache Kudu Release Notes

This topic includes the release notes for all beta and generally available versions (GA) of Apache Kudu.

Schema Design and Usage Limitations

The Apache Kudu Schema Design and Usage Limitations on page 36 topic describes known issues and limitations with
respect to schema design, integration with Apache Impala (incubating), and security in Kudu, as of the current release.

Kudu 1.3.0 / CDH 5.11.2 Release Notes

Apache Kudu 1.3.0 / CDH 5.11.2 is a bug-fix release which includes the following fixes:

e KUDU-2053 - Fixed a race condition in the Java Request Tr acker .

e KUDU-2049 - Fixed an issue where scans on RLE-encoded integer columns would sometimes cause CHECK failures
due to the CHECK condition being too strict.

e KUDU-1963 - Fixed an issue where the Java client misdiagnoses an error and logs a Nul | Poi nt er Excepti on
when a connection is closed by client while a negotiation is in progress.
e KUDU-1853 - Fixed an issue where data blocks could be orphaned after a failed tablet copy

Kudu 1.3.0 / CDH 5.11.1 Release Notes

Apache Kudu 1.3.0 / CDH 5.11.1 is a bug-fix release which includes the following fixes:

e KUDU-1999 - Fixed an issue where the Kudu Spark connector would fail to kinit with the principal and keytab
provided to a job.

e KUDU-1993 - Fixed a validation issue with grouped gflags.

e KUDU-1981 - Fixed an issue where Kudu server components would fail to start on machines with fully-qualified
domain names longer than 64 characters when security was enabled. This was due to hard-coded restrictions in
the OpenSSL library.

e KUDU-1607 - Fixed a case in which a tablet replica on a tablet server could retain blocks of data which prevented
it from being fully deleted.

e KUDU-1933 - Fixed an issue in which a tablet server would crash and fail to restart after a single tablet received
more than two billion write operations.

Kudu 1.3.0 / CDH 5.11.0 Release Notes

’ Note: Apache Kudu 1.3.0/ CDH 5.11.0 release is the first Kudu release to be supported with Cloudera
El Manager 5.11.x and CDH 5.11.x. Any future Kudu 1.3.x maintenance releases will be supported by
corresponding CDH and Cloudera Manager 5.11.x maintenance releases.

New Features in Kudu 1.3.0 / CDH 5.11.0

e The Kudu CSD is now included in Cloudera Manager. Manual installation of the Kudu CSD is not required.

e Kudu 1.3 supports strong authentication using Kerberos. This feature allows users to authenticate themselves to
Kudu using Kerberos tickets, and also provides mutual authentication of servers using Kerberos credentials stored
in keytabs.

https://issues.apache.org/jira/browse/KUDU-2053
https://issues.apache.org/jira/browse/KUDU-2049
https://issues.apache.org/jira/browse/KUDU-1963
https://issues.apache.org/jira/browse/KUDU-1853
https://issues.apache.org/jira/browse/KUDU-1999
https://issues.apache.org/jira/browse/KUDU-1993
https://issues.apache.org/jira/browse/KUDU-1981
https://issues.apache.org/jira/browse/KUDU-1607
https://issues.apache.org/jira/browse/KUDU-1933

Added support for encryption of data on the network using Transport Layer Security (TLS). Kudu will now use TLS
to encrypt all network traffic between clients and servers as well as any internal traffic among servers, with the
exception of traffic determined to be within a localhost network connection. Encryption is enabled by default
whenever it can be determined that both the client and server support the feature.

Added support for coarse-grained service-level authorization checks for access to the cluster. The operator may
set up lists of permitted users who may act as administrators and as clients of the cluster. Combined with the
strong authentication feature described above, this can enable a secure environment for some use cases. Note
that fine-grained access control , for example table-level or column-level, is not yet supported.

A background task was added to tablet servers that removes historical versions of data that have fallen behind
the configured data retention time. This reduces disk space usage in all workloads, but particularly in those with
a higher volume of updates or upserts. After upgrading, you might see disk usage go down a lot.

Kudu now incorporates Google Breakpad, a library that writes crash reports in the case of a server crash. These
reports can be found by default under the ni ni dunps directory, or within a configured log directory, and can be
useful during bug diagnosis.

As of Kudu 1.3, multi-word flags can use a dash '-' separator in lieu of the underscore '_' separator. For example,
the--nmenory _linmt_hard_bytes flag can now be specified as - - menory- | i ni t - har d- byt es, or even
--nmenory_limt-hard_bytes.

Optimizations and Improvements in Kudu 1.3.0 / CDH 5.11.0

Kudu servers will now change the file permissions of data directories and contained data files based on a new
configuration flag - - umask. As a result, after upgrading, permissions on disk may be more restrictive than in
previous versions. The new default configuration improves data security.

Kudu web Uls will now redact strings that might include sensitive user data. For example, the monitoring page,
which shows in-progress scans, no longer includes the scanner predicate values. The tracing and RPC diagnostics
endpoints no longer include contents of RPCs, which may include table data.

By default, Kudu now reserves 1% of each configured data volume as free space. If a volume is seen to have less
than 1% of disk space free, Kudu stops writing to that volume to avoid completely filling up the disk.

The default encoding for numeric columns (i nt, fl oat, and doubl e) has been changed to Bl T_SHUFFLE. The
default encoding for bi nary and st ri ng columns has been changed to DI CT_ENCODI NG. Dictionary encoding
automatically falls back to the old default (PLAI N) when cardinality is too high to be effectively encoded. These
new defaults match the default behavior of other storage mechanisms, such as Apache Parquet, and are likely to
perform better out of the box.

Existing tables with AUTO_ENCODI NG-configured columns will only be encoded during DiskRowSet compactions,
or if new data is written to them. New tables and columns will have the new defaults.

Kudu now uses LZ4 compression when writing its Write Ahead Log (WAL). This improves write performance and
stability for many use cases.

Kudu now uses LZ4 compression when writing delta files. This can improve both read and write performance as
well as save substantial disk usage, especially for workloads involving a high number of updates or upserts containing
compressible data.

Existing delta files will not get compressed until they are compacted. New files on both old and new tables alike
will be compressed.

The Kudu APl now supports the ability to express | S NULL and I S NOT NULL predicates on scanners. The Spark
DataSource integration will take advantage of these new predicates when possible.

Both C++ and Java clients have been optimized to prune partitions more effectively when performing scans using
the I N (..) predicate.

The exception messages produced by the Java client are now truncated to a maximum length of 32KB.

Fixed Issues in Kudu 1.3.0 / CDH 5.11.0

KUDU-1968 - Fixed an issue in which the tablet server would delete an incorrect set of data blocks after an aborted
attempt to copy a tablet from another server. This would produce data loss in unrelated tablets.

KUDU-1962 - Fixed a Nul | Poi nt er Except i on in the Java client in the case that the Kudu master is overloaded
at the time the client requests location information. This could cause client applications to hang indefinitely
regardless of configured timeouts.

KUDU-1893 - Fixed a critical bug in which wrong results would be returned when evaluating predicates applied
to columns added using the ALTER TABLE operation.

KUDU-1905 - Fixed an issue where Kudu would crash after reinserts that resulted in an empty change list. This
occurred in cases where the primary key was composed of all columns.

KUDU-1899 - Fixed a crash that occurred after inserting a row with an empty string as the single-column primary
key.

KUDU-1904 - Fixed a potential crash when performing random reads against a column using RLE encoding and
containing long runs of NULL values.

KUDU-1856 - Fixed an issue in which disk space could be leaked by Kudu servers storing data on partitions using
the XFS file system. Any leaked disk space will now be automatically recovered upon upgrade.

KUDU-1888, KUDU-1906 - Fixed multiple issues in the Java client where operation callbacks would never be
triggered, causing the client to hang.

Wire Protocol Compatibility

Kudu 1.3.0 is wire-compatible with previous versions of Kudu:

Kudu 1.3.0 clients can connect to servers running Kudu 1.0.0. If the client uses features that are not available on
the target server, an error will be returned.

Kudu 1.0.0 clients can connect to servers running Kudu 1.3.0 with the exception of the below-mentioned restrictions
regarding secure clusters.

Rolling upgrade between Kudu 1.2.0 and Kudu 1.3.0 servers is believed to be possible though has not been
sufficiently tested. Users are encouraged to shut down all nodes in the cluster, upgrade the software, and then
restart the daemons on the new version.

Security - The authentication features introduced in Kudu 1.3.0 place the following limitations on wire compatibility
with older versions:

If a Kudu 1.3.0 cluster is configured with authentication or encryption set to r equi r ed, older clients will not be
able to connect.

If a Kudu 1.3.0 cluster is configured with authentication and encryption set to opt i onal or di sabl ed, older
clients will still be able to connect.

Incompatible Changes in Kudu 1.3.0 / CDH 5.11.0

Due to storage format changes in Kudu 1.3, downgrading from Kudu 1.3 to earlier versions is not supported. After
upgrading to Kudu 1.3, attempting to restart with an earlier version will result in an error.

In order to support running MapReduce and Spark jobs on secure clusters, these frameworks now connect to the
cluster at job submission time to retrieve authentication credentials which can later be used by the tasks to be
spawned. This means that the process submitting jobs to Kudu clusters must have direct access to that cluster.

e The embedded web servers in Kudu processes now specify the X- Fr ame- Opt i ons: DENY HTTP header which

prevents embedding of Kudu web pages in HTML i f r ane elements.

https://issues.apache.org/jira/browse/KUDU-1968
https://issues.apache.org/jira/browse/KUDU-1962
https://issues.apache.org/jira/browse/KUDU-1893
https://issues.apache.org/jira/browse/KUDU-1905
https://issues.apache.org/jira/browse/KUDU-1899
https://issues.apache.org/jira/browse/KUDU-1904
https://issues.apache.org/jira/browse/KUDU-1856
https://issues.apache.org/jira/browse/KUDU-1888
https://issues.apache.org/jira/browse/KUDU-1906

Client Library Compatibility

Java - The Kudu 1.3.0 Java client library is API- and ABI-compatible with Kudu 1.2.0. Applications written against
Kudu 1.2.0 will compile and run against the Kudu 1.3.0 client library and vice-versa, unless one of the following
newly-added APIs is used:

— [Async] Kudud i ent . export Aut henti cati onCredenti al s(..) (unstable API)
[Async] Kudud i ent . i nport Aut hent i cati onCredenti al s(..) (unstable API)
[Async] Kudud i ent . get Mast er Addr essesAsStri ng()

KuduPr edi cat e. new sNot Nul | Predi cat e()

KuduPr edi cat e. new sNul | Predi cat e()

C++ - The Kudu 1.3.0 C++ client is API- and ABI-forward-compatible with Kudu 1.2.0. Applications written and
compiled against the Kudu 1.2.0 client library will run without modification against the Kudu 1.3.0 client library.
Applications written and compiled against the Kudu 1.3.0 client library will run without modification against the
Kudu 1.2.0 client library unless they use one of the following new APIs:

— kudu: : Di sabl eQpenSSLInitialization()

— Kudud i entBuil der::inport_authentication_credentials(..)
— Kudud ient:: ExportAut henticati onCredential s(..)

— Kudud i ent:: New sNot Nul | Predi cat e(..)

— Kududient:: New sNul | Predi cate(..)

Python - The Kudu 1.3.0 Python client is API-compatible with Kudu 1.2.0. Applications written against Kudu 1.2.0
will continue to run against the Kudu 1.3.0 client and vice-versa.

Known Issues and Limitations in Kudu 1.3.0 / CDH 5.11.0

For a complete list of schema design and usage limitations for Apache Kudu, see Apache Kudu Schema Design and
Usage Limitations on page 36.

Kudu 1.2.0 / CDH 5.10.2 Release Notes

Apache Kudu 1.2.x / CDH 5.10.2 includes the following fixed issues.

KUDU-1933 - Fixed an issue that truncated the 64-bit log index in the Opld to 32 bits, causing overflow of the log
index.

KUDU-1607 - Fixed an issue where Kudu could not delete failed tablets using the DROP TABLE command.
KUDU-1905 - Allow reinserts on tables when all columns are part of the primary key.

KUDU-1893 - Made a fix to avoid incorrect NULL results and ensure evaluation of predicates for columns added
after table creation.

Kudu 1.2.0 / CDH 5.10.1 Release Notes

Apache Kudu 1.2.x / CDH 5.10.1 includes the following fixed issues.

KUDU-1904 - Fixed a bug where RLE columns with only NULL values would crash on scan.

KUDU-1899 - Fixed an issue where tablet servers would crash after inserting an empty string primary key (" ").
KUDU-1851 - Fixed an issue with the Python client which would crash whenever a TableAlterer is instantiated
directly.

KUDU-1852 - KuduTabl eAl t er er will no longer crash when given nul | pt r range bound arguments.
KUDU-1821 - Improved warnings when the catalog manager starts.

https://issues.apache.org/jira/browse/KUDU-1933
https://issues.apache.org/jira/browse/KUDU-1607
https://issues.apache.org/jira/browse/KUDU-1905
https://issues.apache.org/jira/browse/KUDU-1893
https://issues.apache.org/jira/browse/KUDU-1904
https://issues.apache.org/jira/browse/KUDU-1899
https://issues.apache.org/jira/browse/KUDU-1851
https://issues.apache.org/jira/browse/KUDU-1852
https://issues.apache.org/jira/browse/KUDU-1821

Kudu 1.2.0 / CDH 5.10.0 Release Notes

E,i Note: Apache Kudu 1.2.0 /CDH 5.10.0 release is the first Kudu release to be supported with Cloudera
Manager 5.10.0 and CDH 5.10.0. Any future Kudu 1.2.0 maintenance releases will likely be supported
by corresponding CDH and Cloudera Manager 5.10.x maintenance releases.

Apache Kudu 1.2.x / CDH 5.10.0 includes the following new features, fixed issues, and changes.

New Features and Improvements in Kudu 1.2.0 / CDH 5.10.0

See also Issues resolved for Kudu 1.2.0 and Git changes between 1.1.x and 1.2.x.

New Features

Kudu clients and servers now redact user data such as cell values from log messages, Java exception messages,
and Status strings. User metadata such as table names, column names, and partition bounds are not redacted.

Kudu's ability to provide consistency guarantees has been substantially improved:

— Replicas now correctly track their "safe timestamp". This timestamp is the maximum timestamp at which
reads are guaranteed to be repeatable.

— A scan created using the SCAN_AT_SNAPSHOT mode will now either wait for the requested snapshot to be
"safe" at the replica being scanned, or be re-routed to a replica where the requested snapshot is "safe". This
ensures that all such scans are repeatable.

— Kudu Tablet Servers now properly retain historical data when a row with a given primary key is inserted and
deleted, followed by the insertion of a new row with the same key. Previous versions of Kudu would not
retain history in such situations. This allows the server to return correct results for snapshot scans with a
timestamp in the past, even in the presence of such "reinsertion" scenarios.

— The Kudu clients now automatically retain the timestamp of their latest successful read or write operation.
Scans using the READ_AT_SNAPSHOT mode without a client-provided timestamp automatically assign a
timestamp higher than the timestamp of their most recent write. Writes also propagate the timestamp,
ensuring that sequences of operations with causal dependencies between them are assigned increasing
timestamps. Together, these changes allow clients to achieve read-your-writes consistency, and also ensure
that snapshot scans performed by other clients return causally-consistent results.

User data in log files is now redacted by default.
Kudu servers now automatically limit the number of log files being stored. By default, 10 log files will be retained
at each severity level.

Optimizations and Improvements

The logging in the Java and cpp clients has been substantially quieted. Clients no longer log messages in normal
operation unless there is some kind of error.

The cpp client now includes a KuduSessi on: : Set Er r or Buf f er Space APl which can limit the amount of
memory used to buffer errors from asynchronous operations.

The Java client now fetches tablet locations from the Kudu Master in batches of 1000, increased from batches of
10 in prior versions. This can substantially improve the performance of Spark and Impala queries running against
Kudu tables with large numbers of tablets.

Table metadata lock contention in the Kudu Master was substantially reduced. This improves the performance
of tablet location lookups on large clusters with a high degree of concurrency.

Lock contention in the Kudu Tablet Server during high-concurrency write workloads was also reduced. This can
reduce CPU consumption and improve performance when a large number of concurrent clients are writing to a
smaller number of a servers.

Lock contention when writing log messages has been substantially reduced. This source of contention could cause
high tail latencies on requests, and when under high load could contribute to cluster instability such as election
storms and request timeouts.

https://issues.apache.org/jira/browse/KUDU-1812?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.2.0
https://github.com/apache/kudu/compare/branch-1.1.x...branch-1.2.x

The Bl TSHUFFLE column encoding has been optimized to use the AVX2 instruction set present on processors
including Intel(R) Sandy Bridge and later. Scans on Bl TSHUFFLE-encoded columns are now up to 30% faster.
The kudu tool now accepts hyphens as an alternative to underscores when specifying actions. For example, kudu
| ocal -replica copy-fromrenote may be used as an alternative to kudu | ocal _replica
copy_fromrenote.

Issues Fixed in Kudu 1.2.0 / CDH 5.10.0

See Issues resolved for Kudu 1.2.0 and Git changes between 1.1.x and 1.2.x.

KUDU-1508 - Fixed a long-standing issue in which running Kudu on ext 4 file systems could cause file system
corruption. While this issue has been known to still manifest in certain rare cases, the corruption is harmless and
can be repaired as part of a regular f sck. Switching from ext 4 to xf s will also solve the problem.

KUDU-1399 - Implemented an LRU cache for open files, which prevents running out of file descriptors on long-lived
Kudu clusters. By default, Kudu will limit its file descriptor usage to half of its configured ul i ni t .

Gerrit #5192 - Fixed an issue which caused data corruption and crashes in the case that a table had a non-composite
(single-column) primary key, and that column was specified to use DI CT_ENCODI NG or Bl TSHUFFLE encodings.
If a table with an affected schema was written in previous versions of Kudu, the corruption will not be automatically
repaired; users are encouraged to re-insert such tables after upgrading to Kudu 1.2 or later.

Gerrit #5541 - Fixed a bug in the Spark KuduRDD implementation which could cause rows in the result set to be
silently skipped in some cases.

KUDU-1551 - Fixed an issue in which the tablet server would crash on restart in the case that it had previously
crashed during the process of allocating a new WAL segment.

KUDU-1764 - Fixed an issue where Kudu servers would leak approximately 16-32MB of disk space for every 10GB
of data written to disk. After upgrading to Kudu 1.2 or later, any disk space leaked in previous versions will be
automatically recovered on startup.

KUDU-1750 - Fixed an issue where the API to drop a range partition would drop any partition with a matching
lower _or_ upper bound, rather than any partition with matching lower _and_ upper bound.

KUDU-1766 - Fixed an issue in the Java client where equality predicates which compared an integer column to its
maximum possible value (e.g. | nt eger . MAX_VALUE) would return incorrect results.

KUDU-1780 - Fixed the kudu-client Java artifact to properly shade classes in the com googl e. t hi rdparty
namespace. The lack of proper shading in prior releases could cause conflicts with certain versions of Google
Guava.

Gerrit #5327 - Fixed shading issues in the kudu- f | une- si nk Java artifact. The sink now expects that Hadoop
dependencies are provided by Flume, and properly shades the Kudu client's dependencies.

Fixed a few issues using the Python client library from Python 3.

Incompatible Changes in Kudu 1.2.0 / CDH 5.10.0

Apache Kudu 1.2.0 introduces the following incompatible changes:

The replication factor of tables is now limited to a maximum of 7. In addition, it is no longer allowed to create a
table with an even replication factor.

The GROUP_VARI NT encoding is now deprecated. Kudu servers have never supported this encoding, and now the
client-side constant has been deprecated to match the server's capabilities.

Client Library Compatibility

— The Kudu 1.2 Java client is API- and ABI-compatible with Kudu 1.1. Applications written against Kudu 1.1 will
compile and run against the Kudu 1.2 client and vice-versa.

— The Kudu 1.2 cpp client is API- and ABI-forward-compatible with Kudu 1.1. Applications written and compiled
against the Kudu 1.1 client will run without modification against the Kudu 1.2 client. Applications written and
compiled against the Kudu 1.2 client will run without modification against the Kudu 1.1 client unless they use
one of the following new APlIs:

— kudu: : Di sabl eSasl I nitialization()
— KuduSessi on: : Set Er r or Buf f er Space(. . .)

https://issues.apache.org/jira/browse/KUDU-1812?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.2.0
https://github.com/apache/kudu/compare/branch-1.1.x...branch-1.2.x
https://issues.apache.org/jira/browse/KUDU-1508
https://issues.apache.org/jira/browse/KUDU-1399
http://gerrit.cloudera.org:8080/5192
http://gerrit.cloudera.org:8080/5541
https://issues.apache.org/jira/browse/KUDU-1551
https://issues.apache.org/jira/browse/KUDU-1764
https://issues.apache.org/jira/browse/KUDU-1750
https://issues.apache.org/jira/browse/KUDU-1766
https://issues.apache.org/jira/browse/KUDU-1780
http://gerrit.cloudera.org:8080/5327

— The Kudu 1.2 Python client is API-compatible with Kudu 1.1. Applications written against Kudu 1.1 will continue
to run against the Kudu 1.2 client and vice-versa.

Known Issues and Limitations in Kudu 1.2.0 / CDH 5.10.0
e KUDU-1893 - Certain query results incorrectly include rows with null values for predicates.
Solution - Upgrade to the latest maintenance release.

¢ Schema and Usage Limitations - For a complete list of schema design and usage limitations for Apache Kudu, see
Apache Kudu Schema Design and Usage Limitations on page 36.

Kudu 1.1.x Release Notes

Apache Kudu 1.1 includes the following new features and fixed issues.

New Features in Kudu 1.1.0

See also Issues resolved for Kudu 1.1.0 and Git changes between 1.0.x and 1.1.x.

¢ The Python client has been brought up to feature parity with the Java and C++ clients and as such the package
version will be brought to 1.1 with this release (from 0.3). A list of the highlights can be found below.

¢ Improved Partial Row semantics

e Range partition support

e Scan Token API

e Enhanced predicate support

e Support for all Kudu data types (including a mapping of Python'sdat et i me. dat et i e to UNI XTI ME_M CRCS)
e Alter table support

¢ Enabled Read at Snapshot for Scanners

e Enabled Scanner Replica Selection

o Afew bug fixes for Python 3 in addition to various other improvements.

e | N LI ST predicate pushdown support was added to allow optimized execution of filters which match on a set of
column values. Support for Spark, Map Reduce and Impala queries utilizing | N LI ST pushdown is not yet complete.

e The Java client now features client-side request tracing in order to help troubleshoot timeouts. Error messages
are now augmented with traces that show which servers were contacted before the timeout occurred instead of
just the last error. The traces also contain RPCs that were required to fulfill the client's request, such as contacting
the master to discover a tablet's location. Note that the traces are not available for successful requests and cannot
be queried.

Performance

e Kudu now publishes JAR files for Spark 2.0 compiled with Scala 2.11 along with the existing Spark 1.6 JAR compiled
with Scala 2.10.

e The Java client now allows configuring scanners to read from the closest replica instead of the known leader
replica. The default remains the latter. Use the relevant Repl i caSel ecti on enum with the scanner's builder to
change this behavior.

Wire protocol compatibility

https://issues.apache.org/jira/browse/KUDU-1893
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.1.0
https://github.com/apache/kudu/compare/branch-1.0.x...branch-1.1.x

The Java client's sync APl (Kudud i ent , KuduSessi on, KuduScanner) used to throw either a
NonRecover abl eExcept i on or a Ti meout Except i on for a timeout, and now it's only possible for the client
to throw the former.

The Java client's handling of errors in KuduSessi on was modified so that subclasses of KuduExcept i on are
converted into RowErrors instead of being thrown.

Command line tools

The tool kudu t abl et | eader _st ep_down has been added to manually force a leader to step down.

The tool kudu renpte_replica copy has been added to manually copy a replica from one running tablet
server to another.

The tool kudu | ocal _replica del et e has been added to delete a replica of a tablet.

The kudu t est | oadgen tool has been added to replace the obsoleted i nsert - gener at ed- r ows standalone
binary. The new tool is enriched with additional functionality and can be used to run load generation tests against
a Kudu cluster.

Client APIs (C++/Java/Python)

The C++ client no longer requires the old gcc5 ABI. Which ABI is actually used depends on the compiler configuration.
Some new distros (e.g. Ubuntu 16.04) will use the new ABI. Your application must use the same ABI as is used by
the client library; an easy way to guarantee this is to use the same compiler to build both.

The C++client's KuduSessi on: : Count Buf f er edOper at i ons() method is deprecated. Its behavior is inconsistent
unless the session runs in the MANUAL _FLUSH mode. Instead, to get number of buffered operations, count
invocations of the KuduSessi on: : Appl y() method since last KuduSessi on: : Fl ush() call or, if using
asynchronous flushing, since last invocation of the callback passed into KuduSessi on: : Fl ushAsync().

The Javaclient's Oper at i onResponse. get Wi t eTi mest anp method was renamedtoget Wi t eTi mest anpRaw
to emphasize that it doesn't return milliseconds, unlike what its Javadoc indicated. The renamed method was also
hidden from the public APIs and should not be used.

The Java client's sync API (Kudud i ent , KuduSessi on, KuduScanner) used to throw either a
NonRecover abl eExcept i on or a Ti meout Except i on for a timeout, and now it's only possible for the client
to throw the former.

The Java client's handling of errors in KuduSessi on was modified so that subclasses of KuduExcept i on are
converted into RowErrors instead of being thrown.

Issues Fixed in Kudu 1.1.0

See Issues resolved for Kudu 1.1.0 and Git changes between 1.0.x and 1.1.x.

Kudu 1.0.1 Release Notes

Apache Kudu 1.0.1 is a bug fix release, with no new features or backwards incompatible changes.

Issues Fixed in Kudu 1.0.1

KUDU-1681: Fixed a bug in the tablet server which could cause a crash when the DNS lookup during master
heartbeat failed.

KUDU-1660: Fixed a bug which would cause the Kudu master and tablet server to fail to start on single CPU systems.
KUDU-1652: Fixed a bug that would cause the C++ client, tablet server, and Java client to crash or throw an
exception when attempting to scan a table with a predicate which simplifiesto 1 S NOT NULL on a non-nullable
column. For example, setting a '<= 127' predicate on an | NT8 column could trigger this bug, since the predicate
only filters null values.

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.1.0
https://github.com/apache/kudu/compare/branch-1.0.x...branch-1.1.x
https://issues.apache.org/jira/browse/KUDU-1681
https://issues.apache.org/jira/browse/KUDU-1660
https://issues.apache.org/jira/browse/KUDU-1652

KUDU-1651: Fixed a bug that would cause the tablet server to crash when evaluating a scan with predicates over
a dictionary encoded column containing an entire block of null values.

KUDU-1623: Fixed a bug that would cause the tablet server to crash when handling UPSERT operations that only
set values for the primary key columns.

Gerrit #4488: Fixed a bug in the Java client's KuduExcept i on class which could cause an unexpected

Nul | Poi nt er Except i on to be thrown when the exception did not have an associated message.

KUDU-1090: Fixed a bug in the memory tracker which could cause a rare crash during tablet server startup.

Kudu 1.0.0 Release Notes

After approximately a year of beta releases, Apache Kudu has reached version 1.0. This version number signifies that
the development team feels that Kudu is stable enough for usage in production environments.

Kudu 1.0.0 delivers a number of new features, bug fixes, and optimizations.

To upgrade Kudu to 1.0.0, see Upgrade Parcels or Upgrade Packages.

Other Noteworthy Changes

This is the first non-beta release of the Apache Kudu project. (Although because Kudu is not currently integrated
into CDH, it is not yet an officially supported CDH component.)

New Features in Kudu 1.0.0

See also Issues resolved for Kudu 1.0.0 and Git changes between 0.10.0 and 1.0.0.

Removal of multiversion concurrency control (MVCC) history is now supported. This is known as tablet history
GC. This allows Kudu to reclaim disk space, where previously Kudu would keep a full history of all changes made
to a given table since the beginning of time. Previously, the only way to reclaim disk space was to drop a table.

Kudu will still keep historical data, and the amount of history retained is controlled by setting the configuration
flag - -t abl et _hi st ory_nmax_age_sec, which defaults to 15 minutes (expressed in seconds). The timestamp
represented by the current time minus t abl et _hi st ory_max_age_sec is known as the ancient history mark
(AHM). When a compaction or flush occurs, Kudu will remove the history of changes made prior to the ancient
history mark. This only affects historical data; currently-visible data will not be removed. A specialized maintenance
manager background task to remove existing “cold” historical data that is not in a row affected by the normal
compaction process will be added in a future release.

Most of Kudu’s command line tools have been consolidated under a new top-level kudu tool. This reduces the
number of large binaries distributed with Kudu and also includes much-improved help output.

The Kudu Flume Sink now supports processing events containing Avro-encoded records, using the new
Avr oKuduQper at i onsPr oducer .

Administrative tools including kudu cl ust er ksck now support running against multi-master Kudu clusters.
The output of the ksck tool is now colorized and much easier to read.

The C++ client API now supports writing data in AUTO_FLUSH_BACKGROUND mode. This can provide higher
throughput for ingest workloads.

Performance

The performance of comparison predicates on dictionary-encoded columns has been substantially optimized.
Users are encouraged to use dictionary encoding on any string or binary columns with low cardinality, especially
if these columns will be filtered with predicates.

The Java client is now able to prune partitions from scanners based on the provided predicates. For example, an
equality predicate on a hash-partitioned column will now only access those tablets that could possibly contain

https://issues.apache.org/jira/browse/KUDU-1651
https://issues.apache.org/jira/browse/KUDU-1623
http://gerrit.cloudera.org:8080/4488
https://issues.apache.org/jira/browse/KUDU-1090
http://kudu.apache.org/docs/installation.html#upgrade
https://issues.apache.org/jira/browse/KUDU-1571?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.0.0
https://github.com/apache/kudu/compare/0.10.0...1.0.0

matching data. This is expected to improve performance for the Spark integration as well as applications using
the Java client API.

e The performance of compaction selection in the tablet server has been substantially improved. This can increase
the efficiency of the background maintenance threads and improve overall throughput of heavy write workloads.

¢ The policy by which the tablet server retains write-ahead log (WAL) files has been improved so that it takes into
account other replicas of the tablet. This should help mitigate the spurious eviction of tablet replicas on machines
that temporarily lag behind the other replicas.

Wire protocol compatibility

e Kudu 1.0.0 maintains client-server wire-compatibility with previous releases. Applications using the Kudu client
libraries may be upgraded either before, at the same time, or after the Kudu servers.

e Kudu 1.0.0 does not maintain server-server wire compatibility with previous releases. Therefore, rolling upgrades
between earlier versions of Kudu and Kudu 1.0.0 are not supported.

Incompatible Changes in Kudu 1.0.0
Command line tools
e The kudu- pbc- dunp tool has been removed. The same functionality is now implemented as kudu pbc dunp.
e The kudu- ksck tool has been removed. The same functionality is now implemented as kudu cl uster ksck.
e Thecfil e-dunp tool has been removed. The same functionality is now implemented askudu fs cfile dunp.

¢ Thel og- dunp tool has been removed. The same functionality is now implemented as kudu wal dunp and kudu
| ocal _replica dunp wals.

e The kudu- admni n tool has been removed. The same functionality is now implemented within kudu t abl e and
kudu tabl et.

e The kudu- f s_dunp tool has been removed. The same functionality is now implemented as kudu fs dunp.

e The kudu-ts-cli tool has been removed. The same functionality is now implemented within kudu mast er,
kudu renote_replica,andkudu tserver.

e Thekudu-fs_li st tool has been removed and some similar useful functionality has been moved under kudu
| ocal _replica.

Configuration flags

Some configuration flags are marked 'unsafe' and 'experimental’. Such flags are disabled by default. You can access
these flags by enabling the additional flags, - - unl ock_unsaf e_f | ags and- - unl ock_experi nent al _f| ags. Note
that these flags might be removed or modified without a deprecation period or any prior notice in future Kudu releases.
Cloudera does not support using unsafe and experimental flags. As a rule of thumb, Cloudera will not support any
configuration flags not explicitly documented in the Kudu Configuration Reference Guide.

Client APIs (C++/Java/Python)

The TI MESTANP column type has been renamed to UNI XTI ME_M CRCS in order to reduce confusion between Kudu’s
timestamp support and the timestamps supported by other systems such as Apache Hive and Apache Impala (incubating).
Existing tables will automatically be updated to use the new name for the type.

Clients upgrading to the new client libraries must move to the new name for the type. Clients using old client libraries
will continue to operate using the old type name, even when connected to clusters that have been upgraded. Similarly,
if clients are upgraded before servers, existing timestamp columns will be available using the new type name.

KuduSessi on methods in the C++ library are no longer advertised as thread-safe to have one set of semantics for
both C++ and Java Kudu client libraries.

http://kudu.apache.org/docs/configuration_reference.html

The KuduScanToken: : Tabl et Ser ver s method in the C++ library has been removed. The same information can
now be found in the KuduScanToken: : t abl et method.

Apache Flume Integration

The KuduEvent Pr oducer interface used to process Flume events into Kudu operations for the Kudu Flume Sink has
changed, and has been renamed KuduQper at i onsPr oducer . The existing KuduEventProducers have been updated
for the new interface, and have been renamed similarly.

Known Issues and Limitations of Kudu 1.0.0

Schema and Usage Limitations

Kudu is primarily designed for analytic use cases. You are likely to encounter issues if a single row contains multiple
kilobytes of data.

The columns which make up the primary key must be listed first in the schema.

Key columns cannot be altered. You must drop and recreate a table to change its keys.

Key columns must not be null.

Columns with DOUBLE, FLOAT, or BOOL types are not allowed as part of a primary key definition.
Type and nullability of existing columns cannot be changed by altering the table.

A table's primary key cannot be changed.

Dropping a column does not immediately reclaim space. Compaction must run first. There is no way to run
compaction manually, but dropping the table will reclaim the space immediately.

Partitioning Limitations

Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Range partitions may be added or dropped after a table has been created. See Schema Design for
more information.

Data in existing tables cannot currently be automatically repartitioned. As a workaround, create a new table with
the new partitioning and insert the contents of the old table.

Replication and Backup Limitations

Kudu does not currently include any built-in features for backup and restore. Users are encouraged to use tools
such as Spark or Impala to export or import tables as necessary.

Impala Limitations

To use Kudu with Impala, you must install a special release of Impala called Impala_Kudu. Obtaining and installing
a compatible Impala release is detailed in Using Apache Impala (incubating) with Kudu on page 65.

To use Impala_Kudu alongside an existing Impala instance, you must install using parcels.

Updates, inserts, and deletes via Impala are non-transactional. If a query fails part of the way through, its partial
effects will not be rolled back.

All queries will be distributed across all Impala hosts which host a replica of the target table(s), even if a predicate
on a primary key could correctly restrict the query to a single tablet. This limits the maximum concurrency of short
queries made via Impala.

No TI MESTAMP and DECI MAL type support. (The underlying Kudu type formerly known as TI MESTAMP has been
renamed to UNI XTI ME_M CRGCS; currently, there is no Impala-compatible TI MESTAMP type.)

The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or use large tables.

e Impalais only able to push down predicates involving =, <=, >=, or BETWEEN comparisons between any column
and a literal value, and < and > for integer columns only. For example, for a table with an integer key t s, and a
string key nane, the predicate WHERE ts >= 12345 will convert into an efficient range scan, whereas wher e
nanme > 'lipcon' will currently fetch all data from the table and evaluate the predicate within Impala.

Security Limitations

e Authentication and authorization features are not implemented.

e Data encryption is not built in. Kudu has been reported to run correctly on systems using local block device
encryption (e.g. dmcrypt).

Client and API Limitations

e ALTER TABLE s not yet fully supported via the client APIs. More ALTER TABLE operations will become available
in future releases.

Other Known Issues

The following are known bugs and issues with the current release of Kudu. They will be addressed in later releases.
Note that this list is not exhaustive, and is meant to communicate only the most important known issues.

¢ |f the Kudu master is configured with the -1 og_f sync_al | option, tablet servers and clients will experience
frequent timeouts, and the cluster may become unusable.

e If a tablet server has a very large number of tablets, it may take several minutes to start up. It is recommended
to limit the number of tablets per server to 100 or fewer. Consider this limitation when pre-splitting your tables.
If you notice slow start-up times, you can monitor the number of tablets per server in the web UI.

¢ Due to a known bug in Linux kernels prior to 3.8, running Kudu on ext4 mount points may cause a subsequent
fsck to fail with errors such as Logi cal start <N> does not match |ogical start <M> at next
| evel .These errors are repairable using f sck -y, but may impact server restart time.

This affects RHEL/CentOS 6.8 and below. A fix is planned for RHEL/CentOS 6.9. RHEL 7.0 and higher are not affected.
Ubuntu 14.04 and later are not affected. SLES 12 and later are not affected.
Issues Fixed in Kudu 1.0.0

See Issues resolved for Kudu 1.0.0 and Git changes between 0.10.0 and 1.0.0.

Kudu 0.10.0 Release Notes

Kudu 0.10.0 delivers a number of new features, bug fixes, and optimizations.

See also Issues resolved for Kudu 0.10.0 and Git changes between 0.9.1 and 0.10.0.

To upgrade Kudu to 0.10.0, see Upgrade Parcels or Upgrade Packages.

Kudu 0.10.0 maintains wire-compatibility with previous releases, meaning that applications using the Kudu client
libraries may be upgraded either before, at the same time, or after the Kudu servers. However, if you begin using new
features of Kudu 0.10.0 such as manually range-partitioned tables, you must first upgrade all clients to this release.

After upgrading to Kudu 0.10.0, it is possible to downgrade to 0.9.x with the following exceptions:
e Tables created in 0.10.0 will not be accessible after a downgrade to 0.9.x.

¢ A multi-master setup formatted in 0.10.0 may not be downgraded to 0.9.x.

This release does not maintain full Java APl or ABI compatibility with Kudu 0.9.x due to a package rename and some
other small changes. See Incompatible Changes in Kudu 0.10.0 on page 26 for details.

https://issues.apache.org/jira/browse/KUDU-1571?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.0.0
https://github.com/apache/kudu/compare/0.10.0...1.0.0
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.10.0
https://github.com/apache/kudu/compare/0.9.1...0.10.0
http://kudu.apache.org/docs/installation.html#upgrade

Other Noteworthy Changes

This is the first release of Apache Kudu as a top-level (non-incubating) project.

The default false positive rate for Bloom filters has been changed from 1% to 0.01%. This will increase the space
consumption of Bloom filters by a factor of two (from approximately 10 bits per row to approximately 20 bits per
row). This is expected to substantially improve the performance of random-write workloads at the cost of an
incremental increase in disk space usage.

The Kudu C++ client library now has Doxygen-based APl documentation available online.

Kudu now uses the Raft consensus algorithm even for unreplicated tables. This change simplifies code and will
also allow administrators to enable replication on a previously unreplicated table. This change is internal and
should not be visible to users.

New Features in Kudu 0.10.0

Users may now manually manage the partitioning of a range-partitioned table. When a table is created, the user
may specify a set of range partitions that do not cover the entire available key space. A user may add or drop
range partitions to existing tables.

This feature can be particularly helpful with time series workloads in which new partitions can be created on an
hourly or daily basis. Old partitions may be efficiently dropped if the application does not need to retain historical
data past a certain point.

Support for running Kudu clusters with multiple masters has been stabilized. Users may start a cluster with three
or five masters to provide fault tolerance despite a failure of one or two masters, respectively.

Certain tools such as ksck lack complete support for multiple masters. These deficiencies will be addressed in a
following release.

Kudu now supports the ability to reserve a certain amount of free disk space in each of its configured data
directories. If a directory's free disk space drops to less than the configured minimum, Kudu will stop writing to
that directory until space becomes available. If no space is available in any configured directory, Kudu will abort.

This feature may be configured using the - -fs_data_di rs_reserved_byt es and
--fs_wal _dir_reserved_byt es flags.

The Spark integration's KuduCont ext now supports four new methods for writing to Kudu tables: i nser t Rows,
upsert Rows, updat eRows, and del et eRows. These are now the preferred way to write to Kudu tables from
Spark.

Other Improvements in Kudu 0.10.0

KUDU-1516: The kudu- ksck tool has been improved and now detects problems such as when a tablet does not
have a majority of replicas on live tablet servers, or if those replicas aren’t in a good state. Users who currently
depend on the tool to detect inconsistencies may now see failures when before they wouldn't see any.

Gerrit #3477: The way operations are buffered in the Java client has been reworked. Previously, the session's
buffer size was set per tablet, meaning that a buffer size of 1,000 for 10 tablets being written to allowed for 10,000
operations to be buffered at the same time. With this change, all the tablets share one buffer, so users might
need to set a bigger buffer size in order to reach the same level of performance as before.

Gerrit #3674: Added LESS and GREATER options for column predicates.

KUDU-1444: Added support for passing back basic per-scan metrics, such as cache hit rate, from the server to the
C++client. See the KuduScanner : : Get Resour ceMet ri cs() APIfor detailed usage. This feature will be supported
in the Java client APl in a future release.

KUDU-1446: Improved the order in which the tablet server evaluates predicates, so that predicates on smaller
columns are evaluated first. This may improve performance on queries which apply predicates on multiple columns
of different sizes.

http://kudu.apache.org/apidocs/cpp-client-api/
http://kudu.apache.org/2016/06/17/raft-consensus-single-node.html
https://issues.apache.org/jira/browse/KUDU-1516
https://gerrit.cloudera.org:8080/3477
https://gerrit.cloudera.org/#/c/3674/
https://issues.apache.org/jira/browse/KUDU-1444
https://issues.apache.org/jira/browse/KUDU-1446

KUDU-1398: Improved the storage efficiency of Kudu's internal primary key indexes. This optimization should
decrease space usage and improve random access performance, particularly for workloads with lengthy primary
keys.

Issues Fixed in Kudu 0.10.0

Gerrit #3541: Fixed a problem in the Java client whereby an RPC could be dropped when a connection to a tablet
server or master was forcefully closed on the server-side while RPCs to that server were in the process of being
encoded. The effect was that the RPC would not be sent, and users of the synchronous APl would receive a

Ti meout Except i on. Several other Java client bugs which could cause similar spurious timeouts were also fixed
in this release.

Gerrit #3724: Fixed a problem in the Java client whereby an RPC could be dropped when a socket timeout was
fired while that RPC was being sent to a tablet server or master. This would manifest itself in the same way as
Gerrit #3541.

KUDU-1538: Fixed a bug in which recycled block identifiers could cause the tablet server to lose data. Following
this bug fix, block identifiers will no longer be reused.

Incompatible Changes in Kudu 0.10.0

Gerrit #3737: The Java client has been repackaged under or g. apache. kudu instead of or g. kududb. Import
statements for Kudu classes must be modified in order to compile against 0.10.0. Wire compatibility is maintained.
Gerrit #3055: The Java client's synchronous APl methods now throw KuduExcept i on instead of Except i on.
Existing code that catches Except i on should still compile, but introspection of an exception's message may be
impacted. This change was made to allow thrown exceptions to be queried more easily using

KuduExcept i on. get St at us and calling one of St at us's methods. For example, an operation that tries to delete
a table that doesn't exist would return a St at us that returns true when queried on i sNot Found() .

The Java client's KuduTabl e. get Tabl et sLocat i ons set of methods is now deprecated. Additionally, they now
take an exclusive end partition key instead of an inclusive key. Applications are encouraged to use the scan tokens
APl instead of these methods in the future.

The C++ API for specifying split points on range-partitioned tables has been improved to make it easier for callers
to properly manage the ownership of the provided rows.

TheTabl eCreator::split_rows APltookavect or<const KuduParti al Row*>, which made it very difficult
for the calling application to do proper error handling with cleanup when setting the fields of the KuduPar t i al Row.
This APl has been now been deprecated and replaced by a new method Tabl eCreat or: : add_range_split
which allows easier use of smart pointers for safe memory management.

The Java client's internal buffering has been reworked. Previously, the number of buffered write operations was
constrained on a per-tablet-server basis. Now, the configured maximum buffer size constrains the total number
of buffered operations across all tablet servers in the cluster. This provides a more consistent bound on the memory
usage of the client regardless of the size of the cluster to which it is writing. This change can negatively affect the
write performance of Java clients which rely on buffered writes. Consider using the set Mut at i onBuf f er Space
API to increase a session's maximum buffer size if write performance seems to be degraded after upgrading to
Kudu 0.10.0.

The "remote bootstrap" process used to copy a tablet replica from one host to another has been renamed to
"Tablet Copy". This resulted in the renaming of several RPC metrics. Any users previously explicitly fetching or
monitoring metrics related to Remote Bootstrap should update their scripts to reflect the new names.

The SparkSQL datasource for Kudu no longer supports mode Over wri t e. Users should use the new

KuduCont ext . upser t Rows method instead. Additionally, inserts using the datasource are now upserts by
default. The older behavior can be restored by setting the oper at i on parameter toi nsert.

Kudu 0.9.1 Release Notes

Kudu 0.9.1 delivers incremental bug fixes over Kudu 0.9.0. It is fully compatible with Kudu 0.9.0. See also Issues resolved
for Kudu 0.9.1 and Git changes between 0.9.0 and 0.9.1.

To upgrade Kudu to 0.9.1, see Upgrade Parcels or Upgrade Packages.

https://issues.apache.org/jira/browse/KUDU-1398
https://gerrit.cloudera.org/#/c/3541/
https://gerrit.cloudera.org/#/c/3724/
https://gerrit.cloudera.org/#/c/3541/
https://issues.apache.org/jira/browse/KUDU-1538
http://gerrit.cloudera.org:8080/3737
https://gerrit.cloudera.org/#/c/3055/
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.9.1
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.9.1
https://github.com/apache/kudu/compare/0.9.0...0.9.1
http://kudu.apache.org/docs/installation.html#upgrade

Issues Fixed in Kudu 0.9.1

e KUDU-1469 fixes a bug in Kudu's Raft consensus implementation that could cause a tablet to stop making progress
after a leader election.

e Gerrit #3456 fixes a bug in which servers under high load could store metric information in incorrect memory
locations, causing crashes or data corruption.

o Gerrit #3457 fixes a bug in which errors from the Java client would carry an incorrect error message.

e Other small bug fixes were backported to improve stability.

Kudu 0.9.0 Release Notes

Kudu 0.9.0 delivers incremental features, improvements, and bug fixes. See also Issues resolved for Kudu 0.9 and Git
changes between 0.8.0 and 0.9.0.

To upgrade Kudu to 0.9.0, see Upgrade Parcels or Upgrade Packages.

New Features in Kudu 0.9.0

e KUDU-1306: Scan token API for creating partition-aware scan descriptors. This APl simplifies executing parallel
scans for clients and query engines.

e KUDU-1002: Added support for UPSERT operations, whereby a row is inserted if it does not yet exist, but updated
if it does. Support for UPSERT is included in the Java, C++, and Python APIs, but not Impala.

e Gerrit 2848: Added a Kudu datasource for Spark. This datasource uses the Kudu client directly instead of using
the MapReduce API. Predicate pushdowns for spar k- sql and Spark filters are included, as well as parallel retrieval
for multiple tablets and column projections. See an example of Kudu integration with Spark.

e Gerrit 2992: Added the ability to update and insert from Spark using a Kudu datasource.

Other Improvements and Changes in Kudu 0.9.0

All Kudu clients have longer default timeout values, as listed below.
Java

¢ The default operation timeout and the default admin operation timeout are now set to 30 seconds instead of
10.
¢ The default socket read timeout is now 10 seconds instead of 5.

e The default admin timeout is now 30 seconds instead of 10.
¢ The default RPC timeout is now 10 seconds instead of 5.
¢ The default scan timeout is now 30 seconds instead of 15.

Some default settings related to I/O behavior during flushes and compactions have been changed:

e The default for f | ush_t hr eshol d_nb has been increased from 64 MB to 1000 MB.

e Thedefaultforcfil e _do_on_fi ni shhasbeenchangedfromcl osetofl ush. Experiments using YCSB indicate
that these values provide better throughput for write-heavy applications on typical server hardware.

e KUDU-1415: Added statistics in the Java client, such as the number of bytes written and the number of operations
applied.

e KUDU-1451: Tablet servers take less time to restart when the tablet server must clean up many previously deleted
tablets. Tablets are now cleaned up after they are deleted.

Issues Fixed in Kudu 0.9.0

e KUDU-678: Fixed a leak that occurred during Di skRowSet compactions where tiny blocks were still written to
disk even if there were no REDO records. With the default block manager, this often resulted in block containers
with thousands of tiny blocks.

https://issues.apache.org/jira/browse/KUDU-1469
https://gerrit.cloudera.org/#/c/3456/
https://gerrit.cloudera.org/#/c/3457/
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.9.0
https://github.com/apache/kudu/compare/0.8.0...0.9.0
https://github.com/apache/kudu/compare/0.8.0...0.9.0
http://kudu.apache.org/docs/installation.html#upgrade
https://issues.apache.org/jira/browse/KUDU-1306
https://issues.apache.org/jira/browse/KUDU-1002
http://gerrit.cloudera.org:8080/#/c/2848/
https://kudu.apache.org/docs/developing.html#_kudu_integration_with_spark
http://gerrit.cloudera.org:8080/#/c/2992/
http://kudu.apache.org/2016/04/26/ycsb.html
https://issues.apache.org/jira/browse/KUDU-1415
https://issues.apache.org/jira/browse/KUDU-1451
https://issues.apache.org/jira/browse/KUDU-678

e KUDU-1437: Fixed a data corruption issue that occurred after compacting sequences of negative INT32 values in
a column that was configured with RLE encoding.

Incompatible Changes in Kudu 0.9.0

e The KuduTabl el nput For mrat command has changed the way in which it handles scan predicates, including how
it serializes predicates to the job configuration object. The new configuration key is
kudu. mapr educe. encoded. pr edi cat e. Clients using the Tabl el nput For mat Conf i gur at or are not affected.

e The kudu- spar k sub-project has been renamed to follow naming conventions for Scala. The new name is
kudu- spark_2. 10.

e Default table partitioning has been removed. All tables must now be created with explicit partitioning. Existing
tables are unaffected. See the schema design guide for more details.

Limitations of Kudu 0.9.0

Kudu 0.9.0 has the same limitations as Kudu 0.8, listed in Limitations of Kudu 0.7.0 on page 30.

Upgrade Notes for Kudu 0.9.0

Before upgrading to Kudu 0.9.0, see Incompatible Changes in Kudu 0.9.0 on page 28.

Kudu 0.8.0 Release Notes

Kudu 0.8.0 delivers incremental features, improvements, and bug fixes over the previous versions. See also Issues
resolved for Kudu 0.8 and Git changes between 0.7.1 and 0.8.0

To upgrade Kudu to 0.8.0, see Upgrade Parcels or Upgrade Packages

New Features in Kudu 0.8.0

e KUDU-431: A simple Flume sink has been implemented.

Other Improvements in Kudu 0.8.0

e KUDU-839: Java RowEr r or now uses an enumerror code.

e Gerrit 2138: The handling of column predicates has been re-implemented in the server and clients.

e KUDU-1379: Partition pruning has been implemented for C++ clients (but not yet for the Java client). This feature
allows you to avoid reading a tablet if you know it does not serve the row keys you are querying.

e Gerrit2641: Kudu now usesear | i est - deadl i ne-fir st RPCscheduling and rejection. This changes the behavior
of the RPC service queue to prevent unfairness when processing a backlog of RPC threads and to increase the
likelihood that an RPC will be processed before it can time out.

e Gerrit 2239: The concept of "feature flags" was introduced in order to manage compatibility between different
Kudu versions. One case where this is helpful is if a newer client attempts to use a feature unsupported by the
currently-running tablet server. Rather than receiving a cryptic error, the user gets an error message that is easier
to interpret. This is an internal change for Kudu system developers and requires no action by users of the clients
or API.

Issues Fixed in Kudu 0.8.0

e KUDU-1337: Tablets from tables that were deleted might be unnecessarily re-bootstrapped when the leader gets
the notification to delete itself after the replicas do.

e KUDU-969: If a tablet server shuts down while compacting a rowset and receiving updates for it, it might immediately
crash upon restart while bootstrapping that rowset's tablet.

e KUDU-1354: Due to a bug in the Kudu implementation of MVCC where row locks were released before the MVCC
commit happened, flushed data would include out-of-order transactions, triggering a crash on the next compaction.

e KUDU-1322: The C++ client now retries write operations if the tablet it is trying to reach has already been deleted.

https://issues.apache.org/jira/browse/KUDU-1437
https://kudu.apache.org/docs/schema_design.html#no_default_partitioning
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.8.0
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.8.0
https://github.com/apache/kudu/compare/0.7.1...0.8.0
http://kudu.apache.org/docs/installation.html#upgrade
https://issues.apache.org/jira/browse/KUDU-431
https://issues.apache.org/jira/browse/KUDU-839
http://gerrit.cloudera.org:8080/#/c/2138/
https://issues.apache.org/jira/browse/KUDU-1379
http://gerrit.cloudera.org:8080/#/c/2641
http://gerrit.cloudera.org:8080/#/c/2239/
https://issues.cloudera.org/browse/KUDU-1337
https://issues.cloudera.org/browse/KUDU-969
https://issues.cloudera.org/browse/KUDU-1354
https://issues.apache.org/jira/browse/KUDU-1322

e Gerrit 2571: Due to a bug in the Java client, users were unable to close the kudu- spar k shell because of lingering
non-daemon threads.

Incompatible Changes in Kudu 0.8.0

0.8.0 clients are not fully compatible with servers running Kudu 0.7.1 or lower. In particular, scans that specify column
predicates will fail. To work around this issue, upgrade all Kudu servers before upgrading clients.

Limitations of Kudu 0.8.0

Kudu 0.8.0 has the same limitations as Kudu 0.7.0, listed in Limitations of Kudu 0.7.0 on page 30.

Upgrade Notes for Kudu 0.8.0

Before upgrading to Kudu 0.8.0, see Incompatible Changes in Kudu 0.8.0 on page 29.

Kudu 0.7.1 Release Notes

Kudu 0.7.1 is a bug-fix release for 0.7.0. Users of Kudu 0.7.0 should upgrade to this version. See also Issues resolved
for Kudu 0.7.1 and Git changes between 0.7.0 and 0.7.1.

To upgrade Kudu to 0.7.1, see Upgrade Parcels or Upgrade Packages.

Issues Fixed in Kudu 0.7.1

For a list of issues fixed in Kudu 0.7.1, see this JIRA query. The following notable fixes are included:

e KUDU-1325 fixes a tablet server crash that could occur during table deletion. In some cases, while a table was
being deleted, other replicas would attempt to re-replicate tablets to servers that had already processed the
deletion. This could trigger a race condition that caused a crash.

e KUDU-1341 fixes a potential data corruption and crash that could happen shortly after tablet server restarts in
workloads that repeatedly delete and re-insert rows with the same primary key. In most cases, this corruption
affected only a single replica and could be repaired by re-replicating from another.

e KUDU-1343 fixes a bug in the Java client that occurs when a scanner has to scan multiple batches from one tablet
and then start scanning from another. In particular, this affected any scans using the Java client that read large
numbers of rows from multi-tablet tables.

e KUDU-1345 fixes a bug where the hybrid clock could jump backwards, resulting in a crash followed by an inability
to restart the affected tablet server.

e KUDU-1360 fixes a bug in the kudu- spar k module that prevented reading rows with NULL values.

Limitations of Kudu 0.7.1

Kudu 0.7.1 has the same limitations as Kudu 0.7.0, listed in Limitations of Kudu 0.7.0 on page 30.

Upgrade Notes For Kudu 0.7.1

Kudu 0.7.1 has the same upgrade notes as Kudu 0.7.0, listed in Upgrade Notes For Kudu 0.7.0 on page 32.

Kudu 0.7.0 Release Notes

Kudu 0.7.0 is the first release as part of the Apache Incubator and includes a number of changes, new features,
improvements, and fixes. See also Issues resolved for Kudu 0.7.0 and Git changes between 0.6.0 and 0.7.0.

To upgrade Kudu to 0.7, see Upgrade Parcels or Upgrade Packages.

http://gerrit.cloudera.org:8080/#/c/2571/
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.7.1
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.7.1
https://github.com/apache/kudu/compare/0.7.0...0.7.1
http://kudu.apache.org/docs/installation.html#upgrade
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.7.1
https://issues.apache.org/jira/browse/KUDU-1325
https://issues.apache.org/jira/browse/KUDU-1341
https://issues.apache.org/jira/browse/KUDU-1343
https://issues.apache.org/jira/browse/KUDU-1345
https://issues.apache.org/jira/browse/KUDU-1360
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.7.0
https://github.com/apache/kudu/compare/branch-0.6.0...branch-0.7.0
http://kudu.apache.org/docs/installation.html#upgrade

New Features in Kudu 0.7.0

Initial work for Spark integration

With the goal of Spark integration, a new kuduRDDAPI has been added that wraps newAPI HadoopRDDand includes
a default source for Spark SQL.

Other Improvements in Kudu 0.7.0

e Support for RHEL 7, CentOS 7, and SLES 12 has been added.

e The Python client is no longer considered experimental.

* The file block manager performance is improved, but it is still not recommended for real-world use.

e The master now attempts to spread tablets more evenly across the cluster during table creation. This has no
impact on existing tables, but improves the speed at which under-replicated tablets are re-replicated after a tablet
server failure.

¢ All licensing documents have been modified to adhere to ASF guidelines.

e The C++ client library is now explicitly built against the old GCC 5 ABI. If you use gcc5 to build a Kudu application,
your application must use the old ABl as well. This is typically achieved by defining the _GLI BCXX_USE_CXX11_ABI
macro at compile time when building your application. For more information, see GCC 5 and the C++ 11 ABI.

Issues Fixed in Kudu 0.7.0
For a list of issues fixed in Kudu 0.7, see this JIRA query.

Incompatible Changes in Kudu 0.7.0

e The C++ client includes a new API, KuduScanBat ch, which performs better when a large number of small rows
are returned in a batch. The old API of vect or <KuduRowResul t > is deprecated.

E,i Note: This change is API-compatible but not ABI-compatible.

¢ The default replication factor has been changed from 1 to 3. Existing tables continue to use the replication factor
they were created with. Applications that create tables may not work properly if they assume a replication factor
of 1 and fewer than 3 replicas are available. To use the previous default replication factor, start the master with
the configuration flag - - def aul t _num repl i cas=1.

¢ The Python client has been rewritten, with a focus on improving code quality and testing. The read path (scanners)
has been improved by adding many of the features already supported by the C++ and Java clients. The Python
client is no longer considered experimental.

Limitations of Kudu 0.7.0

Operating System Limitations

e RHEL 7 or 6.4 or newer, CentOS 7 or 6.4 or newer, and Ubuntu Trusty are the only operating systems supported
for installation in the public beta. Others may work but have not been tested. You can build Kudu from source on
SLES 12, but binaries are not provided.

Storage Limitations

e Kudu has been tested with up to 4 TB of data per tablet server. More testing is needed for denser storage
configurations.

Schema Limitations

e Testing with more than 20 columns has been limited.
e Multi-kilobyte rows have not been thoroughly tested.

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html
http://developerblog.redhat.com/2015/02/05/gcc5-and-the-c11-abi/
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.7.0

e The columns that make up the primary key must be listed first in the schema.

e Key columns cannot be altered. You must drop and re-create a table to change its keys.

¢ Key columns must not be null.

e Columns with DOUBLE, FLOAT, or BOCL types are not allowed as part of a primary key definition.
¢ Type and nullability of existing columns cannot be changed by altering the table.

e Atable’s primary key cannot be changed.

¢ Dropping a column does not immediately reclaim space.; compaction must run first. You cannot run compaction
manually. Dropping the table reclaims space immediately.

Ingest Limitations

¢ Ingest through Sqoop or Flume is not supported in the public beta. For bulk ingest, use Impala’s CREATE TABLE
AS SELECT functionality or use Kudu's Java or C++ API.

¢ Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Instead, add split rows at table creation.

¢ Tablets cannot currently be merged. Instead, create a new table with the contents of the old tables to be merged.

Cloudera Manager Limitations

e Some metrics, such as latency histograms, are not yet available in Cloudera Manager.

e Some service and role chart pages are still under development. More charts and metrics will be visible in future
releases.

Replication and Backup Limitations

e Replication and failover of Kudu masters is considered experimental. Cloudera recommends running a single
master and periodically perform a manual backup of its data directories.

Impala Limitations

¢ To use Kudu with Impala, you must install a special release of Impala. Obtaining and installing a compatible Impala
release is detailed in Using Apache Impala (incubating) with Kudu on page 65.

¢ To use Impala_Kudu alongside an existing Impala instance, you must install using parcels.

e Updates, inserts, and deletes through Impala are nontransactional. If a query fails, any partial effects are not be
rolled back.

e All queries are distributed across all Impala nodes that host a replica of the target table(s), even if a predicate on
a primary key could correctly restrict the query to a single tablet. This limits the maximum concurrency of short
queries made through Impala.

¢ Timestamp and decimal type are not supported.

e The maximum parallelism of a single query is limited to the number of tablets in a table. To optimize analytic
performance, spread your data across 10 or more tablets per host for a large table.

e Impala can push down only predicates involving =, <=, >=, or BETWEEN comparisons between a column and a
literal value. Impala pushes down predicates < and > for integer columns only. For example, for a table with an
integer key t s, and a string key nane, the predicate WHERE ts >= 12345 converts to an efficient range scan,
whereas WHERE nane > smit h currently fetches all data from the table and evaluates the predicate within
Impala.

Security Limitations

¢ Authentication and authorization are not included in the public beta.
e Data encryption is not included in the public beta.

Client and API Limitations

¢ Potentially incompatible C++ and Java APl changes may be required during the public beta.

e ALTER TABLE s not yet fully supported through the client APIs. More ALTER TABLE operations will be available
in future betas.

Application Integration Limitations

e The Spark DataFrame implementation is not yet complete.

Other Known Issues

The following are known bugs and issues with the current beta release. They will be addressed in later beta releases.

¢ Building Kudu from source using gcc 4.6 or 4.7 causes runtime and test failures. Be sure you are using a different
version of gcc if you build Kudu from source.

¢ If the Kudu master is configured with the -1 og_f sync_al | option, tablet servers and clients will experience
frequent timeouts, and the cluster may become unusable.

» |f a tablet server has a very large number of tablets, it may take several minutes to start up. Limit the number of
tablets per server to 100 or fewer, and consider this limitation when pre-splitting your tables. If you notice slow
start-up times, you can monitor the number of tablets per server in the web Ul.

Upgrade Notes For Kudu 0.7.0

e Kudu 0.7.0 maintains wire compatibility with Kudu 0.6.0. A Kudu 0.7.0 client can communicate with a Kudu 0.6.0
cluster, and vice versa. For that reason, you do not need to upgrade client JARs at the same time the cluster is
upgraded.

¢ The same wire compatibility guarantees apply to the | npal a_Kudu fork that was released with Kudu 0.5.0.
e Review Incompatible Changes in Kudu 0.7.0 on page 30 before upgrading to Kudu 0.7.

See Upgrading Kudu for instructions.

Kudu 0.6 Release Notes

To upgrade Kudu to 0.6, see Upgrade Parcels or Upgrade Packages.

New Features in Kudu 0.6

Row Error Reporting

The Java client includes new methods count Pendi ngEr r or s() and get Pendi ngEr r or s() on KuduSessi on.
These methods allow you to count and retrieve outstanding row errors when configuring sessions with
AUTO_FLUSH_BACKGROUND.

New Server-Side Metrics
New server-level metrics allow you to monitor CPU usage and context switching.

Issues Fixed in Kudu 0.6

For a list of issues addressed in Kudu 0.6, see this JIRA query.

Limitations of Kudu 0.6

Operating System Limitations

e RHEL 6.4 or newer, CentOS 6.4 or newer, and Ubuntu Trusty are the only operating systems supported for
installation in the public beta. Others may work but have not been tested.

http://kudu.apache.org/docs/installation.html#upgrade
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.6.0

Storage Limitations

Kudu has been tested with up to 4 TB of data per tablet server. More testing is needed for denser storage
configurations.

Schema Limitations

Testing with more than 20 columns has been limited.

Multi-kilobyte rows have not been thoroughly tested.

The columns which make up the primary key must be listed first in the schema.

Key columns cannot be altered. You must drop and recreate a table to change its keys.

Key columns must not be null.

Columns with DOUBLE, FLOAT, or BOOL types are not allowed as part of a primary key definition.
Type and nullability of existing columns cannot be changed by altering the table.

A table’s primary key cannot be changed.

Dropping a column does not immediately reclaim space. Compaction must run first. There is no way to run
compaction manually, but dropping the table will reclaim the space immediately.

Ingest Limitations

Ingest using Sqoop or Flume is not supported in the public beta. The recommended approach for bulk ingest is to
use Impala’s CREATE TABLE AS SELECT functionality or use the Kudu's Java or C++ API.

Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Instead, add split rows at table creation.

Tablets cannot currently be merged. Instead, create a new table with the contents of the old tables to be merged.

Cloudera Manager Limitations

Some metrics, such as latency histograms, are not yet available in Cloudera Manager.

Some service and role chart pages are still under development. More charts and metrics will be visible in future
releases.

Replication and Backup Limitatinos

Replication and failover of Kudu masters is considered experimental. It is recommended to run a single master
and periodically perform a manual backup of its data directories.

Impala Limitations

To use Kudu with Impala, you must install a special release of Impala. Obtaining and installing a compatible Impala
release is detailed in Using Apache Impala (incubating) with Kudu on page 65.
To use Impala_Kudu alongside an existing Impala instance, you must install using parcels.

Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of the way through, its partial
effects will not be rolled back.

All queries will be distributed across all Impala nodes which host a replica of the target table(s), even if a predicate
on a primary key could correctly restrict the query to a single tablet. This limits the maximum concurrency of short
queries made using Impala.

No timestamp and decimal type support.

The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or large tables.

Impala is only able to push down predicates involving =, <=, >=, or BETWEEN comparisons between a column and
a literal value. Impala pushes down predicates < and > for integer columns only. For example, for a table with an
integer key t s, and a string key nane, the predicate WHERE ts >= 12345 will convert into an efficient range
scan, whereas WHERE nane > smi t h will currently fetch all data from the table and evaluate the predicate
within Impala.

Security Limitations

e Authentication and authorization are not included in the public beta.
e Data encryption is not included in the public beta.

Client and API Limitations

¢ Potentially-incompatible C++ and Java APl changes may be required during the public beta.

e ALTER TABLEIis not yet fully supported using the client APIs. More ALTER TABLE operations will become available
in future betas.

e The Python APl is not supported.

Application Integration Limitations

e The Spark DataFrame implementation is not yet complete.

Other Known Issues
The following are known bugs and issues with the current beta release. They will be addressed in later beta releases.
¢ Building Kudu from source using gcc 4.6 or 4.7 causes runtime and test failures. Be sure you are using a different
version of gcc if you build Kudu from source.
¢ If the Kudu master is configured with the -1 og_f sync_al | option, tablet servers and clients will experience
frequent timeouts, and the cluster may become unusable.
e If a tablet server has a very large number of tablets, it may take several minutes to start up. It is recommended

to limit the number of tablets per server to 100 or fewer. Consider this limitation when pre-splitting your tables.
If you notice slow start-up times, you can monitor the number of tablets per server in the web UI.

Upgrade Notes For Kudu 0.6

e Kudu 0.6.0 maintains wire compatibility with Kudu 0.5.0. This means that a Kudu 0.6.0 client can communicate
with a Kudu 0.5.0 cluster, and vice versa. For that reason, you do not need to upgrade client JARs at the same
time the cluster is upgraded.

¢ The same wire compatibility guarantees apply to the Impala_Kudu fork that was released with Kudu 0.5.0 and

0.6.0.
e The Kudu 0.6.0 client API is not compatible with the Kudu 0.5.0 client API. See the Kudu 0.6.0 release notes for

details.

See Upgrading Kudu for instructions.

Kudu 0.5 Release Notes
Limitations of Kudu 0.5

Operating System Limitations

e RHEL 6.4 or newer, CentOS 6.4 or newer, and Ubuntu Trusty are the only operating systems supported for
installation in the public beta. Others may work but have not been tested.

Storage Limitations

e Kudu has been tested with up to 4 TB of data per tablet server. More testing is needed for denser storage
configurations.

Schema Limitations

Testing with more than 20 columns has been limited.

Multi-kilobyte rows have not been thoroughly tested.

The columns which make up the primary key must be listed first in the schema.

Key columns cannot be altered. You must drop and recreate a table to change its keys.

Key columns must not be null.

Columns with DOUBLE, FLOAT, or BOOL types are not allowed as part of a primary key definition.
Type and nullability of existing columns cannot be changed by altering the table.

A table’s primary key cannot be changed.

Dropping a column does not immediately reclaim space. Compaction must run first. There is no way to run
compaction manually, but dropping the table will reclaim the space immediately.

Ingest Limitations

Ingest using Sqoop or Flume is not supported in the public beta. The recommended approach for bulk ingest is to
use Impala’s CREATE TABLE AS SELECT functionality or use the Kudu's Java or C++ API.

Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Instead, add split rows at table creation.

Tablets cannot currently be merged. Instead, create a new table with the contents of the old tables to be merged.

Cloudera Manager Limitations

Some metrics, such as latency histograms, are not yet available in Cloudera Manager.

Some service and role chart pages are still under development. More charts and metrics will be visible in future
releases.

Replication and Backup Limitatinos

Replication and failover of Kudu masters is considered experimental. It is recommended to run a single master
and periodically perform a manual backup of its data directories.

Impala Limitations

To use Kudu with Impala, you must install a special release of Impala. Obtaining and installing a compatible Impala
release is detailed in Using Apache Impala (incubating) with Kudu on page 65.

To use Impala_Kudu alongside an existing Impala instance, you must install using parcels.

Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of the way through, its partial
effects will not be rolled back.

All queries will be distributed across all Impala nodes which host a replica of the target table(s), even if a predicate
on a primary key could correctly restrict the query to a single tablet. This limits the maximum concurrency of short
qgueries made using Impala.

No timestamp and decimal type support.

The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or large tables.

Impala is only able to push down predicates involving =, <=, >=, or BETWEEN comparisons between a column and
a literal value. Impala pushes down predicates < and > for integer columns only. For example, for a table with an
integer key t s, and a string key nang, the predicate WHERE ts >= 12345 will convert into an efficient range
scan, whereas WHERE nane > smi t h will currently fetch all data from the table and evaluate the predicate
within Impala.

Security Limitations

Authentication and authorization are not included in the public beta.
Data encryption is not included in the public beta.

Client and API Limitations

¢ Potentially-incompatible C++ and Java APl changes may be required during the public beta.

e ALTER TABLEIis not yet fully supported using the client APIs. More ALTER TABLE operations will become available
in future betas.

e The Python APl is not supported.

Application Integration Limitations

¢ The Spark DataFrame implementation is not yet complete.

Other Known Issues
The following are known bugs and issues with the current beta release. They will be addressed in later beta releases.

¢ Building Kudu from source using gcc 4.6 or 4.7 causes runtime and test failures. Be sure you are using a different
version of gcc if you build Kudu from source.

¢ [f the Kudu master is configured with the -1 og_f sync_al | option, tablet servers and clients will experience
frequent timeouts, and the cluster may become unusable.

e If a tablet server has a very large number of tablets, it may take several minutes to start up. It is recommended
to limit the number of tablets per server to 100 or fewer. Consider this limitation when pre-splitting your tables.
If you notice slow start-up times, you can monitor the number of tablets per server in the web UI.

Next Steps
Kudu Quickstart

Installing Kudu
Configuring Kudu

Apache Kudu Schema Design and Usage Limitations

The following sections describe known issues and limitations in Kudu, as of the current release.

Schema Design Limitations
Primary Key
e The columns which make up the primary key must be listed first in the schema.

e Columns with DOUBLE, FLOAT, or BOOL types are not allowed as part of a primary key definition. Additionally,
all columns that are part of a primary key definition must be NOT NULL.

¢ The primary key of a row cannot be modified using the UPDATE functionality. To modify a row’s primary key,
the row must be deleted and re-inserted with the modified key. Such a modification is non-atomic.

e Columns that are part of the primary key cannot be renamed. The primary key may not be changed after the
table is created. You must drop and recreate a table to select a new primary key or rename key columns.

e Auto-generated primary keys are not supported.
e Cells making up a composite primary key are limited to a total of 16KB after internal composite-key encoding
is done by Kudu.
Columns

¢ By default, Kudu will not permit the creation of tables with more than 300 columns. We recommend schema
designs that use fewer columns for best performance.

http://kudu.apache.org/docs/quickstart.html
http://kudu.apache.org/docs/configuration.html

e TIMESTAWP, DECI MAL, CHAR, VARCHAR, DATE, and complex types such as ARRAY are not supported.

¢ Type, nullability, compression, and encoding of existing columns cannot be changed by altering the table.

Tables

e Tables must have an odd number of replicas, with a maximum of 7.

¢ Replication factor (set at table creation time) cannot be changed.

Cells

No individual cell may be larger than 64KB before encoding or compression. The cells making up a composite key
are limited to a total of 16KB after the internal composite-key encoding done by Kudu. Inserting rows not conforming
to these limitations will result in errors being returned to the client.

Rows

Kudu was primarily designed for analytic use cases. Although individual cells may be up to 64KB, and Kudu supports
up to 300 columns, it is recommended that no single row be larger than a few hundred KB. You are likely to encounter
issues if a single row contains multiple kilobytes of data.

Dropping Columns and Tables

e Dropping a column does not immediately reclaim space. Compaction must run first.

¢ There is no way to run compaction manually, but dropping the table will reclaim the space immediately.

Other Usage Limitations
¢ Identifiers such as table and column names must be valid UTF-8 sequences and no longer than 256 bytes.
e Secondary indexes are not supported.
e Multi-row transactions are not supported.
¢ Relational features, such as foreign keys, are not supported.

¢ Identifiers such as column and table names are restricted to be valid UTF-8 strings. Additionally, a maximum
length of 256 characters is enforced.

If you are using Apache Impala (incubating) to query Kudu tables, refer the section on Impala Integration Limitations
on page 38 as well.

Partitioning Limitations

¢ Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Kudu does not allow you to change how a table is partitioned after creation, with the exception of
adding or dropping range partitions. See Apache Kudu Schema Design on page 81 for more information.

e Data in existing tables cannot currently be automatically repartitioned. As a workaround, create a new table with
the new partitioning and insert the contents of the old table.

¢ Tablets that lose a majority of replicas (such as 1 left out of 3) require manual intervention to be repaired.

Scaling Recommendations and Limitations

e Recommended maximum number of tablet servers is 100.
e Recommended maximum number of masters is 3.
¢ Recommended maximum amount of stored data, post-replication and post-compression, per tablet server is 4TB.

e Recommended maximum number of tablets per tablet server is 1000, post-replication.

Maximum number of tablets per table for each tablet server is 60, post-replication, at table-creation time.

Server Management Limitations

Production deployments should configure a least 4GB of memory for tablet servers, and ideally more than 10GB.
Write ahead logs (WALs) can only be stored on one disk.
Disk failures are not tolerated and tablets servers will crash as soon as one is detected.

Failed disks with unrecoverable data requires formatting of all Kudu data for that tablet server before it can be
started again.

Data directories cannot be added/removed; they must be reformatted to change the set of directories.
Tablet servers cannot be gracefully decommissioned.
Tablet servers cannot change their address or port.

Kudu has a hard requirement on having an up-to-date NTP. Kudu masters and tablet servers will crash when out
of sync.

Kudu releases have only been tested with NTP. Other time synchronization providers such as Chrony may not
work.

Cluster Management Limitations

Rack awareness is not supported.
Multi-datacenter is not supported.

Rolling restart is not supported.

Replication and Backup Limitations

Kudu does not currently include any built-in features for backup and restore. Users are encouraged to use tools
such as Spark or Impala to export or import tables as necessary.

Impala Integration Limitations

When creating a Kudu table, the CREATE TABLE statement must include the primary key columns before other
columns, in primary key order.

Impala cannot update values in primary key columns.
Impala cannot create Kudu tables with TI MESTAMP, DECI MAL, VARCHAR, or nested-typed columns.

Kudu tables with a name containing upper case or non-ASCII characters must be assigned an alternate name when
used as an external table in Impala.

Kudu tables with a column name containing upper case or non-ASCll characters may not be used as an external
table in Impala. Non-primary key columns may be renamed in Kudu to work around this issue.

Kudu tables containing UNI XTI ME_M CROS-typed columns may not be used as an external table in Impala.

NULL, NOT NULL, ! =, and LI KE predicates are not pushed to Kudu, and instead will be evaluated by the Impala
scan node. This may decrease performance relative to other types of predicates.

Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of the way through, its partial
effects will not be rolled back.

The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or use large tables.

Impala Keywords Not Supported for Creating Kudu Tables

PARTI TI ONED
LOCATI ON
ROWFORVAT

Spark Integration Limitations

Kudu tables with a name containing upper case or non-ASClI characters must be assigned an alternate name when
registered as a temporary table.

Kudu tables with a column name containing upper case or non-ASCII characters must not be used with SparkSQL.
Columns can be renamed in Kudu to work around this issue.

<> and ORpredicates are not pushed to Kudu, and instead will be evaluated by the Spark task. Only LI KE predicates
with a suffix wildcard are pushed to Kudu. This means LI KE " FOO will be pushed, but LI KE " FOOYBAR' won't.

Kudu does not support all the types supported by Spark SQL. For example, Dat e, Deci mal , and complex types
are not supported on Kudu.

Kudu tables can only be registered as temporary tables in SparkSQL.

Kudu tables cannot be queried using HiveContext.

Security Limitations

Disk encryption is not built in. Kudu has been reported to run correctly on systems using local block device
encryption (e.g. dntrypt).

Authorization is only available at a system-wide, coarse-grained level. Kudu does not have the ability to restrict
access based on the type of operation, or the target (table, column, row, etc). ACLs do not currently support
authorization based on membership in a group.

Kudu does not support configuring a custom service principal for Kudu processes. The principal must follow the
pattern kudu/ <HOST>@DEFAULT. REALM>.

Kudu does not support externally-issued certificates for internal wire encryption (server to server and client to
server).

Kudu integration with Apache Flume does not support writing to Kudu clusters that require authentication or
encryption.

Kudu client instances retrieve authentication tokens upon first contact with the cluster. However, these tokens
expire after one week and Kudu clients do not automatically request fresh tokens after initial token expiration.
Therefore, Kudu clients that are active for more than a week are not supported.

Use of a single Kudu client instance for more than one week is only supported by the C++ client, not by the Java
client.

Note that applications such as Apache Impala (incubating) construct new clients for each query. Therefore, this
limitation only affects the runtime of a single query.

Other Known Issues

The following are known bugs and issues with the current release of Kudu. They will be addressed in later releases.
Note that this list is not exhaustive, and is meant to communicate only the most important known issues.

Timeout Possible with Log Force Synchronization Option

If the Kudu master is configured with the -1 og_f orce_fsync_al | option, tablet servers and clients will experience
frequent timeouts, and the cluster may become unusable.

Longer Startup Times with a Large Number of Tablets

If a tablet server has a very large number of tablets, it may take several minutes to start up. It is recommended to limit
the number of tablets per server to 100 or fewer. Consider this limitation when pre-splitting your tables. If you notice
slow start-up times, you can monitor the number of tablets per server in the web Ul.

Confusing Descriptions for Kudu TLS/SSL Settings in Cloudera Manager

Descriptions in the Cloudera Manager Admin Console for TLS/SSL settings are confusing, and will be replaced in a future
release. The correct information about the settings is in the Usage Notes column:

Field Usage Notes

Kerberos Principal Set to the default principal, kudu.

Enable Secure Authentication And | Select this checkbox to enable authentication and RPC encryption between all
Encryption Kudu clients and servers, as well as between individual servers. Only enable this
property after you have configured Kerberos.

Master TLS/SSL Server Private Key | Set to the path containing the Kudu master host's private key (PEM-format). This
File (PEM Format) is used to enable TLS/SSL encryption (over HTTPS) for browser-based connections
to the Kudu master web UL.

Tablet Server TLS/SSL Server Set to the path containing the Kudu tablet server host's private key (PEM-format).
Private Key File (PEM Format) This is used to enable TLS/SSL encryption (over HTTPS) for browser-based
connections to Kudu tablet server web Uls.

Master TLS/SSL Server Certificate | Set to the path containing the signed certificate (PEM-format) for the Kudu master
File (PEM Format) host's private key (set in Master TLS/SSL Server Private Key File). The certificate
file can be created by concatenating all the appropriate root and intermediate
certificates required to verify trust.

Tablet Server TLS/SSL Server Set to the path containing the signed certificate (PEM-format) for the Kudu tablet
Certificate File (PEM Format) server host's private key (set in Tablet Server TLS/SSL Server Private Key File).
The certificate file can be created by concatenating all the appropriate root and
intermediate certificates required to verify trust.

Master TLS/SSL Server CA Disregard this field.
Certificate (PEM Format)

Tablet Server TLS/SSL Server CA | Disregard this field.
Certificate (PEM Format)

Enable TLS/SSL for Master Server |Enables HTTPS encryption on the Kudu master web Ul.

Enable TLS/SSL for Tablet Server |Enables HTTPS encryption on the Kudu tablet server web Uls.

Installing and Upgrading Apache Kudu

You can install Apache Kudu in a cluster managed by Cloudera Manager, using either parcels or packages. If you do
not use Cloudera Manager, you can install Kudu using packages.
Tip: To start using Kudu in minutes, without the need to install anything, see the Kudu Quickstart documentation.

Kudu Installation Requirements

¢ Hardware

— One or more hosts to run Kudu masters. You should have either one master (provides no fault tolerance),
three masters (can tolerate one failure), or five masters (can tolerate two failures).
— One or more hosts to run Kudu tablet servers. With replication, a minimum of three tablet servers is necessary.

e Operating systems
— Linux

— RHEL/Cent0S 6.4,6.5,6.6,6.7,6.8,7.1,7.2,7.3

— Oracle Linux (OL) 6.4, 6.5,6.6,6.7,6.8,7.1,7.2,7.3

— Ubuntu 14.04 (Trusty), 16.04 (Xenial)

— Debian 8.2, 8.4 (Jessie)

— SLES 12 Service Pack 1

— Akernel version and filesystem that support hole punching. Hole punching is the use of the f al | ocat e(2)
system call with the FALLOC_FL_PUNCH_HOLE option set. See Error during hole punch test on page 94.
If you cannot meet this requirement, use this workaround.

- NTP

— xfs or ext4 formatted drives.

— MacOS

— 0S X 10.10 Yosemite, OS X 10.11 El Capitan, and macOS Sierra.
— Pre-built macOS packages are not provided.

— Windows

— Microsoft Windows is not supported.

¢ Management - To manage Kudu with Cloudera Manager, Cloudera Manager 5.10.0 or later and CDH 5.10.0 or
later are required.

E’; Note: Kudu is not supported in Cloudera Manager's single-user mode.

e Storage - If solid state storage is available, storing Kudu WALs on such high-performance media might significantly
improve latency when Kudu is configured for its highest durability levels.

Install Kudu Using Cloudera Manager

You can install Kudu on a Cloudera Manager deployment using either parcels or packages.

http://kudu.apache.org/docs/quickstart.html
https://www.cloudera.com/documentation/enterprise/latest/topics/install_singleuser_reqts.html

Install Kudu Using Parcels

Starting with Kudu 1.3.0 / CDH 5.11.0, the Kudu CSD is included in Cloudera Manager. Manual installation of the Kudu
CSD is not required. Use the following steps to install Kudu using parcels.

1.
2.

In Cloudera Manager, go to Hosts > Parcels. Find KUDU in the list, and click Download.
When the download is complete, select your cluster from the Locations selector, and click Distribute. If you only
have one cluster, it is selected automatically.

. When distribution is complete, click Activate to activate the parcel. Restart the cluster when prompted. This might

take several minutes.

. Install the Kudu service on your cluster. Go to the cluster where you want to install Kudu. Click Actions > Add a

Service. Select Kudu from the list, and click Continue.

. Select a host for the master role and one or more hosts for the tablet server roles. A host can act as both a master

and a tablet server, but this might cause performance problems on a large cluster. The Kudu master process is
not resource-intensive and can be collocated with other similar processes such as the HDFS NameNode or YARN
ResourceManager. After selecting hosts, click Continue.

. Configure the storage locations for Kudu data and write-ahead log (WAL) files on masters and tablet servers.

Cloudera Manager will create the directories.

e You can use the same directory to store data and WALs.

¢ You cannot store WALs in a subdirectory of the data directory.

e If any host is both a master and tablet server, configure different directories for master and tablet server.
For instance, / dat a/ kudu/ mast er and/ dat a/ kudu/ t server.

¢ If you have chosen a filesystem that does not support hole punching, the Kudu service will fail to start. In this
case only, exit the wizard by clicking the Cloudera logo at the top left, and enable the file block manager. This
is not appropriate for production. See Enabling the File Block Manager on page 42.

. If your filesystem supports hole punching, do not exit the wizard. Click Continue. Kudu masters and tablet servers

are started. Otherwise, go to the Kudu service, and click Actions > Start.

. Verify the Installation on page 46.
. To manage roles, go to the Kudu service and use the Actions menu to stop, start, restart, or otherwise manage

the service.

Enabling the File Block Manager

If your filesystem supports hole punching, do not use the file blocker manager. The file blocker manager does not
perform well at scale and must only be used for small-scale development and testing.

If your filesystem does not support hole punching, but you want to experiment with Kudu, you must enable the file
block manager. If you do not enable the file block manager, Kudu will not start.

1.

4,

If you are still in the Cloudera configuration wizard, exit the configuration wizard by clicking the Cloudera logo at
the top of the Cloudera Manager interface.

. Go to the Kudu service.
. Go to Configuration and search for the Kudu Service Advanced Configuration Snippet (Safety Valve) for gflagfile

configuration option.
Add the following line to it, and save your changes:

--bl ock_manager=fil e

Install Kudu Using Packages

Table 1: Kudu Repository and Package Links

Operating System Repository Package Individual Packages

RHEL RHEL 6 or RHEL 7 RHEL 6

http://archive.cloudera.com/kudu/redhat/6/x86_64/kudu/
http://archive.cloudera.com/kudu/redhat/6/x86_64/kudu/cloudera-kudu.repo
http://archive.cloudera.com/kudu/redhat/7/x86_64/kudu/cloudera-kudu.repo

Installing and Upgrading Apache Kudu

Ubuntu Trusty, Xenial Trusty, Xenial
SLES SLES 12 SLES 12
Debian Jessie Jessie

1. Cloudera recommends installing the Kudu repositories for your operating system. Use the links in Table 1: Kudu
Repository and Package Links on page 42 to download the appropriate repository installer. Save the repository

installer to/ et ¢/ yum r epos. d/ for RHEL, / et c/ apt/sources. | i st. d/ for Ubuntu/Debian, or
/ etc/ zypp/ repos. d for SLES.

2. Add the Cloudera Public GPG repository key for each operating system in the cluster. This key enables you to verify
that you are downloading genuine packages.

RHEL/CentOS 6 sudo rpm --i nport

htt ps: // archi ve. cl ouder a. contkudu redhat / 6/ x86_64/ kuduw/ RPM GG KEY- cl ouder a
RHEL/CentOS 7 sudo rpm --i nport

htt ps: // ar chi ve. cl ouder a. contkudu/ redhat / 7/ x86_64/ kudu/ RPM G°G KEY- cl ouder a
SLES sudo rpm --inport

https: //archi ve. cl oudera. condikudu/ sl es/ 12/ x86_64/ kuduw/ RFAM G°G KEY- ¢l ouder a
Debian Jessie

wget

htt ps: //archi ve. cl ouder a. cont kudw/ debi an/ j essi e/ antl64/ kudu/ ar chi ve. key

-O archive. key

sudo apt-key add archive. key

Ubuntu Xenial

wget

htt ps: //archi ve. cl ouder a. cont kudu/ ubunt u/ xeni al / ant64/ kudw/ ar chi ve. key
-O archive. key

sudo apt-key add archive. key

Trusty

wget

htt ps: //archi ve. cl ouder a. comt kudw/ ubunt u/ t r ust y/ antl64/ kudu/ ar chi ve. key
-O archive. key

sudo apt-key add archive. key

3. Install the Kudu packages.

¢ If you use Cloudera Manager, you only need to install the kudu package:

Apache Kudu User Guide | 43

http://archive.cloudera.com/kudu/ubuntu/trusty/amd64/kudu/
http://archive.cloudera.com/kudu/ubuntu/xenial/amd64/kudu/pool/contrib/k/kudu/
http://archive.cloudera.com/kudu/ubuntu/trusty/amd64/kudu/cloudera.list
http://archive.cloudera.com/kudu/ubuntu/xenial/amd64/kudu/cloudera.list
http://archive.cloudera.com/kudu/sles/12/x86_64/kudu/0/RPMS/x86_64/
http://archive.cloudera.com/kudu/sles/12/x86_64/kudu/cloudera-kudu.repo
http://archive.cloudera.com/kudu/debian/jessie/amd64/kudu/pool/contrib/k/kudu/
http://archive.cloudera.com/kudu/debian/jessie/amd64/kudu/cloudera.list

Operating System Install Commands

RHEL/CentOS sudo yuminstall kudu

Ubuntu/Debian sudo apt-get install kudu

SLES sudo zypper install kudu

¢ If you need the C++ client development libraries or the Kudu SDK, install kudu- cl i ent and
kudu-cl i ent - devel packages for RHEL, or | i bkuducl i ent 0 and | i bkuducl i ent - dev packages for
Ubuntu.

¢ Do notinstall the kudu- mast er and kudu-t ser ver packages. They provide operating system startup scripts
for using Kudu without Cloudera Manager.

4. Install the Kudu service on your cluster. Go to the cluster where you want to install Kudu. Click Actions > Add a
Service. Select Kudu from the list, and click Continue.

5. Select a host for the master role and one or more hosts for the tablet server roles. A host can act as both a master
and a tablet server, but this might cause performance problems on a large cluster. The Kudu master process is
not resource-intensive and can be collocated with other similar processes such as the HDFS NameNode or YARN
ResourceManager. After selecting hosts, click Continue.

6. Configure the storage locations for Kudu data and write-ahead log (WAL) files on masters and tablet servers.
Cloudera Manager will create the directories.

¢ You can use the same directory to store data and WALs.

¢ You cannot store WALs in a subdirectory of the data directory.

e If any host is both a master and tablet server, configure different directories for master and tablet server.
For instance, / dat a/ kudu/ mast er and/ dat a/ kudu/ t ser ver.

¢ If you have chosen a filesystem that does not support hole punching, the Kudu service will fail to start. In this
case only, exit the wizard by clicking the Cloudera logo at the top left, and enable the file block manager. This
is not appropriate for production. See Enabling the File Block Manager on page 42.

7. If your filesystem supports hole punching, do not exit the wizard. Click Continue. Kudu masters and tablet servers
are started. Otherwise, go to the Kudu service, and click Actions > Start.

8. Verify the Installation on page 46.

9. To manage roles, go to the Kudu service and use the Actions menu to stop, start, restart, or otherwise manage
the service.

Install Kudu Using the Command Line

o Important: If you use Cloudera Manager, do not use these command-line instructions.

Follow these steps on each node in your Kudu cluster.

1. Cloudera recommends installing the Kudu repositories for your operating system. Use the links in the following
table to download the appropriate repository installer. Save the repository installer to/ et ¢/ yum r epos. d/ for
RHEL, / et c/ apt/ sources. | i st. d/ for Ubuntu/Debian, or/ et ¢/ zypp/ r epos. d for SLES.

Table 2: Kudu Repository and Package Links

Operating System Repository Package Individual Packages

RHEL RHEL 6 or RHEL 7 RHEL 6

http://archive.cloudera.com/kudu/redhat/6/x86_64/kudu/
http://archive.cloudera.com/kudu/redhat/6/x86_64/kudu/cloudera-kudu.repo
http://archive.cloudera.com/kudu/redhat/7/x86_64/kudu/cloudera-kudu.repo

Installing and Upgrading Apache Kudu

Ubuntu Trusty, Xenial Trusty, Xenial
SLES SLES 12 SLES 12
Debian Jessie Jessie

2. Add the Cloudera Public GPG repository key for each operating system in the cluster. This key enables you to verify
that you are downloading genuine packages.

RHEL/CentOS 6 sudo rpm --i nport

htt ps: // archi ve. cl ouder a. contkudu redhat / 6/ x86_64/ kuduw/ RPM GG KEY- cl ouder a
RHEL/CentOS 7 sudo rpm --i nport

htt ps: // ar chi ve. cl ouder a. contkudu/ redhat / 7/ x86_64/ kudu/ RPM G°G KEY- cl ouder a
SLES sudo rpm --inport

https: //archi ve. cl oudera. coniikudu/ sl es/ 12/ x86_64/ kuduw/ RFAM G°G KEY- ¢l ouder a
Debian Jessie

wget

htt ps: //archi ve. cl ouder a. cont kudw/ debi an/ j essi e/ antl64/ kudu/ ar chi ve. key

-O archive. key

sudo apt-key add archive. key

Ubuntu Xenial

wget

https: //archi ve. cl ouder a. cont kudu/ ubunt u/ xeni al / ant64/ kudw/ ar chi ve. key
-O archive. key

sudo apt-key add archive. key

Trusty

wget

htt ps: //archi ve. cl ouder a. comt kudw/ ubunt u/ t r ust y/ antl64/ kudu/ ar chi ve. key
-O archive. key

sudo apt-key add archive. key

3. Install the kudu package, using the appropriate commands for your operating system. Also install the kudu- mast er
and kudu- t ser ver packages. They provide operating system start-up scripts for the Kudu master and tablet

servers.

Apache Kudu User Guide | 45

http://archive.cloudera.com/kudu/ubuntu/trusty/amd64/kudu/
http://archive.cloudera.com/kudu/ubuntu/xenial/amd64/kudu/pool/contrib/k/kudu/
http://archive.cloudera.com/kudu/ubuntu/trusty/amd64/kudu/cloudera.list
http://archive.cloudera.com/kudu/ubuntu/xenial/amd64/kudu/cloudera.list
http://archive.cloudera.com/kudu/sles/12/x86_64/kudu/0/RPMS/x86_64/
http://archive.cloudera.com/kudu/sles/12/x86_64/kudu/cloudera-kudu.repo
http://archive.cloudera.com/kudu/debian/jessie/amd64/kudu/pool/contrib/k/kudu/
http://archive.cloudera.com/kudu/debian/jessie/amd64/kudu/cloudera.list

Operating System Install Commands
RHEL/CentOS sudo yuminstall kudu # Base Kudu
files '
sudo yuminstall kudu-naster # Kudu master |
init.d service script and default configuration l
sudo yuminstall kudu-tserver # Kudu tablet |
server init.d service script and default configuration :
sudo yuminstall kudu-clientO # Kudu C++ ;
client shared library .
sudo yuminstall kudu-client-devel # Kudu C++ !
client SDK !
I
Ubuntu/Debian sudo apt-get install kudu # Base Kudu
files '
sudo apt-get install kudu-master # Service |
scripts for managi ng kudu- master I
sudo apt-get install kudu-tserver # Service :
scripts for managi ng kudu-tserver :
sudo apt-get install |ibkuduclientO # Kudu C++ :
client shared library .
sudo apt-get install |ibkuduclient-dev # Kudu C++ !
client SDK I
|
SLES sudo zypper install kudu # Base Kudu :
files '
sudo zypper install kudu-master # Kudu master |
init.d service script and default configuration I
sudo zypper install kudu-tserver # Kudu tablet |
server 1nit.d service script and default configuration :
sudo zypper install kudu-clientO # Kudu C++ :
client shared library .
sudo zypper install kudu-client-devel # Kudu C++ !
client SDK I
|

4. The packages create a kudu- conf entry in the operating system's alternatives database, and they ship the built-in
conf . di st alternative. To adjust your configuration, you can either edit the files in / et ¢/ kudu/ conf / directly,
or create a new alternative using the operating system utilities. If you create a new alternative, make sure the
alternative is the directory pointed to by the / et ¢/ kudu/ conf / symbolic link, and create custom configuration
files there. Some parts of the configuration are configured in/ et ¢/ def aul t / kudu- nmast er and
/ et c/ def aul t/ kudu-t server files as well. You must include or duplicate these configuration options if you
create custom configuration files.

Review the configuration, including the default WAL and data directory locations, and adjust them according to
your requirements.

5. Configure the Kudu services to start automatically when the server starts, by adding them to the default runlevel.

sudo chkconfi g kudu-naster on # RHEL / Cent OS
sudo chkconfig kudu-tserver on # RHEL / Cent OS
sudo update-rc.d kudu-master defaults # Ubuntu / Debian

sudo update-rc.d kudu-tserver defaults # Ubuntu / Debian

For instructions on how to perform common administrative tasks in Kudu, see Apache Kudu Administration on
page 51.

6. Verify the Installation on page 46.

Verify the Installation

1. Verify that the Kudu master and tablet servers are running using one of the following methods:

e Examine the output of the ps command on servers to verify that the kudu- mast er and kudu-t ser ver
processes are running.

e Access the master or tablet server web Ul by goingto htt p: // <_host _nane_>: 8051/ for masters, or
http://<_host _name_>: 8050/ for tablet servers.

2. If Kuduisn’t running, look at the log filesin/ var / | og/ kudu, and if there’s a file ending with . FATAL, that means
Kudu did not start.

e If the error is related to a failed hole punch test or the file block manager, it might be a problem with your
operating system.

e If the error is related to clock synchronization, it is most likely a problem with the Network Time Protocol.

Upgrade Kudu using Cloudera Manager

Warning: If you are upgrading from Kudu 1.2.0 / CDH 5.10.x, you must upgrade both Kudu and CDH

A parcels (or packages) at the same time. If you upgrade Kudu but do not upgrade CDH, new Kudu
features such as Security will not be available. Note that even though you might be able to see the
updated configuration options for Kudu security in Cloudera Manager, configuring them will have no
effect.

To use Cloudera Manager to upgrade Kudu using parcels or packages, use the following instructions. If you do not use
Cloudera Manager, see Upgrade Kudu Using the Command Line on page 48.

Before upgrading Kudu, read the Release Notes relevant to the version you are upgrading to.

Upgrade Kudu Using Parcels

1. Login to Cloudera Manager.

2. Go to Hosts. Click Parcels.

3. Click Check For New Parcels.

4. Find the new version of KUDU in the list of parcels. Download, distribute, and activate it on your cluster.

Upgrade Kudu Using Packages

1. If you use a repository, re-download the repository list file to ensure that you have the latest information. See
Table 1: Kudu Repository and Package Links on page 42.

2. Stop the Kudu service in Cloudera Manager. Go to the Kudu service and select Actions > Stop.

3. Depending on your operating system, issue the following set of commands on each Kudu host:

Operating System Upgrade Commands

RHEL/CentOS sudo yum -y clean all

sudo yum -y upgrade kudu

Ubuntu/Debian sudo apt-get update

sudo apt-get install kudu

SLES sudo zypper clean --all

sudo zypper update kudu

4. Start the Kudu service in Cloudera Manager. Go to the Kudu service and select Actions > Start.

https://kudu.apache.org/docs/troubleshooting.html#ntp

Upgrade Kudu Using the Command Line

Warning: If you are upgrading from Kudu 1.2.0 / CDH 5.10.x, you must upgrade both Kudu and CDH

A parcels (or packages) at the same time. If you upgrade Kudu but do not upgrade CDH, new Kudu
features such as Security will not be available. Note that even though you might be able to see the
updated configuration options for Kudu security in Cloudera Manager, configuring them will have no
effect.

If you use Cloudera Manager, do not use the following command-line instructions. See Upgrade Kudu using Cloudera
Manager on page 47.

Before upgrading Kudu, read the Release Notes relevant to the version you are upgrading to. Note that rolling upgrades
are not supported. Shut down all Kudu services before you begin upgrading the software.

1. If you use a repository, re-download the repository list file to ensure that you have the latest information. See
Table 1: Kudu Repository and Package Links on page 42.
2. Stop the Kudu master and tablet servers using the following commands:

sudo service kudu-naster stop
sudo service kudu-tserver stop

3. Depending on your operating system, issue the following set of commands on each Kudu host:

Operating System Upgrade Commands

RHEL/CentOS sudo yum -y clean all '

sudo yum -y upgrade kudu '

Ubuntu/Debian sudo apt-get update

sudo apt-get install kudu

SLES sudo zypper clean --all

sudo zypper update kudu

4. Start the Kudu master and tablet servers using the following commands:

$ sudo service kudu-master start
$ sudo service kudu-tserver start

Next Steps

Read about Using Apache Impala (incubating) with Kudu on page 65.

For more information about using Kudu, go to the Kudu project page, where you can find official documentation, links
to the Github repository and examples, and other resources.

For a reading list and other helpful links, refer to More Resources for Apache Kudu on page 124.

http://kudu.apache.org/

Apache Kudu Configuration

To configure the behavior of each Kudu process, you can pass command-line flags when you start it, or read those
options from configuration files by passing them using one or more - - f | agf i | e=<f i | e> options. You can even
includethe--f 1l agfi | e option within your configuration file to include other files. Learn more about gflags by reading
its documentation.

You can place options for masters and tablet servers in the same configuration file, and each will ignore options that
do not apply.

Flags can be prefixed with either one or two - characters. This documentation standardizes on two: - - exanpl e_f | ag.

Only the most common configuration options are documented in this topic. For a more exhaustive list of configuration
options, see the Kudu Configuration Reference. To see all configuration flags for a given executable, run it with the
- - hel p option.

Experimental Flags

Some configuration flags are marked 'unsafe' and 'experimental’. Such flags are disabled by default. You can access
these flags by enabling the additional flags, - - unl ock_unsaf e_f | ags and- - unl ock_experi nent al _f| ags. Note
that these flags might be removed or modified without a deprecation period or any prior notice in future Kudu releases.
Cloudera does not support using unsafe and experimental flags. As a rule of thumb, Cloudera will not support any
configuration flags not explicitly documented in the Kudu Configuration Reference Guide.

Configuring the Kudu Master

To see all available configuration options for the kudu- mast er executable, run it with the - - hel p option:

$ kudu-master --help

Table 3: Supported Configuration Flags for Kudu Masters

Flag Valid Options Default Description

--mast er _addr esses string | ocal host Comma-separated list of all
the RPC addresses for
Master

consensus-configuration. If
not specified, assumes a
standalone Master.

--fs data dirs string Comma-separated list of
directories where the
Master will place its data
blocks.

--fs_wal _dir string The directory where the
Master will place its
write-ahead logs. Can be the
same as one of the
directories listed in
--fs_data_dirs, but not
a sub-directory of a data
directory.

https://gflags.github.io/gflags/
http://kudu.apache.org/docs/configuration_reference.html
http://kudu.apache.org/docs/configuration_reference.html

Apache Kudu Configuration

--log_dir string [t The directory to store
Master log files.

For the complete list of flags for masters, see the Kudu Master Configuration Reference.

Configuring Tablet Servers

To see all available configuration options for the kudu- t ser ver executable, run it with the - - hel p option:

$ kudu-tserver --help

Table 4: Supported Configuration Flags for Kudu Tablet Servers

--fs_data_dirs string Comma-separated list of
directories where the Tablet
Server will place its data
blocks.

--fs_wal_dir string The directory where the
Tablet Server will place its
write-ahead logs. Can be the
same as one of the
directories listed in
--fs_data_dirs, but not
a sub-directory of a data
directory.

--log_dir string /tmp The directory to store Tablet
Server log files

--tserver_master_addrs string 127.0.0.1: 7051 Comma separated addresses
of the masters that the
tablet server should connect
to. The masters do not read
this flag.

--block_cache_capacity_mb | integer 512 Maximum amount of
memory allocated to the
Kudu Tablet Server’s block
cache.

--memory_limit_hard_bytes | integer 4294967296 Maximum amount of
memory a Tablet Server can
consume before it starts
rejecting all incoming writes.

For the complete list of flags for tablet servers, see the Kudu Tablet Server Configuration Reference.

50 | Apache Kudu User Guide

http://kudu.apache.org/docs/configuration_reference.html#kudu-master_stable
http://kudu.apache.org/docs/configuration_reference.html#kudu-tserver_stable

Apache Kudu Administration

This topic describes how to perform common administrative tasks and workflows with Apache Kudu.

Starting and Stopping Kudu Processes

Start Kudu services using the following commands:

sudo service kudu-naster start
sudo service kudu-tserver start

To stop Kudu services, use the following commands:

sudo service kudu-master stop
sudo service kudu-tserver stop

Configure the Kudu services to start automatically when the server starts, by adding them to the default runlevel.

sudo chkconfi g kudu-nmaster on # RHEL / Cent OS
sudo chkconfig kudu-tserver on # RHEL / Cent OS
sudo update-rc.d kudu-master defaults # Ubuntu

sudo update-rc.d kudu-tserver defaults # Ubuntu

Kudu Web Interfaces

Kudu tablet servers and masters expose useful operational information on a built-in web interface.

Kudu Master Web Interface

Kudu master processes serve their web interface on port 8051. The interface exposes several pages with information
about the state of the cluster.

e Alist of tablet servers, their host names, and the time of their last heartbeat.
e Alist of tables, including schema and tablet location information for each.

e SQL code which you can paste into Impala Shell to add an existing table to Impala’s list of known data sources.

Kudu Tablet Server Web Interface

Each tablet server serves a web interface on port 8050. The interface exposes information about each tablet hosted
on the server, its current state, and debugging information about maintenance background operations.

Common Web Interface Pages
Both Kudu masters and tablet servers expose the following information via their web interfaces:
e HTTP access to server logs.
e An/rpcz endpoint which lists currently running RPCs via JSON.
¢ Details about the memory usage of different components of the process.
e The current set of configuration flags.

e Currently running threads and their resource consumption.

¢ A JSON endpoint exposing metrics about the server.

e The version number of the daemon deployed on the cluster.

These interfaces are linked from the landing page of each daemon’s web Ul.

Kudu Metrics

Kudu daemons expose a large number of metrics. Some metrics are associated with an entire server process, whereas
others are associated with a particular tablet replica.
Listing available metrics

The full set of available metrics for a Kudu server can be dumped using a special command line flag:

$ kudu-tserver --dunmp_metrics_json
$ kudu-master --dunp_netrics_json

This will output a large JSON document. Each metric indicates its name, label, description, units, and type. Because
the output is JSON-formatted, this information can easily be parsed and fed into other tooling which collects metrics
from Kudu servers.

If you are using Cloudera Manager, see Cloudera Manager Metrics for Kudu on page 99 for the complete list of metrics
collected by Cloudera Manager for a Kudu service.

Collecting metrics via HTTP

Metrics can be collected from a server process via its HTTP interface by visiting / met ri cs. The output of this page is
JSON for easy parsing by monitoring services. This endpoint accepts several GET parameters in its query string:

e /nmetrics?metrics=<substringl>, <substring2>, ..- Limits the returned metrics to those which contain
at least one of the provided substrings. The substrings also match entity names, so this may be used to collect
metrics for a specific tablet.

e /netrics?incl ude_schema=1 - Includes metrics schema information such as unit, description, and label in the
JSON output. This information is typically omitted to save space.

e /netrics?conpact =1 - Eliminates unnecessary whitespace from the resulting JSON, which can decrease
bandwidth when fetching this page from a remote host.

e /nmetrics?include_raw_hi st ogranms=1 - Include the raw buckets and values for histogram metrics, enabling
accurate aggregation of percentile metrics over time and across hosts.

For example:

$ curl -s "http://exanpl e-ts: 8050/ netrics?i ncl ude_schema=1&netri cs=connecti ons_accept ed’

{

"type": "server",

"id": "kudu.tabl etserver",

"attributes": {},

"metrics": [
"nanme": "rpc_connections_accepted",
"l abel ": "RPC Connections Accepted",
"type": "counter",
"unit": "connections",
"description": "Number of inconming TCP connections nade to the RPC

server",

"val ue": 92

$ curl -s '"http://exanpl e-ts: 8050/ metrics?metri cs=l og_append_| at ency’

{
"type": "tablet",
"id": "cOebf 9f ef 1b847e2a83c7bd35¢c2056b1",
"attributes": {
"tabl e_nanme": "lineitent,
"partition": "hash buckets: (55), range: [(<start>), (<end>))",
"table_id": ""
oo
"metrics": [
{
"name": "l og_append_| atency",
"total _count": 7498,
"mn": 4,
"mean": 69. 3649,
"percentile_75": 29,
"percentile_95": 38,
"percentile_99": 45,
"percentile_99 9": 95,
"percentile_99 99": 167,
"max": 367244,
"total sunt: 520098
}
]
}

Collecting metrics to a log

Kudu can be configured to periodically dump all of its metrics to a local log file using the - - net ri cs_l og_i nterval _ns
flag. Set this flag to the interval at which metrics should be written to a log file.

The metrics log will be written to the same directory as the other Kudu log files, and with the same naming format.
After any metrics log file reaches 64MB uncompressed, the log will be rolled and the previous file will be gzip-compressed.

The log file generated has three space-separated fields:

e The first field is the word net ri cs.

¢ The second field is the current timestamp in microseconds since the Unix epoch.

e The third is the current value of all metrics on the server, using a compact JSON encoding. The encoding is the
same as the metrics fetched via HTTP described above.

o Important:

Although metrics logging automatically rolls and compresses previous log files, it does not remove
old ones. Since metrics logging can use significant amounts of disk space, consider setting up a system
utility to monitor space in the log directory and archive or delete old segments.

Common Kudu workflows

The following sections describe some common workflows for Kudu users:

Migrating to Multiple Kudu Masters

For high availability and to avoid a single point of failure, Kudu clusters should be created with multiple masters. Many
Kudu clusters were created with just a single master, either for simplicity or because Kudu multi-master support was
still experimental at the time. This workflow demonstrates how to migrate to a multi-master configuration.

o Important:

¢ This workflow is unsafe for adding new masters to an existing multi-master configuration. Do not
use it for that purpose.

e This workflow presumes you are familiar with Kudu configuration management, with or without
Cloudera Manager.

e All of the command line steps below should be executed as the Kudu UNIX user, typically kudu.

Prepare for the migration

1. Establish a maintenance window (one hour should be sufficient). During this time the Kudu cluster will be
unavailable.

2. Decide how many masters to use. The number of masters should be odd. Three or five node master configurations
are recommended; they can tolerate one or two failures respectively.

3. Perform the following preparatory steps for the existing master:

¢ Identify and record the directory where the master’s data lives. If you are using Kudu system packages, the
default valueis/ var/ | i b/ kudu/ mast er, but it may be customized using thefs_wal _dir and
fs_dat a_di r s configuration parameters. If you've set f s_dat a_di r s to some directories other than the
value of f s_wal _di r, it should be explicitly included in every command (in the following procedure) where
fs_wal _dir isalsoincluded.

¢ Identify and record the port the master is using for RPCs. The default port value is 7051, but it may have been
customized using the r pc_bi nd_addr esses configuration parameter.

¢ |dentify the master’s UUID. It can be fetched using the following command:
$ kudu fs dunp uuid --fs_wal _dir=<master_data_dir> 2>/dev/null

master_data_dir
The location of the existing master’s previously recorded data directory.

For example:

$ kudu fs dunp uuid --fs_wal _dir=/var/lib/kudu/ master 2>/dev/null
4aab798a69e94f ab8d77069edf f 28ce0

¢ (Optional) Configure a DNS alias for the master. The alias could be a DNS cname (if the machine already has
an A record in DNS), an A record (if the machine is only known by its IP address), or an alias in/ et ¢/ host s.
The alias should be an abstract representation of the master (e.g. mast er - 1).

o Important:

Without DNS aliases it is not possible to recover from permanent master failures, and as
such it is highly recommended.

4. Perform the following preparatory steps for each new master:

e Choose an unused machine in the cluster. The master generates very little load so it can be collocated with
other data services or load-generating processes, though not with another Kudu master from the same
configuration.

e Ensure Kudu is installed on the machine, either using system packages (in which case the kudu and
kudu- mast er packages should be installed), or some other means.

e Choose and record the directory where the master’s data will live.
e Choose and record the port the master should use for RPCs.

¢ (Optional) Configure a DNS alias for the master (e.g. mast er - 2, nast er - 3, etc).

Perform the migration

1. Stop all the Kudu processes in the entire cluster.

2. Format the data directory on each new master machine, and record the generated UUID. Use the following
commands:

$ kudu fs format --fs_wal _dir=<master_data_dir>
$ kudu fs dunp uuid --fs_wal _dir=<master_data_dir> 2>/ dev/null

master_data_dir
The new master’s previously recorded data directory.

For example:

$ kudu fs format --fs_wal _dir=/var/lib/kudu/ master
$ kudu fs dunp uuid --fs_wal _dir=/var/lib/kudu/ master 2>/dev/null
f 5624e05f 40649b79a757629a69d061e

3. If you are using Cloudera Manager, add the new Kudu master roles now, but do not start them.

¢ If using DNS aliases, override the empty value of the Mast er Addr ess parameter for each role (including
the existing master role) with that master’s alias.

¢ Add the port number (separated by a colon) if using a non-default RPC port value.

4. Rewrite the master’s Raft configuration with the following command, executed on the existing master:

$ kudu local _replica cnetarewite raft_config --fs_wal _dir=<naster_data_dir> <tablet _id>
<al | _masters>

master_data_dir

The existing master’s previously recorded data directory

tablet_id

This must be set to the string, 00000000000000000000000000000000.
all_masters

A space-separated list of masters, both new and existing. Each entry in the list must be a string of the form
<uui d>: <host name>: <port >.

uuid
The master’s previously recorded UUID.
hostname

The master’s previously recorded hostname or alias.

port
The master’s previously recorded RPC port number.

For example:

$ kudu local _replica cneta rewite_raft_config --fs_wal _dir=/var/lib/kudu/ naster
00000000000000000000000000000000 4aab798a69e94f ab8d77069edf f 28ce0: mast er - 1: 7051
f 5624e05f 40649b79a757629a69d061e: mast er - 2: 7051
988d8ac6530f 426cbel180be5ba52033d: mast er - 3: 7051

5. Modify the value of the mast er _addr esses configuration parameter for both existing master and new masters.
The new value must be a comma-separated list of all of the masters. Each entry is a string of the form,
<host nane>: <port >.

hostname
The master's previously recorded hostname or alias.
port

The master's previously recorded RPC port number.

6. Start the existing master.
7. Copy the master data to each new master with the following command, executed on each new master machine:

$ kudu local _replica copy fromrenote --fs_wal _dir=<master_data_dir> <tablet_id>
<exi sting_mast er >

master_data_dir

The new master's previously recorded data directory.

tablet_id

Must be set to the string, 00000000000000000000000000000000.

existing_master

RPC address of the existing master. It must be a string of the form <host nane>: <port >.
hostname

The existing master's previously recorded hostname or alias.

port

The existing master's previously recorded RPC port number.

Example

$ kudu local _replica copy_fromremte --fs_wal _dir=/var/lib/kudu/ master
00000000000000000000000000000000 naster-1: 7051

8. Start all the new masters.

o Important: If you are using Cloudera Manager, skip the next step.

9. Modify the value of the t ser ver _nast er _addr s configuration parameter for each tablet server. The new value
must be a comma-separated list of masters where each entry is a string of the form <host nane>: <port >

hostname

The master's previously recorded hostname or alias

port

The master's previously recorded RPC port number

10 Start all the tablet servers.
To verify that all masters are working properly, consider performing the following sanity checks:

¢ Using a browser, visit each master’s web Ul and navigate to the / mast er s page. All the masters should now be
listed there with one master in the LEADERrole and the others in the FOLLOAER role. The contents of / mast er s
on each master should be the same.

¢ RunaKudu system check (ksck) on the cluster using the kudu command line tool. For more details, see Monitoring
Cluster Health with ksck on page 59.

Recovering from a dead Kudu Master in a Multi-Master Deployment

Kudu multi-master deployments function normally in the event of a master loss. However, it is important to replace
the dead master; otherwise a second failure may lead to a loss of availability, depending on the number of available
masters. This workflow describes how to replace the dead master.

Due to KUDU-1620, it is not possible to perform this workflow without also restarting the live masters. As such, the
workflow requires a maintenance window, albeit a brief one as masters generally restart quickly.

o Important:
e Kudu does not yet support Raft configuration changes for masters. As such, it is only possible to
replace a master if the deployment was created with DNS aliases. See the previous multi-master
migration workflow for more details.

¢ The workflow presupposes at least basic familiarity with Kudu configuration management. If
using Cloudera Manager, the workflow also presupposes familiarity with it.

e All of the command line steps below should be executed as the Kudu UNIX user, typically kudu.

Prepare for the recovery

1. Ensure that the dead master is well and truly dead. Take whatever steps needed to prevent it from accidentally
restarting; this can be quite dangerous for the cluster post-recovery.

2. Choose one of the remaining live masters to serve as a basis for recovery. The rest of this workflow will refer to
this master as the "reference" master.

3. Choose an unused machine in the cluster where the new master will live. The master generates very little load so
it can be colocated with other data services or load-generating processes, though not with another Kudu master
from the same configuration. The rest of this workflow will refer to this master as the "replacement" master.

4. Perform the following preparatory steps for the replacement master:

e Ensure Kuduis installed on the machine, either via system packages (in which case the kudu and kudu- nast er
packages should be installed), or via some other means.

e Choose and record the directory where the master’s data will live.

5. Perform the following preparatory steps for each live master:

¢ |dentify and record the directory where the master’s data lives. If using Kudu system packages, the default
value is /var/lib/kudu/master, but it may be customized viathefs_wal _di r andfs_dat a_di r s configuration
parameter. Please note if you've set fs_data_dirs to some directories other than the value of fs_wal_dir, it
should be explicitly included in every command below where fs_wal_dir is also included.

https://issues.apache.org/jira/browse/KUDU-1620

¢ Identify and record the master’s UUID. It can be fetched using the following command:
$ kudu fs dunp uuid --fs_wal _dir=<master_data_dir> 2>/dev/null

master_data_dir
live master’s previously recorded data directory

Example

$ kudu fs dunp uuid --fs_wal _dir=/var/lib/kudu/ master 2>/dev/null
80a82c4h8a9f 4c819bab744927ad765¢c

6. Perform the following preparatory steps for the reference master:

¢ |dentify and record the directory where the master’s data lives. If using Kudu system packages, the default
valueis/var /i b/ kudu/ mast er, but it may be customized usingthefs_wal _dir andfs_data_dirs
configuration parameter. If you have set fs_dat a_di r s to some directories other than the value of
fs_wal _dir, itshould be explicitly included in every command below where f s_wal _di r is also included.

¢ Identify and record the UUIDs of every master in the cluster, using the following command:

$ kudu local _replica cneta print_replica_uuids --fs_wal _dir=<naster_data_dir> <tabl et_i d>
2>/ dev/ nul |

master_data_dir

The reference master’s previously recorded data directory.

tablet_id

Must be set to the string, 00000000000000000000000000000000.

Example

$ kudu local _replica crneta print_replica_uuids --fs_wal _dir=/var/lib/kudu/ master
00000000000000000000000000000000 2>/ dev/ nul |

80a82c4h8a9f 4c819bab744927ad765¢c 2a73eeee5d47413981d9alc637ccel70

1c3f 3094256347528d02ec107466aef 3

7. Using the two previously-recorded lists of UUIDs (one for all live masters and one for all masters), determine and
record (by process of elimination) the UUID of the dead master.

Perform the recovery

1. Format the data directory on the replacement master machine using the previously recorded UUID of the dead
master. Use the following command sequence:

$ kudu fs format --fs_wal _dir=<master_data_dir> --uui d=<uui d>

master_data_dir

The replacement master’s previously recorded data directory.
uuid

The dead master’s previously recorded UUID.

For example:

$ kudu fs format --fs_wal _dir=/var/lib/kudu/ master --uui d=80a82c4b8a9f 4c819bab744927ad765c

2. Copy the master data to the replacement master with the following command:

$ kudu local _replica copy_fromrenonte --fs_wal _dir=<naster_data_dir> <tablet_id>
<reference_mast er>

master_data_dir

The replacement master’s previously recorded data directory.

tablet_id

Must be set to the string, 00000000000000000000000000000000.

reference_master

The RPC address of the reference master. It must be a string of the form <host name>: <port >.
hostname

The reference master’s previously recorded hostname or alias.

port

The reference master’s previously recorded RPC port number.

For example:

$ kudu local _replica copy_fromremte --fs_wal _dir=/var/lib/kudu/ master
00000000000000000000000000000000 naster-2: 7051

3. If you are using Cloudera Manager, add the replacement Kudu master role now, but do not start it.

e Override the empty value of the Mast er Addr ess parameter for the new role with the replacement master’s
alias.

¢ If you are using a non-default RPC port, add the port number (separated by a colon) as well.

4. Reconfigure the DNS alias for the dead master to point to the replacement master.
5. Start the replacement master.

6. Restart the existing live masters. This results in a brief availability outage, but it should last only as long as it takes
for the masters to come back up.

To verify that all masters are working properly, consider performing the following sanity checks:

¢ Using a browser, visit each master’s web Ul and navigate to the / mast er s page. All the masters should now be
listed there with one master in the LEADERrole and the others in the FOLLOAER role. The contents of / mast er s
on each master should be the same.

¢ RunaKudu system check (ksck) on the cluster using the kudu command line tool. For more details, see Monitoring
Cluster Health with ksck on page 59.

Monitoring Cluster Health with ksck

The kudu CLI includes a tool called ksck which can be used for monitoring cluster health and data integrity. ksck will
identify issues such as under-replicated tablets, unreachable tablet servers, or tablets without a leader.

ksck can be run from the command line, and requires you to specify the complete list of Kudu master addresses:
kudu cluster ksck master-01. exanpl e. com nast er-02. exanpl e. com nmast er - 03. exanpl e. com

To see the full list of the options available with ksck, use the - - hel p flag.

If the cluster is healthy, ksck will print a success message, and return a zero (success) exit status.

Connected to the Master
Fetched info fromall 1 Tablet Servers
Tabl e I ntegrationTest Bi gLi nkedLi st is HEALTHY (1 tablet(s) checked)

The nmetadata for 1 table(s) is HEALTHY
(0 ¢

If the cluster is unhealthy, for instance if a tablet server process has stopped, ksck will report the issue(s) and return
a non-zero exit status:

Connected to the Master

WARNI NG Unabl e to connect to Tabl et Server 8a0b66a756014def 82760a09946d1f ce

(tserver-01. exanpl e. com 7050): Network error: could not send Ping RPCto server: dient
connection negotiation failed: client connection to 192.168.0.2: 7050: connect: Connection
refused (error 61)

WARNI NG Fetched info fromO Tablet Servers, 1 weren't reachable

Tabl et ¢ce3c2d27010d4253949a989b9d9bf 43c of table 'Integrati onTestBi gLi nkedLi st'

is unavailable: 1 replica(s) not RUNNI NG
8a0b66a756014def 82760a09946d1f ce (tserver-01. exanpl e.com 7050): TS unavai | abl e [LEADER]

Tabl e I ntegrationTestBi gLi nkedLi st has 1 unavail abl e tablet(s)

WARNING 1 out of 1 table(s) are not in a healthy state

error fetching info fromtablet servers: Network error: Not all Tablet Servers are
reachabl e
tabl e consi stency check error: Corruption: 1 table(s) are bad

FAI LED
Runtime error: ksck discovered errors

To verify data integrity, the optional - - checksum scan flag can be set, which will ensure that the cluster has consistent
data by scanning each tablet replica and comparing results. The - - t abl es and - - t abl et s flags can be used to limit
the scope of the checksum scan to specific tables or tablets, respectively.

For example, use the following command to check the integrity of data in the | nt egr ati onTest Bi gLi nkedLi st
table:

kudu cluster ksck --checksum scan --tables |IntegrationTestBigLi nkedLi st
mast er - 01. exanpl e. com nmast er - 02. exanpl e. com nmast er - 03. exanpl e. com

Recovering from Disk Failure

Kudu tablet servers are not resistant to disk failure. When a disk containing a data directory or the write-ahead log
(WAL) dies, the entire tablet server must be rebuilt. Kudu will automatically re-replicate tablets on other servers after
a tablet server fails, but manual intervention is needed in order to restore the failed tablet server to a running state.

The first step to restoring a tablet server after a disk failure is to replace the failed disk, or remove the failed disk from
the data-directory and/or WAL configuration. Next, the existing data directories and WAL directory must be removed.
For example, if the tablet server is configured with - - fs_wal _di r =/ dat a/ 0/ kudu- t ser ver - wal and
--fs_data_dirs=/data/ 1/ kudu-tserver,/datal/ 2/ kudu-t server, the following commands will remove the
existing data directories and WAL directory:

rm-rf /data/ 0/ kudu-tserver-wal /data/l/kudu-tserver /data/?2/kudu-tserver

After the WAL and data directories are removed, the tablet server process can be started. When Kudu is installed using
system packages, ser vi ce is typically used as follows:

sudo service kudu-tserver start

Once the tablet server is running again, new tablet replicas will be created on it as necessary.

Developing Applications With Apache Kudu

Apache Kudu provides C++ and Java client APls, as well as reference examples to illustrate their use. A Python APl is
included, but it is currently considered experimental, unstable, and is subject to change at any time.

Warning: Use of server-side or private interfaces is not supported, and interfaces which are not part
A of public APIs have no stability guarantees.

Viewing the APl Documentation

C++ APl Documentation

The documentation for the C++ client APIs is included in the header files in / usr /i ncl ude/ kudu/ if you installed
Kudu using packages or subdirectories of sr ¢/ kudu/ cl i ent/ if you built Kudu from source. If you installed Kudu
using parcels, no headers are included in your installation. and you will need to build Kudu from source in order to
have access to the headers and shared libraries.

The following command is a naive approach to finding relevant header files. Use of any APIs other than the client APIs
is unsupported.

$ find /usr/include/kudu -type f -nane *.h

Java APl Documentation

View the Java APl documentation online. Alternatively, after building the Java client, Java APl documentation is available
injaval/ kudu-cl i ent/target/api docs/index. htm .

Building the Java Client

Requirements

e JDK7
e Apache Maven 3.x

e protoc 2.6 ornewerinstalled in your path, or built from thet hi r dpar t y/ directory. Run the following commands
to build pr ot oc from the third-party dependencies:

t
t

i rdparty/ downl oad-thirdparty. sh
irdparty/build-thirdparty.sh protobuf

o g

To build the Java client, clone the Kudu Git repository, change to the j ava directory, and issue the following command:

$ nmvn install -DskipTests

For more information about building the Java API, as well as Eclipse integration, see j ava/ READVE. nd.

Kudu Example Applications

Several example applications are provided in the kudu-examples Github repository. Each example includes a READVE
that shows how to compile and run it. These examples illustrate correct usage of the Kudu APls, as well as how to set
up a virtual machine to run Kudu. The following list includes a few of the examples that are available today.

http://kudu.apache.org/apidocs/index.html
https://github.com/cloudera/kudu-examples

java-example
A simple Java application which connects to a Kudu instance, creates a table, writes data to it, then drops the table.
java/collectl

A simple Java application which listens on a TCP socket for time series data corresponding to the Collectl wire
protocol. The commonly-available col | ect | tool can be used to send example data to the server.

javalinsert-| oadgen
A Java application that generates random insert load.
pyt hon/ dst at - kudu

An example program that shows how to use the Kudu Python API to load data into a new / existing Kudu table
generated by an external program, dst at in this case.

pyt hon/ gr aphi t e- kudu
An experimental plugin for using graphite-web with Kudu as a backend.

demo-vm-setup

Scripts to download and run a VirtualBox virtual machine with Kudu already installed. For more information see
the Kudu Quickstart documentation.

These examples should serve as helpful starting points for your own Kudu applications and integrations.

Maven Artifacts

The following Maven <dependency> element is valid for the Apache Kudu GA release:

<dependency>
<groupl d>or g. apache. kudu</ gr oupl d>
<artifactld>kudu-client</artifactld>
<version>1. 1. 0</versi on>

</ dependency>

Convenience binary artifacts for the Java client and various Java integrations (e.g. Spark, Flume) are also now available
via the ASF Maven repository and the Central Maven repository.

Kudu Python Client

The Kudu Python client provides a Python friendly interface to the C++ client API. The sample below demonstrates the
use of part of the Python client.

i mport kudu
fromkudu. client inport Partitioning
fromdatetine inport datetine

Connect to Kudu master server
client = kudu.connect (host="kudu. master', port=7051)

Define a schema for a new table

bui | der = kudu. schema_bui |l der ()

bui | der. add_col um(' key').type(kudu.int64).null abl e(Fal se). primary_key()
bui | der. add_col um('ts_val', type_=kudu. uni xtime_m cros, null abl e=Fal se,
conpressi on='1z4'

schema = buil der. buil d()

Define partitioning schema
partitioning = Partitioning().add_hash_partitions(colum_nanes=['key'], num buckets=3)

Create new table
client.create_tabl e(' python-exanple', schema, partitioning)

Open a table

http://kudu.apache.org/docs/quickstart.html
http://repository.apache.org/
https://mvnrepository.com/artifact/org.apache.kudu

table = client.tabl e(’ python-exanple')

Create a new session so that we can apply wite operations
session = client.new session()

Insert a row
op = table.new insert({"key': 1, 'ts_val': datetime.utcnow)})
sessi on. appl y(op)

Upsert a row
op = table.new upsert({'key': 2, '"ts_val': "2016-01-01T00: 00: 00. 000000"})
sessi on. appl y(op)

Updating a row
op = table.new update({'key': 1, '"ts_val': ("2017-01-01", "%-%mn %")})
sessi on. appl y(op)

Delete a row
op = table.new del ete({" key': 2})
sessi on. appl y(op)

Flush wite operations, if failures occur, capture print them
try:
session. fl ush()
except kudu. KuduBadSt atus as e:
print(session.get_pending_errors())

Create a scanner and add a predicate
scanner = tabl e.scanner()
scanner. add_predicate(table['ts_val'] == datetine(2017, 1, 1))

Open Scanner and read all tuples

Note: This doesn't scale for |arge scans
result = scanner.open().read_all _tuples()

Example Apache Impala Commands With Kudu

See Using Apache Impala (incubating) with Kudu on page 65 for guidance on installing and using Impala with Kudu,
including several i npal a- shel | examples.

Kudu Integration with Spark

Kudu integrates with Spark through the Data Source API as of version 1.0.0. Include the kudu- spar k dependency
using the - - packages option:

Spark 1.x - Use the kudu- spar k_2. 10 artifact if you are using Spark 1.x with Scala 2.10:
spark-shel | --packages org.apache. kudu: kudu-spark_2.10:1.1.0

Spark 2.x - Use the kudu- spar k2_2. 11 artifact if you are using Spark 2.x with Scala 2.11:
spark2-shel | --packages org.apache. kudu: kudu-spark2_2.11:1.3.1

Then import kudu-spark and create a dataframe as demonstrated in the following sample code. In the following
example, replace <kudu. mast er > with the actual hostname of the host running a Kudu master service, and
<kudu_table> with the name of a pre-existing table in Kudu.

i mport org. apache. kudu. spar k. kudu. _

/! Read a table from Kudu

val df = spark.sqgl Context.read. opti ons(Map("kudu. master" ->
"<kudu. mast er >;: 7051", "kudu. t abl " -> "<kudu_t abl e>")). kudu

/1 Query <kudu_tabl e> using the Spark API...

df .select("id").filter("id" >= 5).show)

/1 ...or register a tenporary table and use SQL
df . regi st er TenpTabl e(" <kudu_t abl e>")
val filteredDF = sql Context.sql ("select id from <kudu_table> where id >= 5").show)

/] Use KuduContext to create, delete, or wite to Kudu tables
val kuduCont ext = new KuduCont ext (" <kudu. mast er>: 7051")

/!l Create a new Kudu table froma datafrane schenma

/1 NB:. No rows fromthe datafrane are inserted into the table
kuduCont ext . creat eTabl e("test _table", df.schemn, Seq("key"), new
Creat eTabl eOpti ons() . set NunRepl i cas(1))

/1l Insert data
kuduCont ext . i nsert Rows(df, "test_table")

/| Delete data
kuduCont ext . del et eRows(filteredDF, "test_table")

/1 Upsert data
kuduCont ext . upsert Rows(df, "test_table")

/1 Update data
val alteredDF = df.select("id", $"count" + 1)
kuduCont ext . updat eRows(filteredRows, "test_table"

/| Data can also be inserted into the Kudu table using the data source, though the

met hods on KuduContext are preferred

/1 NB: The default is to upsert rows; to performstandard i nserts instead, set operation
= insert in the options map

/1 NB: Only node Append is supported

df .write. options(Map("kudu. master"-> "<kudu. master>: 7051", "kudu.table"->

"test _table")).node("append"). kudu

/1 Check for the existence of a Kudu table
kuduCont ext . t abl eExi st s("anot her _t abl e")

/1 Delete a Kudu table
kuduCont ext . del et eTabl e(" unwant ed_t abl e")

Spark Integration Known Issues and Limitations

e Kudu tables with a name containing upper case or non-ASCII characters must be assigned an alternate name when
registered as a temporary table.

¢ Kudu tables with a column name containing upper case or non-ASCII characters must not be used with SparkSQL.
Columns can be renamed in Kudu to work around this issue.

e <>and ORpredicates are not pushed to Kudu, and instead will be evaluated by the Spark task. Only LI KE predicates
with a suffix wildcard are pushed to Kudu. This means LI KE " FOO% will be pushed, but LI KE " FOOYBAR' won't.

e Kudu does not support all the types supported by Spark SQL. For example, Dat e, Deci nal , and complex types
are not supported on Kudu.

e Kudu tables can only be registered as temporary tables in SparkSQL.

e Kudu tables cannot be queried using HiveContext.

Integration with MapReduce, YARN, and Other Frameworks

Kudu was designed to integrate with MapReduce, YARN, Spark, and other frameworks in the Hadoop ecosystem. See
RowCounter.java and ImportCsv.java for examples which you can model your own integrations on.

https://github.com/cloudera/kudu/blob/master/java/kudu-client-tools/src/main/java/org/apache/kudu/mapreduce/tools/RowCounter.java
https://github.com/cloudera/kudu/blob/master/java/kudu-client-tools/src/main/java/org/apache/kudu/mapreduce/tools/ImportCsv.java

Using Apache Impala (incubating) with Kudu

Apache Kudu has tight integration with Apache Impala (incubating), allowing you to use Impala to insert, query, update,
and delete data from Kudu tablets using Impala's SQL syntax, as an alternative to using the Kudu APIs to build a custom
Kudu application. In addition, you can use JDBC or ODBC to connect existing or new applications written in any language,
framework, or business intelligence tool to your Kudu data, using Impala as the broker.

Prerequisites

¢ To use Impala to query Kudu data as described in this topic, you will require Cloudera Manager 5.10.x and CDH
5.10.x or later.

e The syntax described in this topic is specific to Impala 2.8 (ships with CDH 5.10) and above, and will not work on
previous versions. If you are using an earlier version of Impala (including the | MPALA_KUDU releases previously
available), upgrade to Impala 2.8.

Note that this topic does not describe Impala installation or upgrade procedures. Refer to the Impala documentation
to make sure you are able to run queries against Impala tables on HDFS before proceeding.

¢ Lower versions of CDH and Cloudera Manager used an experimental fork of Impala which is referred to as
| MPALA_KUDU. If you have previously installed the | MPALA_KUDU service, make sure you remove it from your
cluster before you proceed. Install Kudu 1.2.x (or later) using either Cloudera Manager or the command-line.

Impala Database Containment Model

Every Impala table is contained within a namespace called a database. The default database is called def aul t, and
you may create and drop additional databases as desired. To create the database, use a CREATE DATABASE statement.
To use the database for further Impala operations such as CREATE TABLE, use the USE statement. For example, to
create a table in a database called impala_kudu, use the following statements:

CREATE DATABASE i npal a_kudu;
USE i npal a_kudu;
CREATE TABLE ny_first_table (

Theny_first_tabl e tableis created within the i npal a_kudu database. To refer to this database in the future,
without using a specific USE statement, you can refer to the table using <dat abase>: <t abl e> syntax. For example,
to specify themy_fi rst_t abl e table in database i npal a_kudu, as opposed to any other table with the same name
in another database, refer to the table as i npal a_kudu: my_fi rst _t abl e. This also applies to | NSERT, UPDATE,
DELETE, and DROP statements.

Warning: Currently, Kudu does not encode the Impala database into the table name in any way. This
means that even though you can create Kudu tables within Impala databases, the actual Kudu tables
need to be unique within Kudu. For example, if you create dat abase_1: ny_kudu_t abl e and

dat abase_2: ny_kudu_t abl e, you will have a naming collision within Kudu, even though this would
not cause a problem in Impala.

Internal and External Impala Tables

When creating a new Kudu table using Impala, you can create the table as an internal table or an external table.

http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html

Internal

An internal table (created by CREATE TABLE) is managed by Impala, and can be dropped by Impala. When you
create a new table using Impala, it is generally a internal table. When such a table is created in Impala, the
corresponding Kudu table will be named nmy _dat abase: : t abl e_nane.

External

An external table (created by CREATE EXTERNAL TABLE) is not managed by Impala, and dropping such a table
does not drop the table from its source location (here, Kudu). Instead, it only removes the mapping between Impala
and Kudu. This is the mode used in the syntax provided by Kudu for mapping an existing table to Impala.

See the Impala documentation for more information about internal and external tables.

Using Impala To Query Kudu Tables

Neither Kudu nor Impala need special configuration in order for you to use the Impala Shell or the Impala API to insert,
update, delete, or query Kudu data using Impala. However, you do need to create a mapping between the Impala and
Kudu tables. Kudu provides the Impala query to map to an existing Kudu table in the web UL.

e Make sure you are using the i npal a- shel | binary provided by the default CDH Impala binary. The following
example shows how you can verify this using the al t er nat i ves command on a RHEL 6 host. Do not copy and
paste the al t ernati ves --set command directly, because the file names are likely to differ.

$ sudo alternatives --display inpal a-shell

i mpal a-shell - status is auto.
link currently points to
/ opt/ cl ouder a/ par cel s/ CDH 5. 10. 0- 1. cdh5. 10. 0. p0. 25/ bi n/ i npal a- shel |
/ opt/ cl ouder a/ par cel s/ CDH- 5. 10. 0- 1. cdh5. 10. 0. p0. 25/ bi n/ i npal a-shell - priority 10
Current “best' version is
/ opt/ cl ouder a/ par cel s/ CDH 5. 10. 0- 1. cdh5. 10. 0. p0. 25/ bi n/i npal a- shel | .

¢ Although not necessary, it is recommended that you configure Impala with the locations of the Kudu Masters
using the - - kudu_nmast er _host s=<nmast er 1>[: port] flag. If this flag is not set, you will need to manually
provide this configuration each time you create a table by specifying the kudu_nast er _addr esses property
inside a TBLPROPERTI ES clause. If you are using Cloudera Manager, no such configuration is needed. The Impala
service will automatically recognize the Kudu Master hosts.

The rest of this guide assumes that this configuration has been set.

e Start Impala Shell using the i npal a- shel | command. By default, i mpal a- shel | attempts to connect to the
Impala daemon on | ocal host on port 21000. To connect to a different host, use the -i <host : port > option.

To automatically connect to a specific Impala database, use the - d <dat abase> option. For instance, if all your
Kudu tables are in Impala in the database i npal a_kudu, use -d i npal a_kudu to use this database.

¢ To quit the Impala Shell, use the following command: qui t ;

Querying an Existing Kudu Table from Impala

Tables created through the Kudu API or other integrations such as Apache Spark are not automatically visible in Impala.
To query them, you must first create an external table within Impala to map the Kudu table into an Impala database:

CREATE EXTERNAL TABLE ny_mappi ng_t abl e
STORED AS KUDU

TBLPROPERTI ES (

" kudu. t abl e_name' = 'ny_kudu_t abl €'

)i

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_tables.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_kudu_service.html#impala_dependency

Creating a New Kudu Table From Impala

Creating a new table in Kudu from Impala is similar to mapping an existing Kudu table to an Impala table, except that
you need to specify the schema and partitioning information yourself. Use the following example as a guideline. Impala
first creates the table, then creates the mapping.

In the CREATE TABLE statement, the columns that comprise the primary key must be listed first. Additionally, primary
key columns are implicitly considered NOT NULL.

When creating a new table in Kudu, you must define a partition schema to pre-split your table. The best partition
schema to use depends upon the structure of your data and your data access patterns. The goal is to maximize parallelism
and use all your tablet servers evenly. For more information on partition schemas, see Partitioning Tables on page 67.

The following CREATE TABLE example distributes the table into 16 partitions by hashing the i d column, for simplicity.

CREATE TABLE ny_first_table

id BIGNT,
name STRI NG
PRI MARY KEY(i d)

)
PARTI TI ON BY HASH PARTI TI ONS 16
STORED AS KUDY,

CREATE TABLE AS SELECT

You can create a table by querying any other table or tables in Impala, using a CREATE TABLE ... AS SELECT
statement. The following example imports all rows from an existing table, ol d_t abl e, into a new Kudu table,

new_t abl e. The columns in new_t abl e will have the same names and types as the columns in ol d_t abl e, but you
will need to additionally specify the primary key and partitioning schema.

CREATE TABLE new_t abl e

PRI MARY KEY (ts, nane)

PARTI TI ON BY HASH(narme) PARTI TI ONS 8
STORED AS KUDU

AS SELECT ts, nane, value FROM ol d_t abl e;

You can refine the SELECT statement to only match the rows and columns you want to be inserted into the new table.
You can also rename the columns by using syntax like SELECT nanme as new_col _narne.

Partitioning Tables

Tables are partitioned into tablets according to a partition schema on the primary key columns. Each tablet is served
by at least one tablet server. Ideally, a table should be split into tablets that are distributed across a number of tablet
servers to maximize parallel operations. The details of the partitioning schema you use will depend entirely on the
type of data you store and how you access it.

Kudu currently has no mechanism for splitting or merging tablets after the table has been created. Until this feature
has been implemented, you must provide a partition schema for your table when you create it. When designing your
tables, consider using primary keys that will allow you to partition your table into tablets which grow at similar rates

You can partition your table using Impala's PARTI TI ON BY clause, which supports distribution by RANGE or HASH. The
partition scheme can contain zero or more HASH definitions, followed by an optional RANGE definition. The RANGE
definition can refer to one or more primary key columns. Examples of basic and advanced partitioning are shown
below.

Monotonically Increasing Values - If you partition by range on a column whose values are monotonically increasing,
the last tablet will grow much larger than the others. Additionally, all data being inserted will be written to a single
tablet at a time, limiting the scalability of data ingest. In that case, consider distributing by HASH instead of, or in
addition to, RANGE.

E,i Note: Impala keywords, such as gr oup, are enclosed by back-tick characters when they are used as
identifiers, rather than as keywords.

Basic Partitioning
PARTITION BY RANGE

You can specify range partitions for one or more primary key columns. Range partitioning in Kudu allows splitting a
table based based on specific values or ranges of values of the chosen partition keys. This allows you to balance
parallelism in writes with scan efficiency.

For instance, if you have a table that has the columns st at e, nanme, and pur chase_count , and you partition the table
by st at e, it will create 50 tablets, one for each US state.

CREATE TABLE customers (
state STRI NG
name STRI NG
purchase_count int,
PRI MARY KEY (state, name)

)
PARTI TI ON BY RANGE (state)
(

PARTI TI ON VALUE = "al ',

PARTI TI ON VALUE = ' ak' |
PARTI TI ON VALUE = 'ar’ .
PARTI TI ON VALUE = 'w',
PARTI TI ON VALUE = ' wy'

)
STORED AS KUDU,

PARTITION BY HASH

Instead of distributing by an explicit range, or in combination with range distribution, you can distribute into a specific
number of partitions by hash. You specify the primary key columns you want to partition by, and the number of
partitions you want to use. Rows are distributed by hashing the specified key columns. Assuming that the values being
hashed do not themselves exhibit significant skew, this will serve to distribute the data evenly across all partitions.

You can specify multiple definitions, and you can specify definitions which use compound primary keys. However, one
column cannot be mentioned in multiple hash definitions. Consider two columns, a and b:

e HASH(a), HASH(b) -- will succeed
e HASH(a, b) -- will succeed
e HASH(a), HASH(a, b) -- will fail

E,’ Note: PARTI TI ON BY HASHwith no column specified is a shortcut to create the desired number of
partitions by hashing all primary key columns.

Hash partitioning is a reasonable approach if primary key values are evenly distributed in their domain and no data
skew is apparent, such as timestamps or serial IDs.

The following example creates 16 tablets by hashing the i d column. A maximum of 16 tablets can be written to in
parallel. In this example, a query for a range of sku values is likely to need to read from all 16 tablets, so this may not
be the optimum schema for this table. See Advanced Partitioning on page 69 for an extended example.

CREATE TABLE cust _behavi or (
id Bl G NT,
sku STRI NG
sal ary STRI NG
edu_l evel | NT,
user gender STRI NG

‘group’ STRING

city STRING

post code STRI NG

| ast _purchase_price FLOAT,
| ast _pur chase_date Bl G NT,
category STRI NG

rating | NT,

fulfilled_date BI G NT,

PRI MARY KEY (id, sku)

)
PARTI TI ON BY HASH PARTI TI ONS 16
STORED AS KUDY,

Advanced Partitioning

You can combine HASHand RANGE partitioning to create more complex partition schemas. You can also specify zero
or more HASH definitions, followed by zero or one RANGE definitions. Each schema definition can encompass one or
more columns. While enumerating every possible distribution schema is out of the scope of this topic, the following
examples illustrate some of the possibilities.

PARTITION BY HASH and RANGE

Consider the basic PARTI TI ON BY HASHexample above. If you often query for a range of sku values, you can optimize
the example by combining hash partitioning with range partitioning.

The following example still creates 16 tablets, by first hashing the id column into 4 partitions, and then applying range
partitioning to split each partition into four tablets, based upon the value of the sku string. At least four tablets (and
possibly up to 16) can be written to in parallel, and when you query for a contiguous range of sku values, there's a
good chance you only need to read a quarter of the tablets to fulfill the query.

By default, the entire primary key (i d, sku) will be hashed when you use PARTI TI ON BY HASH. To hash on only
part of the primary key, and use a range partition on the rest, use the syntax demonstrated below.

CREATE TABLE cust _behavi or (
id Bl G NT,
sku STRI NG,
sal ary STRI NG
edu_l evel | NT,
user gender STRI NG
“group’ STRING,
city STRI NG
post code STRI NG,
| ast _purchase_price FLOAT,
| ast _purchase_date Bl G NT,
category STRI NG
rating | NT,
fulfilled date BI G NT,
PRI MARY KEY (id, sku)

)

PARTI TI ON BY HASH (i d) PARTITIONS 4,
RANGE (sku)

(

PARTI TI ON VALUES < 'g',
PARTITION 'g' <= VALUES < 'o0',
PARTITION '0o' <= VALUES < 'u',
PARTI TION 'u' <= VALUES

)
STORED AS KUDU,

Multiple PARTITION BY HASH Definitions

Once again expanding on the example above, let's assume that the pattern of incoming queries will be unpredictable,
but you still want to ensure that writes are spread across a large number of tablets. You can achieve maximum
distribution across the entire primary key by hashing on both primary key columns.

CREATE TABLE cust _behavi or (
id Bl G NT,

sku STRI NG

sal ary STRI NG

edu_| evel | NT,

user gender STRI NG

“group’ STRING

city STRING

post code STRI NG

| ast _purchase_price FLOAT,
| ast _purchase_date Bl G NT,
category STRI NG

rating | NT,

fulfilled_date Bl G NT,

PRI MARY KEY (id, sku)

)

PARTI TI ON BY HASH (id) PARTITIONS 4,
HASH (sku) PARTI TI ONS 4

STORED AS KUDU;

The example creates 16 partitions. You could also use HASH (i d, sku) PARTI TI ONS 16. However, a scan for sku
values would almost always impact all 16 partitions, rather than possibly being limited to 4.

Non-Covering Range Partitions

Kudu 1.x (and higher) supports the use of non-covering range partitions, which can be used to address the following
scenarios:

¢ Inthe case of time-series data or other schemas which need to account for constantly-increasing primary keys,
tablets serving old data will be relatively fixed in size, while tablets receiving new data will grow without bounds.

¢ In cases where you want to partition data based on its category, such as sales region or product type, without
non-covering range partitions you must know all of the partitions ahead of time or manually recreate your table
if partitions need to be added or removed, such as the introduction or elimination of a product type.

E’; Note: Non-covering range partitions have some caveats. Be sure to read the
link:/docs/schema_design.html [Schema Design guide].

The following example creates a tablet per year (5 tablets total), for storing log data. The table only accepts data from
2012 to 2016. Keys outside of these ranges will be rejected.

CREATE TABLE sal es_by_year (
year |INT, sale_id INT, anpunt | NT,
PRI MARY KEY (sale_id, year)

)
PARTI TI ON BY RANGE (year) (

PARTI TI ON VALUE = 2012,
PARTI TI ON VALUE = 2013,
PARTI TI ON VALUE = 2014,
PARTI TI ON VALUE = 2015,
PARTI TI ON VALUE = 2016

)

STORED AS KUDUY,

When records start coming in for 2017, they will be rejected. At that point, the 2017 range should be added as follows:
ALTER TABLE sal es_by_year ADD RANGE PARTI TI ON VALUE = 2017;

In use cases where a rolling window of data retention is required, range partitions may also be dropped. For example,
if data from 2012 should no longer be retained, it may be deleted in bulk:

ALTER TABLE sal es_by_year DROP RANGE PARTI TI ON VALUE = 2012;

Note that just like dropping a table, this irrecoverably deletes all data stored in the dropped partition.

Partitioning Guidelines

e For large tables, such as fact tables, aim for as many tablets as you have cores in the cluster.
e For small tables, such as dimension tables, aim for a large enough number of tablets that each tablet is at least 1
GB in size.

In general, be mindful the number of tablets limits the parallelism of reads, in the current implementation. Increasing
the number of tablets significantly beyond the number of cores is likely to have diminishing returns.

Optimizing Performance for Evaluating SQL Predicates

If the WHERE clause of your query includes comparisons with the operators =, <=, <, >, >=, BETVEEN, or I N, Kudu
evaluates the condition directly and only returns the relevant results. This provides optimum performance, because
Kudu only returns the relevant results to Impala.

For predicates such as! =, LI KE, or any other predicate type supported by Impala, Kudu does not evaluate the predicates
directly. Instead, it returns all results to Impala and relies on Impala to evaluate the remaining predicates and filter
the results accordingly. This may cause differences in performance, depending on the delta of the result set before
and after evaluating the WHERE clause. In some cases, creating and periodically updating materialized views may be
the right solution to work around these inefficiencies.

Inserting a Row

The syntax for inserting one or more rows using Impala is shown below.

I NSERT | NTO nmy_first_table VALUES (99, "sarah");
I NSERT I NTO nmy_first_table VALUES (1, "john"), (2, "jane"), (3, "jint);

The primary key must not be null.

Inserting In Bulk

When inserting in bulk, there are at least three common choices. Each may have advantages and disadvantages,
depending on your data and circumstances.
Multiple Single INSERT statements

This approach has the advantage of being easy to understand and implement. This approach is likely to be inefficient
because Impala has a high query start-up cost compared to Kudu's insertion performance. This will lead to relatively
high latency and poor throughput.

Single INSERT statement with multiple VALUES subclauses
If you include more than 1024 VALUES statements, Impala batches them into groups of 1024 (or the value of
bat ch_si ze) before sending the requests to Kudu. This approach may perform slightly better than multiple
sequential | NSERT statements by amortizing the query start-up penalties on the Impala side. To set the batch size
for the current Impala Shell session, use the following syntax:

set batch_si ze=10000;

E,I Note: Increasing the Impala batch size causes Impala to use more memory. You should verify the
impact on your cluster and tune accordingly.

Batch Insert
The approach that usually performs best, from the standpoint of both Impala and Kudu, is usually to import the
data using a SELECT FROMsubclause in Impala.

1. If your data is not already in Impala, one strategy is to import it from a text file, such as a TSV or CSV file.
2. Create the Kudu table, being mindful that the columns designated as primary keys cannot have null values.

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_txtfile.html

3. Insertvalues into the Kudu table by querying the table containing the original data, as in the following example:

I NSERT | NTO nmy_kudu_t abl e
SELECT * FROM | egacy_data_i nport _t abl e;

Ingest using the C++ or Java API
In many cases, the appropriate ingest path is to use the C++ or Java API to insert directly into Kudu tables. Unlike

other Impala tables, data inserted into Kudu tables using the APl becomes available for query in Impala without
the need for any | NVALI DATE METADATA statements or other statements needed for other Impala storage types.

INSERT and Primary Key Uniqueness Violations

In many relational databases, if you try to insert a row that has already been inserted, the insertion will fail because
the primary key will be duplicated (see Failures During INSERT, UPDATE, UPSERT, and DELETE Operations on page 74).
Impala, however, does not fail the query. Instead, it will generate a warning and continue to execute the remainder
of the insert statement.

If you meant to replace existing rows from the table, use the UPSERT statement instead.

I NSERT I NTO nmy_first_table VALUES (99, "sarah");
UPSERT | NTO nmy_first_table VALUES (99, "zoe");

The current value of the row is now zoe.

Updating a Row

The syntax for updating one or more rows using Impala is shown below.
UPDATE ny_first_table SET nane="bob" where id = 3;

You cannot change or null the primary key value.

o Important: The UPDATE statement only works in Impala when the underlying data source is Kudu.

Updating In Bulk
You can update in bulk using the same approaches outlined in Inserting In Bulk on page 71.

Upserting a Row

The UPSERT command acts as a combination of the | NSERT and UPDATE statements. For each row processed by the
UPSERT statement:

e If another row already exists with the same set of primary key values, the other columns are updated to match
the values from the row being 'UPSERTed".

e Ifthereis no row with the same set of primary key values, the row is created, the same as if the | NSERT statement
was used.

UPSERT Example

The following example demonstrates how the UPSERT statement works. We start by creating two tables, f ool and
f 002.

CREATE TABLE fool (
id INT PRI MARY KEY,
col 1 STRI NG
col 2 STRI NG

)

PARTI TI ON BY HASH(i d) PARTI TIONS 3
STORED AS KUDY,

CREATE TABLE foo02 (
id | NT PRI MARY KEY,
col 1 STRI NG
col 2 STRI NG

)
PARTI TI ON BY HASH(i d) PARTI TIONS 3
STORED AS KUDY,

Populate f 001 and f 002 using the following | NSERT statements. For f 002, we leave column col 2 with NULL values
to be upserted later:

I NSERT | NTO fool VALUES (1, "hi", "alice");

I NSERT | NTO foo2 select id, coll, NULL fromfool;
The contents of f 002 will be:

SELECT * FROM f 002;

i S +
| id | coll | col2 |
S R +
| 1 | hi | NULL |
S R +

Fetched 1 row(s) in 0.15s
Now use the UPSERT command to now replace the NULL values in foo2 with the actual values from foo1l.

UPSERT | NTO foo2 (id, col2) select id, col2 fromfool;

SELECT * FROM f 002;

T Fomm - +
| id| coll | col2 |
S Fommm - +
| 1 | hi | alice |
S Fommm - +

Fetched 1 row(s) in 0.15s

Deleting a Row

You can delete Kudu rows in near real time using Impala.
DELETE FROM ny_first_table WHERE id < 3;

You can even use more complex joins when deleting rows. For example, Impala uses a comma in the FROMsub-clause
to specify a join query.

DELETE ¢ FROM ny_second_table c, stock_synbols s WHERE c. name = s.synbol;
o Important: The DELETE statement only works in Impala when the underlying data source is Kudu.

Deleting In Bulk
You can delete in bulk using the same approaches outlined in Inserting In Bulk on page 71.

Failures During INSERT, UPDATE, UPSERT, and DELETE Operations

I NSERT, UPDATE, and DELETE statements cannot be considered transactional as a whole. If one of these operations
fails part of the way through, the keys may have already been created (in the case of | NSERT) or the records may have
already been modified or removed by another process (in the case of UPDATE or DELETE). You should design your
application with this in mind.

Altering Table Properties

You can change Impala's metadata relating to a given Kudu table by altering the table's properties. These properties
include the table name, the list of Kudu master addresses, and whether the table is managed by Impala (internal) or
externally. You cannot modify a table's split rows after table creation.

o Important: Altering table properties only changes Impala's metadata about the table, not the
underlying table itself. These statements do not modify any Kudu data.

Rename an Impala Mapping Table
ALTER TABLE ny_t abl e RENAME TO ny_new_t abl e;

Renaming atable usingthe ALTER TABLE ... RENAMEstatementonly renames the Impala mappingtable, regardless
of whether the table is an internal or external table. This avoids disruption to other applications that may be accessing
the underlying Kudu table.

Rename the underlying Kudu table for an internal table
If atable is an internal table, the underlying Kudu table may be renamed by changing the kudu. t abl e_nane property:

ALTER TABLE ny_internal _table
SET TBLPROPERTI ES(' kudu. t abl e_nanme' = 'new_nane')

Remapping an external table to a different Kudu table
If another application has renamed a Kudu table under Impala, it is possible to re-map an external table to point to a
different Kudu table name.

ALTER TABLE ny_external _table_
SET TBLPROPERTI ES(' kudu. t abl e_nanme' = 'sone_ot her _kudu_t abl e')

Change the Kudu Master Addresses

ALTER TABLE ny_t abl e SET TBLPROPERTI ES(' kudu. nast er _addr esses' =
' kudu-ori gi nal - mast er. exanpl e. com 7051, kudu- new nast er. exanpl e. com 7051') ;

Change an Internally-Managed Table to External

ALTER TABLE ny_tabl e SET TBLPROPERTI ES(' EXTERNAL' = ' TRUE');

Dropping a Kudu Table using Impala

If the table was created as an internal table in Impala, using CREATE TABLE, the standard DROP TABLE syntax drops
the underlying Kudu table and all its data. If the table was created as an external table, using CREATE EXTERNAL
TABLE, the mapping between Impala and Kudu is dropped, but the Kudu table is left intact, with all its data. To change
an external table to internal, or vice versa, see Altering Table Properties on page 74.

DROP TABLE ny_first_table;

Security Considerations

Kudu 1.3 (and higher) includes security features that allow Kudu clusters to be hardened against access from unauthorized
users. Kudu uses strong authentication with Kerberos, while communication between Kudu clients and servers can
now be encrypted with TLS. Kudu also allows you to use HTTPS encryption to connect to the web Ul. These features
should work seamlessly in Impala as long as Impala’s user is given permission to access Kudu.

For instructions on how to configure a secure Kudu cluster, see Apache Kudu Security on page 76.

Sentry Authorization works as follows:

Only the ALL privilege can be granted on Kudu tables. This means SELECT or INSERT grants are not supported.
Column-level permissions are not supported.
Only users with ALL privileges on SERVER may create external Kudu tables.

Known Issues and Limitations

When creating a Kudu table, the CREATE TABLE statement must include the primary key columns before other
columns, in primary key order.

Impala cannot update values in primary key columns.
Impala cannot create Kudu tables with TI MESTAMP, DECI MAL, VARCHAR, or nested-typed columns.

Kudu tables with a name containing upper case or non-ASCIl characters must be assigned an alternate name when
used as an external table in Impala.

Kudu tables with a column name containing upper case or non-ASClI characters may not be used as an external
table in Impala. Non-primary key columns may be renamed in Kudu to work around this issue.

Kudu tables containing UNI XTI ME_M CROS-typed columns may not be used as an external table in Impala.

NULL, NOT NULL, ! =, and LI KE predicates are not pushed to Kudu, and instead will be evaluated by the Impala
scan node. This may decrease performance relative to other types of predicates.

Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of the way through, its partial
effects will not be rolled back.

The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or use large tables.

Impala Keywords Not Supported for Creating Kudu Tables

PARTI TI ONED
LOCATI ON
ROWFORVAT

Next Steps

The examples above have only explored a fraction of what you can do with Impala Shell.

Learn about the Impala project.
Read the Impala documentation.
View the Impala SQL Reference.

For in-depth information on how to configure and use Impala to query Kudu data, see Integrating Impala with
Kudu.

Read about Impala internals or learn how to contribute to Impala on the Impala Wiki.

http://impala.io/
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_langref.html
https://www.cloudera.com/documentation/enterprise/latest/topics/impala_kudu.html
https://www.cloudera.com/documentation/enterprise/latest/topics/impala_kudu.html
https://github.com/cloudera/Impala/wiki

Apache Kudu Security

Kudu 1.3 includes security features that allow Kudu clusters to be hardened against access from unauthorized users.
Kudu uses strong authentication with Kerberos, while communication between Kudu clients and servers can now be
encrypted with TLS. Kudu also allows you to use HTTPS encryption to connect to the web Ul.

The rest of this topic describes the security capabilities of Apache Kudu and how to configure a secure Kudu cluster.
Currently, there are a few known limitations in Kudu security that might impact your cluster. For the list, see Security
Limitations on page 39.

Kudu Authentication with Kerberos

Kudu can be configured to enforce secure authentication among servers, and between clients and servers. Authentication
prevents untrusted actors from gaining access to Kudu, and securely identifies connecting users or services for
authorization checks. Authentication in Kudu is designed to interoperate with other secure Hadoop components by
utilizing Kerberos.

Configure authentication on Kudu servers using the - - r pc- aut hent i cat i on flag, which can be set to one of the
following options:

e required - Kudu will reject connections from clients and servers who lack authentication credentials.
e optional -Kudu will attempt to use strong authentication, but will allow unauthenticated connections.
¢ di sabl ed - Kudu will only allow unauthenticated connections.

By default, the flag is set to opt i onal . To secure your cluster, set - - r pc- aut henti cati on torequired.

Internal Private Key Infrastructure (PKI)

Kudu uses an internal PKI to issue X.509 certificates to servers in the cluster. Connections between peers who have
both obtained certificates will use TLS for authentication. In such cases, neither peer needs to contact the Kerberos
KDC.

X.509 certificates are only used for internal communication among Kudu servers, and between Kudu clients and servers.
These certificates are never presented in a public facing protocol. By using internally-issued certificates, Kudu offers
strong authentication which scales to huge clusters, and allows TLS encryption to be used without requiring you to
manually deploy certificates on every node.

Authentication Tokens

After authenticating to a secure cluster, the Kudu client will automatically request an authentication token from the
Kudu master. An authentication token encapsulates the identity of the authenticated user and carries the Kudu master's
RSA signature so that its authenticity can be verified. This token will be used to authenticate subsequent connections.
By default, authentication tokens are only valid for seven days, so that even if a token were compromised, it cannot
be used indefinitely. For the most part, authentication tokens should be completely transparent to users. By using
authentication tokens, Kudu is able to take advantage of strong authentication, without paying the scalability cost of
communicating with a central authority for every connection.

When used with distributed compute frameworks such as Apache Spark, authentication tokens can simplify configuration
and improve security. For example, the Kudu Spark connector will automatically retrieve an authentication token during
the planning stage, and distribute the token to tasks. This allows Spark to work against a secure Kudu cluster where
only the planner node has Kerberos credentials.

Scalability

Kudu authentication is designed to scale to thousands of nodes, which means it must avoid unnecessary coordination
with a central authentication authority (such as the Kerberos KDC) for each connection. Instead, Kudu servers and
clients use Kerberos to establish initial trust with the Kudu master, and then use alternate credentials for subsequent

connections. As described previously, the Kudu master issues internal X.509 certificates to tablet servers on startup,
and temporary authentication tokens to clients on first contact.

Encryption

Kudu allows you to use TLS to encrypt all communications among servers, and between clients and servers. Configure
TLS encryption on Kudu servers using the - - r pc- encr ypt i on flag, which can be set to one of the following options:

e required - Kudu will reject unencrypted connections.
e optional -Kudu will attempt to use encryption, but will allow unencrypted connections.
e di sabl ed - Kudu will not use encryption.

By default, the flag is set to opt i onal . To secure your cluster, set - - r pc- encrypti ontorequired.

E,’ Note: Kudu will automatically turn off encryption on local loopback connections, since traffic from
these connections is never exposed externally. This allows locality-aware compute frameworks, such
as Spark and Impala, to avoid encryption overhead, while still ensuring data confidentiality.

Coarse-grained Authorization

Kudu supports coarse-grained authorization checks for client requests based on the client's authenticated Kerberos
principal (user or service). Access levels are granted based on whitelist-style Access Control Lists (ACLs), one for each
level. Each ACL specifies a comma-separated list of users, or may be set to '*' to indicate that all authenticated users
have access rights at the specified level.

The two levels of access which can be configured are:

e Superuser - Principals authorized as a superuser can perform certain administrative functions such as using the
kudu command line tool to diagnose and repair cluster issues.

e User - Principals authorized as a user are able to access and modify all data in the Kudu cluster. This includes the
ability to create, drop, and alter tables, as well as read, insert, update, and delete data. The default value for the
User ACL is "*', which allows all users access to the cluster. However, if authentication is enabled, this will restrict
access to only those users who are able to successfully authenticate using Kerberos. Unauthenticated users on
the same network as the Kudu servers will be unable to access the cluster.

E,’ Note: Internally, Kudu has a third access level for the daemons themselves called Service. This is used
to ensure that users cannot connect to the cluster and pose as tablet servers.

Web Ul Encryption

The Kudu web Ul can be configured to use secure HTTPS encryption by providing each server with TLS certificates. Use
the--webserver-certificate-fil eand--webserver-private-key-fil epropertiestospecify the certificate
and private key to be used for communication.

Alternatively, you can choose to completely disable the web Ul by setting - - webser ver - enabl ed flagto f al se on
the Kudu servers.

Web Ul Redaction

To prevent sensitive data from being included in the web Ul, all row data is redacted. Table metadata, such as table
names, column names, and partitioning information is not redacted. Alternatively, you can choose to completely disable
the web Ul by setting the - - webser ver - enabl ed flag to f al se on the Kudu servers.

E,i Note: Disabling the web Ul will also disable REST endpoints such as/ et ri cs. Monitoring systems
rely on these endpoints to gather metrics data.

Log Redaction

To prevent sensitive data from being included in Kudu server logs, all row data will be redacted. You can turn off log
redaction using the - - r edact flag.

Configuring a Secure Kudu Cluster using Cloudera Manager

Warning: If you are upgrading from Kudu 1.2.0 / CDH 5.10.x, you must upgrade both Kudu and CDH

A parcels (or packages) at the same time. If you upgrade Kudu but do not upgrade CDH, new Kudu
features such as Security will not be available. Note that even though you might be able to see the
updated configuration options for Kudu security in Cloudera Manager, configuring them will have no
effect.

Use the following set of instructions to secure a Kudu cluster using Cloudera Manager:
Enabling Kerberos Authentication and RPC Encryption

Important: The following instructions assume you already have a secure Cloudera Manager cluster
with Kerberos authentication enabled. If this is not the case, first secure your cluster using the steps
described at Enabling Kerberos Authentication Using the Cloudera Manager Wizard.

To enable Kerberos authentication for Kudu:

1. Go to the Kudu service.
2. Click the Configuration tab.
3. Select Category > Security.
4. In the Search field, type Kerberos to show the relevant properties.
5. Edit the following properties according to your cluster configuration:
Field Usage Notes
Kerberos Principal Set to the default principal, kudu. Currently, Kudu does not support configuring

a custom service principal for Kudu processes.

Enable Secure Authentication Select this checkbox to enable authentication and RPC encryption between
And Encryption all Kudu clients and servers, as well as between individual servers. Only enable
this property after you have configured Kerberos.

6. Click Save Changes.

7. You will see an error message that tells you the Kudu keytab is missing. To generate the keytab, go to the top
navigation bar and click Administration > Security.

8. Go to the Kerberos Credentials tab. On this page you will see a list of the existing Kerberos principals for services
running on the cluster.

9. Click Generate Missing Credentials. Once the Generate Missing Credentials command has finished running, you
will see the Kudu principal added to the list.

Configuring Coarse-grained Authorization with ACLs

1. Go to the Kudu service.

https://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_intro_kerb.html

2. Click the Configuration tab.
3. Select Category > Security.

4. In the Search field, type ACL to show the relevant properties.
5. Edit the following properties according to your cluster configuration:

Field

Usage Notes

Superuser Access Control List

Add a comma-separated list of superusers who can access the cluster. By
default, this property is left blank.

"*'indicates that all authenticated users will be given superuser access.

User Access Control List

Add a comma-separated list of users who can access the cluster. By default,
this property is set to '*'.

The default value of '*' allows all users access to the cluster. However, if
authentication is enabled, this will restrict access to only those users who are
able to successfully authenticate using Kerberos. Unauthenticated users on
the same network as the Kudu servers will be unable to access the cluster.

Add the i nmpal a user to this list to allow Impala to query data in Kudu. You
might choose to add any other relevant usernames if you want to give access
to Spark Streaming jobs.

6. Click Save Changes.

Configuring HTTPS Encryption for the Kudu Master and Tablet Server Web Uls

Use the following steps to enable HTTPS for encrypted connections to the Kudu master and tablet server web Uls.

1. Go to the Kudu service.
. Click the Configuration tab.
. Select Category > Security.

i b WN

. In the Search field, type TLS/SSL to show the relevant properties.
. Edit the following properties according to your cluster configuration:

Field

Usage Notes

Master TLS/SSL Server Private
Key File (PEM Format)

Set to the path containing the Kudu master host's private key (PEM-format).
This is used to enable TLS/SSL encryption (over HTTPS) for browser-based
connections to the Kudu master web Ul.

Tablet Server TLS/SSL Server
Private Key File (PEM Format)

Set to the path containing the Kudu tablet server host's private key
(PEM-format). This is used to enable TLS/SSL encryption (over HTTPS) for
browser-based connections to Kudu tablet server web Uls.

Master TLS/SSL Server Certificate
File (PEM Format)

Set to the path containing the signed certificate (PEM-format) for the Kudu
master host's private key (set in Master TLS/SSL Server Private Key File). The
certificate file can be created by concatenating all the appropriate root and
intermediate certificates required to verify trust.

Tablet Server TLS/SSL Server
Certificate File (PEM Format)

Set to the path containing the signed certificate (PEM-format) for the Kudu
tablet server host's private key (set in Tablet Server TLS/SSL Server Private
Key File). The certificate file can be created by concatenating all the
appropriate root and intermediate certificates required to verify trust.

Enable TLS/SSL for Master Server

Enables HTTPS encryption on the Kudu master web Ul.

Enable TLS/SSL for Tablet Server

Enables HTTPS encryption on the Kudu tablet server Web Uls.

6. Click Save Changes.

Configuring a Secure Kudu Cluster using the Command Line

Important: Follow these command-line instructions on systems that do not use Cloudera Manager.
If you are using Cloudera Manager, see Configuring a Secure Kudu Cluster using Cloudera Manager
on page 78.

The following configuration parameters should be set on all servers (master and tablet servers) to ensure that a Kudu
cluster is secure:

Connection Security

--rpc-authentication=required
--rpc-encryption=required
--keyt ab-fil e=<pat h-t o- ker ber os- keyt ab>

Web U Security

--webserver-certificate-fil e=<path-to-cert-penr
--webserver-private-key-fil e=<pat h-t o- key- penw

optional

--webserver - privat e- key- passwor d- cnd=<passwor d- cnd>

If you prefer to disable the web U entirely:
- -webserver - enabl ed=f al se

Coar se-grai ned authorization

This exanple ACL setup allows the 'inpala' user as well as the

'etl _service_account' principal access to all data in the

Kudu cluster. The 'hadoopadm n' user is allowed to use adm nistrative
tooling. Note that by granting access to 'inpala', other users

may access data in Kudu via the Inpala service subject to its own

aut horization rul es.

--user-acl =i npal a, etl _servi ce_account

--adm n- acl =hadoopadni n

More information about these flags can be found in the configuration reference documentation.

http://kudu.apache.org/docs/configuration_reference.html

Apache Kudu Schema Design

Kudu tables have a structured data model similar to tables in a traditional relational database. With Kudu, schema
design is critical for achieving the best performance and operational stability. Every workload is unique, and there is
no single schema design that is best for every table. This topic outlines effective schema design philosophies for Kudu,
and how they differ from approaches used for traditional relational database schemas.

There are three main concerns when creating Kudu tables: column design, primary key design, and partitioning.

The Perfect Schema

The perfect schema would accomplish the following:

e Data would be distributed such that reads and writes are spread evenly across tablet servers. This can be achieved
by effective partitioning.

e Tablets would grow at an even, predictable rate, and load across tablets would remain steady over time. This can
be achieved by effective partitioning.

e Scans would read the minimum amount of data necessary to fulfill a query. This is impacted mostly by primary
key design, but partitioning also plays a role via partition pruning.

The perfect schema depends on the characteristics of your data, what you need to do with it, and the topology of your
cluster. Schema design is the single most important thing within your control to maximize the performance of your
Kudu cluster.

Column Design

A Kudu table consists of one or more columns, each with a defined type. Columns that are not part of the primary key
may be nullable. Supported column types include:

e boolean

e 8-bit signed integer

e 16-bit signed integer

e 32-bit signed integer

e 64-bit signed integer

e unixtime_micros (64-bit microseconds since the Unix epoch)
¢ single-precision (32-bit) IEEE-754 floating-point number

¢ double-precision (64-bit) IEEE-754 floating-point number

e UTF-8 encoded string (up to 64KB uncompressed)

¢ binary (up to 64KB uncompressed)

Kudu takes advantage of strongly-typed columns and a columnar on-disk storage format to provide efficient encoding
and serialization. To make the most of these features, columns should be specified as the appropriate type, rather
than simulating a 'schemaless' table using string or binary columns for data which could otherwise be structured. In
addition to encoding, Kudu allows compression to be specified on a per-column basis.

Column Encoding
Depending on the type of the column, Kudu columns can be created with the following encoding types.
Plain Encoding
Data is stored in its natural format. For example, i nt 32 values are stored as fixed-size 32-bit little-endian integers.
Bitshuffle Encoding

A block of values is rearranged to store the most significant bit of every value, followed by the second most significant
bit of every value, and so on. Finally, the result is LZ4 compressed. Bitshuffle encoding is a good choice for columns
that have many repeated values, or values that change by small amounts when sorted by primary key. The bitshuffle
project has a good overview of performance and use cases.

Run Length Encoding

Runs (consecutive repeated values) are compressed in a column by storing only the value and the count. Run length
encoding is effective for columns with many consecutive repeated values when sorted by primary key.

Dictionary Encoding

A dictionary of unique values is built, and each column value is encoded as its corresponding index in the dictionary.
Dictionary encoding is effective for columns with low cardinality. If the column values of a given row set are unable
to be compressed because the number of unique values is too high, Kudu will transparently fall back to plain encoding
for that row set. This is evaluated during flush.

Prefix Encoding

Common prefixes are compressed in consecutive column values. Prefix encoding can be effective for values that
share common prefixes, or the first column of the primary key, since rows are sorted by primary key within tablets.

Each column in a Kudu table can be created with an encoding, based on the type of the column. Starting with Kudu
1.3, default encodings are specific to each column type.

Column Type Encoding Default

int8, intl6, int32 plain, bitshuffle, run length|bitshuffle
int64, unixtinme_mcros plain, bitshuffle, run length|bitshuffle
float, double plain, bitshuffle bitshuffle
bool plain, run | ength run | ength
string, binary plain, prefix, dictionary dictionary

Column Compression

Kudu allows per-column compression using the LZ4, Snappy, or zl i b compression codecs. By default, columns are
stored uncompressed. Consider using compression if reducing storage space is more important than raw scan
performance.

Every data set will compress differently, but in general LZ4 is the most efficient codec, while zI i b will compress to
the smallest data sizes. Bitshuffle-encoded columns are automatically compressed using LZ4, so it is not recommended
to apply additional compression on top of this encoding.

Primary Key Design

Every Kudu table must declare a primary key index comprised of one or more columns. Primary key columns must be
non-nullable, and may not be a boolean or floating-point type. Once set during table creation, the set of columns in
the primary key may not be altered. Like an RDBMS primary key, the Kudu primary key enforces a uniqueness constraint;
attempting to insert a row with the same primary key values as an existing row will result in a duplicate key error.

Unlike an RDBMS, Kudu does not provide an auto-incrementing column feature, so the application must always provide
the full primary key during insert. Row delete and update operations must also specify the full primary key of the row
to be changed; Kudu does not natively support range deletes or updates. The primary key values of a column may not
be updated after the row is inserted; however, the row may be deleted and re-inserted with the updated value.

Primary Key Index

As with many traditional relational databases, Kudu'’s primary key is a clustered index. All rows within a tablet are kept
in primary key sorted order. Kudu scans which specify equality or range constraints on the primary key will automatically
skip rows which can not satisfy the predicate. This allows individual rows to be efficiently found by specifying equality
constraints on the primary key columns.

Partitioning

In order to provide scalability, Kudu tables are partitioned into units called tablets, and distributed across many tablet
servers. A row always belongs to a single tablet. The method of assigning rows to tablets is determined by the partitioning
of the table, which is set during table creation.

Choosing a partitioning strategy requires understanding the data model and the expected workload of a table. For
write-heavy workloads, it is important to design the partitioning such that writes are spread across tablets in order to
avoid overloading a single tablet. For workloads involving many short scans, where the overhead of contacting remote
servers dominates, performance can be improved if all of the data for the scan is located on the same tablet.
Understanding these fundamental trade-offs is central to designing an effective partition schema.

o Important: Kudu does not provide a default partitioning strategy when creating tables. It is
recommended that new tables which are expected to have heavy read and write workloads have at
least as many tablets as tablet servers.

Kudu provides two types of partitioning: range partitioning and hash partitioning. Tables may also have multilevel
partitioning, which combines range and hash partitioning, or multiple instances of hash partitioning.

Range Partitioning

Range partitioning distributes rows using a totally-ordered range partition key. Each partition is assigned a contiguous
segment of the range partition keyspace. The key must be comprised of a subset of the primary key columns. If the
range partition columns match the primary key columns, then the range partition key of a row will equal its primary
key. In range partitioned tables without hash partitioning, each range partition will correspond to exactly one tablet.

The initial set of range partitions is specified during table creation as a set of partition bounds and split rows. For each
bound, a range partition will be created in the table. Each split will divide a range partition in two. If no partition bounds
are specified, then the table will default to a single partition covering the entire key space (unbounded below and
above). Range partitions must always be non-overlapping, and split rows must fall within a range partition.

Adding and Removing Range Partitions

Kudu allows range partitions to be dynamically added and removed from a table at runtime, without affecting the
availability of other partitions. Removing a partition will delete the tablets belonging to the partition, as well as the
data contained in them. Subsequent inserts into the dropped partition will fail. New partitions can be added, but they
must not overlap with any existing range partitions. Kudu allows dropping and adding any number of range partitions
in a single transactional alter table operation.

Dynamically adding and dropping range partitions is particularly useful for time series use cases. As time goes on, range
partitions can be added to cover upcoming time ranges. For example, a table storing an event log could add a month-wide
partition just before the start of each month in order to hold the upcoming events. Old range partitions can be dropped
in order to efficiently remove historical data, as necessary.

Hash Partitioning

Hash partitioning distributes rows by hash value into one of many buckets. In single-level hash partitioned tables, each
bucket will correspond to exactly one tablet. The number of buckets is set during table creation. Typically the primary
key columns are used as the columns to hash, but as with range partitioning, any subset of the primary key columns
can be used.

Hash partitioning is an effective strategy when ordered access to the table is not needed. Hash partitioning is effective
for spreading writes randomly among tablets, which helps mitigate hot-spotting and uneven tablet sizes.

Multilevel Partitioning

Kudu allows a table to combine multiple levels of partitioning on a single table. Zero or more hash partition levels can
be combined with an optional range partition level. The only additional constraint on multilevel partitioning beyond
the constraints of the individual partition types, is that multiple levels of hash partitions must not hash the same
columns.

When used correctly, multilevel partitioning can retain the benefits of the individual partitioning types, while reducing
the downsides of each. The total number of tablets in a multilevel partitioned table is the product of the number of

partitions in each level.

Partition Pruning

Kudu scans will automatically skip scanning entire partitions when it can be determined that the partition can be
entirely filtered by the scan predicates. To prune hash partitions, the scan must include equality predicates on every
hashed column. To prune range partitions, the scan must include equality or range predicates on the range partitioned
columns. Scans on multilevel partitioned tables can take advantage of partition pruning on any of the levels
independently.

Partitioning Examples

To illustrate the factors and tradeoffs associated with designing a partitioning strategy for a table, we will walk through
some different partitioning scenarios. Consider the following table schema for storing machine metrics data (using
SQL syntax and date-formatted timestamps for clarity):

CREATE TABLE netrics (
host STRI NG NOT NULL,
metric STRING NOT NULL,
tinme | NT64 NOT NULL,
val ue DOUBLE NOT NULL,
PRI MARY KEY (host, metric, tinme),

)

Range Partitioning

A natural way to partition the met ri cs table is to range partition on the t i me column. Let’s assume that we want to
have a partition per year, and the table will hold data for 2014, 2015, and 2016. There are at least two ways that the
table could be partitioned: with unbounded range partitions, or with bounded range partitions.

2014-01-01 2015-01-01 2016-01-01 2017-01-01
I I I |

Example 1 Tablet 1 Tablet 2 Tablet 3
Bounds: defauit

Splits: 2015, 2016 values before 2015 | values in 2015 values after 2015
Example 2 Tablet 1 Tablet 2 Tablet 3
Bounds: 2014 to 2017

Splits: 2015 and 2016 values in 2014 | valuesin 2015 | values in 2016

The image above shows the two ways the net ri cs table can be range partitioned on the t i ne column. In the first
example (in blue), the default range partition bounds are used, with splits at 2015- 01- 01 and 2016- 01- 01. This
results in three tablets: the first containing values before 2015, the second containing values in the year 2015, and the
third containing values after 2016. The second example (in green) uses a range partition bound of [(2014- 01- 01),
(2017-01-01)], and splits at 2015- 01- 01 and 2016- 01- 01. The second example could have equivalently been
expressed through range partition bounds of [(2014- 01- 01), (2015-01-01)],[(2015-01-01), (2016-01-01)],
and [(2016-01-01), (2017-01-01)], with no splits. The first example has unbounded lower and upper range
partitions, while the second example includes bounds.

Each of the range partition examples above allows time-bounded scans to prune partitions falling outside of the scan’s
time bound. This can greatly improve performance when there are many partitions. When writing, both examples
suffer from potential hot-spotting issues. Because metrics tend to always be written at the current time, most writes
will go into a single range partition.

The second example is more flexible, because it allows range partitions for future years to be added to the table. In
the first example, all writes for times after 2016- 01- 01 will fall into the last partition, so the partition may eventually
become too large for a single tablet server to handle.

Hash Partitioning

Another way of partitioning the met ri cs table is to hash partition on the host and et ri ¢ columns.

HASH (host, metric)

Tablet 1 Tablet 2 Tablet 3 Tablet 4

bucket: 0 bucket: 1 bucket: 2 bucket: 3

In the example above, the net ri cs table is hash partitioned on the host and net ri ¢ columns into four buckets.
Unlike the range partitioning example earlier, this partitioning strategy will spread writes over all tablets in the table
evenly, which helps overall write throughput. Scans over a specific host and metric can take advantage of partition
pruning by specifying equality predicates, reducing the number of scanned tablets to one. One issue to be careful of
with a pure hash partitioning strategy, is that tablets could grow indefinitely as more and more data is inserted into
the table. Eventually tablets will become too big for an individual tablet server to hold.

Hash and Range Partitioning

The previous examples showed how the net ri cs table could be range partitioned on the t i me column, or hash
partitioned on the host and net ri ¢ columns. These strategies have associated strength and weaknesses:

Table 5: Partitioning Strategies

Strategy Writes Reads Tablet Growth

range(ti me) @ all writes go to latest @ time-bounded scans can | @ new tablets can be added
partition be pruned for future time periods

hash(host, metric) @ writes are spread evenly |Bscans on specific hosts and | @ tablets could grow too
among tablets metrics can be pruned large

Hash partitioning is good at maximizing write throughput, while range partitioning avoids issues of unbounded tablet
growth. Both strategies can take advantage of partition pruning to optimize scans in different scenarios. Using multilevel
partitioning, it is possible to combine the two strategies in order to gain the benefits of both, while minimizing the
drawbacks of each.

RANGE (time)
2014-01-01 2015-01-01 2016-01-01 2017-01-01

Ll —
L -

Tablet1) Tablet5 Y Tablet9

values in 2014 | values in 2015 | values in 2016
l‘thn,lckr-,'t: 0 |‘Lbucket: 0 kbucket: 0 y

Tablet2) Tablet6) Tablet10

values in 2014 | values in 2015 | values in 2016
l‘thn,lckr-,'t: 1 kaucket: 1 kaucket: 1 y

Tablet3 | Tablet7 | Tablet 11

values in 2014 | values in 2015 | values in 2016
\bucket: 2 kaucket: 2 kaucket: 2 Y.

Tablet4)Y Tablet8 Y Tablet12

values in 2014 | values in 2015 | values in 2016
kbucket: 3 kaucket: 3 kaucket: 3 Y.

AN
AN

HASH (host, metric)

In the example above, range partitioning on the t i me column is combined with hash partitioning on the host and
nmet ri ¢ columns. This strategy can be thought of as having two dimensions of partitioning: one for the hash level and
one for the range level. Writes into this table at the current time will be parallelized up to the number of hash buckets,
in this case 4. Reads can take advantage of time bound and specific host and metric predicates to prune partitions.
New range partitions can be added, which results in creating 4 additional tablets (as if a new column were added to

the diagram).

Hash and Hash Partitioning

Kudu can support any number of hash partitioning levels in the same table, as long as the levels have no hashed columns
in common.

HASH (metric)

(" Tablet1 Y Tablet5 Y Tablet9

host bucket: 0 host bucket: 0 host bucket: 0
metric bucket: 0 metric bucket: 1 metric bucket: 2

\ V
(" Tablet 2 g Tablet 6 g Tablet10)
host bucket: 1 host bucket: 1 host bucket: 1

metric bucket: 0 rmetric bucket: 1 metric bucket: 2
\ # <
<

(" Tablet 3 Tablet 7 Tablet 11

host bucket: 2 host bucket: 2 host bucket: 2
metric bucket: 0 rmetric bucket: 1 metric bucket: 2

<*

HASH (host)

\ <
(" Tablet 4 \g Tablet 8 T Tablet12)
host bucket: 3 host bucket: 3 host bucket: 3

metric bucket: 0 rmetric bucket: 1 metric bucket: 2

_LM

In the example above, the table is hash partitioned on host into 4 buckets, and hash partitioned on et ri c into 3
buckets, resulting in 12 tablets. Although writes will tend to be spread among all tablets when using this strategy, it is
slightly more prone to hot-spotting than when hash partitioning over multiple independent columns, since all values
for an individual host or metric will always belong to a single tablet. Scans can take advantage of equality predicates
on the host and net ri ¢ columns separately to prune partitions.

Multiple levels of hash partitioning can also be combined with range partitioning, which logically adds another dimension
of partitioning.

Schema Alterations

You can alter a table’s schema in the following ways:

e Rename the table
* Rename, add, or drop non-primary key columns

¢ Add and drop range partitions

Multiple alteration steps can be combined in a single transactional operation.

Schema Design Limitations

Kudu currently has some known limitations that may factor into schema design. For a complete list, see Apache Kudu
Schema Design and Usage Limitations on page 36.

Apache Kudu Transaction Semantics

This is a brief introduction to Kudu’s transaction and consistency semantics. Kudu's core philosophy is to provide
transactions with simple, strong semantics, without sacrificing performance or the ability to tune to different
requirements. Kudu'’s transactional semantics and architecture are inspired by state-of-the-art systems such as Spanner
and Calvin. For an in-depth technical exposition of what is mentioned here, see the technical report.

Kudu currently allows the following operations:

e Scans are read operations that can traverse multiple tablets and read information with some consistency or
correctness guarantees. Scans can also perform time-travel reads. That is, you can set a scan timestamp from the
past and get back results that reflect the state of the storage engine at that point in time.

Write operations are sets of rows to be inserted, updated, or deleted in the storage engine, in a single tablet with
multiple replicas. Write operations do not have separate "read sets", that is, they do not scan existing data before
performing the write. Each write is only concerned with the previous state of the rows that are about to change.
Writes are not "committed" explicitly by the user. Instead, they are committed automatically by the system, after
completion.

While Kudu is designed to eventually be fully ACID (Atomic, Consistent, Isolated, Durable), multi-tablet transactions
have not yet been implemented. As such, the following discussion focuses on single-tablet write operations, and only
briefly touches multi-tablet reads.

Single Tablet Write Operations

Kudu employs Multiversion Concurrency Control (MVCC) and the Raft consensus algorithm. Each write operation in
Kudu must go through the following order of operations:

1. The tablet's leader acquires all locks for the rows that it will change.

2. The leader assigns the write a timestamp before the write is submitted for replication. This timestamp will be the
write’s tag in MVCC.

3. After a majority of replicas have acknowledged the write, the rows are changed.

4. After the changes are complete, they are made visible to concurrent writes and reads, atomically.

All replicas of a tablet observe the same process. Therefore, if a write operation is assigned timestamp n, and changes
row x, a second write operation at timestamp m > n is guaranteed to see the new value of x.

This strict ordering of lock acquisition and timestamp assignment is enforced to be consistent across all replicas of a
tablet through consensus. Therefore, write operations are ordered with regard to clock-assigned timestamps, relative
to other writes in the same tablet. In other words, writes have strict-serializable semantics.

In case of multi-row write operations, while they are Isolated and Durable in an ACID sense, they are not yet fully
Atomic. The failure of a single write in a batch operation will not roll back the entire operation, but produce per-row
errors.

Writing to Multiple Tablets

Kudu does not support transactions that span multiple tablets. However, consistent snapshot reads are possible (with
caveats, as explained below). Writes from a Kudu client are optionally buffered in memory until they are flushed and
sent to the tablet server. When a client’s session is flushed, the rows for each tablet are batched together, and sent
to the tablet server which hosts the leader replica of the tablet. Since there are no inter-tablet transactions, each of
these batches represents a single, independent write operation with its own timestamp. However, the client API
provides the option to impose some constraints on the assigned timestamps and on how writes to different tablets
are observed by clients.

https://research.google.com/archive/spanner.html
http://dl.acm.org/citation.cfm?doid=2213836.2213838
http://users.ece.utexas.edu/%7Egarg/pdslab/david/hybrid-time-tech-report-01.pdf

Kudu was designed to be externally consistent, that is, preserving consistency even when operations span multiple
tablets and even multiple data centers. In practice this means that if a write operation changes item x at tablet A, and
a following write operation changes item y at tablet B, you might want to enforce that if the change to y is observed,
the change to x must also be observed. There are many examples where this can be important. For example, if Kudu
is storing clickstreams for further analysis, and two clicks follow each other but are stored in different tablets, subsequent
clicks should be assigned subsequent timestamps so that the causal relationship between them is captured.

e CLI ENT_PROPAGATED Consistency

Kudu’s default external consistency mode is called CLI ENT_PROPAGATED. This mode causes writes from a single
client to be automatically externally consistent. In the clickstream scenario above, if the two clicks are submitted
by different client instances, the application must manually propagate timestamps from one client to the other
for the causal relationship to be captured. Timestamps between clients a and b can be propagated as follows:

Java Client

Call AsyncKudud i ent #get Last Pr opagat edTi mest anp() on client a, propagate the timestamp to client b,
and call AsyncKuduCl i ent #set Last Pr opagat edTi mest anp() on client b.

C++ Client

Call Kudud i ent : : Get Lat est Gbser vedTi nest anp() on client a, propagate the timestamp to client b, and
call Kudud i ent : : Set Lat est Obser vedTi nest anp() on client b.

e COW T_WAI T Consistency

Kudu also has an experimental implementation of an external consistency model (used in Google’s Spanner),

called COVMM T_WAI T. COW T_WAI T works by tightly synchronizing the clocks on all machines in the cluster. Then,
when a write occurs, timestamps are assigned and the results of the write are not made visible until enough time
has passed so that no other machine in the cluster could possibly assign a lower timestamp to a following write.

When using this mode, the latency of writes is tightly tied to the accuracy of clocks on all the cluster hosts, and
using this mode with loose clock synchronization causes writes to either take a long time to complete, or even
time out.

The COMM T_WAI T consistency mode may be selected as follows:

Java Client

Call KuduSessi on#set Ext er nal Consi st encyMode(Ext er nal Consi st encyMode. COMM T_WAI T)
C++ Client

Call KuduSessi on: : Set Ext er nal Consi st encyMode(COWM T_WAI T)

n Warning:

COW T_WAI T consistency is an experimental feature. It may return incorrect results, exhibit
performance issues, or negatively impact cluster stability. Its use in production environments is
discouraged.

Read Operations (Scans)

Scans are read operations performed by clients that may span one or more rows across one or more tablets. When a
server receives a scan request, it takes a snapshot of the MVCC state and then proceeds in one of two ways depending
on the read mode selected by the user. The mode may be selected as follows:

Java Client

Call KuduScanner Bui | der #set ReadMVbde(..)

C++ Client

Call KuduScanner : : Set ReadMode()
The following modes are available in both clients:
READ_LATEST

This is the default read mode. The server takes a snapshot of the MVCC state and proceeds with the read immediately.
Reads in this mode only yield 'Read Committed' isolation.

READ AT_SNAPSHOT

In this read mode, scans are consistent and repeatable. A timestamp for the snapshot is selected either by the
server, or set explicitly by the user through KuduScanner : : Set Snapshot M cr os() . Explicitly setting the timestamp
is recommended.

The server waits until this timestamp is 'safe'; that is, until all write operations that have a lower timestamp have
completed and are visible). This delay, coupled with an external consistency method, will eventually allow Kudu to
have fullstri ct - seri al i zabl e semantics for reads and writes. However, this is still a work in progress and some
anomalies are still possible. Only scans in this mode can be fault-tolerant.

Selecting between read modes requires balancing the trade-offs and making a choice that fits your workload. For
instance, a reporting application that needs to scan the entire database might need to perform careful accounting
operations, so that scan may need to be fault-tolerant, but probably doesn’t require a to-the-microsecond up-to-date
view of the database. In that case, you might choose READ_AT_SNAPSHOT and select a timestamp that is a few seconds
in the past when the scan starts. On the other hand, a machine learning workload that is not ingesting the whole data
set and is already statistical in nature might not require the scan to be repeatable, so you might choose READ_LATEST
instead.

Known Issues and Limitations

There are several gaps and corner cases that currently prevent Kudu from being strictly-serializable in certain situations.

Reads (Scans)

Support for COMM T_WAI T is experimental and requires careful tuning of the time-synchronization protocol, such as
NTP (Network Time Protocol). Its use in production environments is discouraged.

Recommendation

If external consistency is a requirement and you decide to use COMM T_WAI T, the time-synchronization protocol
needs to be tuned carefully. Each transaction will wait 2x the maximum clock error at the time of execution, which
is usually in the 100 msec. to 1 sec. range with the default settings, maybe more. Thus, transactions would take at
least 200 msec. to 2 sec. to complete when using the default settings and may even time out.

¢ Alocal server should be used as a time server. We’ve performed experiments using the default NTP time source
available in a Google Compute Engine data center and were able to obtain a reasonable tight max error bound,
usually varying between 12-17 milliseconds.

¢ The following parameters should be adjusted in/ et c/ nt p. conf to tighten the maximum error:
— server ny_server.org iburst mnpoll 1 maxpoll 8
— tinker dispersion 500

— tinker allan 0

Writes

* On aleader change, READ_AT_SNAPSHOT scans at a snapshot whose timestamp is beyond the last write, may
yield non-repeatable reads (see KUDU-1188).

https://issues.apache.org/jira/browse/KUDU-1188

Recommendation

If repeatable snapshot reads are a requirement, use READ_AT_SNAPSHOT with a timestamp that is slightly in the
past (between 2-5 seconds, ideally). This will circumvent the anomaly described above. Even when the anomaly
has been addressed, back-dating the timestamp will always make scans faster, since they are unlikely to block.

Impala scans are currently performed as READ _LATEST and have no consistency guarantees.

In AUTO BACKGROUND_FLUSHmode, or when using "async" flushing mechanisms, writes applied to a single client
session may get reordered due to the concurrency of flushing the data to the server. This is particularly noticeable
if a single row is quickly updated with different values in succession. This phenomenon affects all client API
implementations. Workarounds are described in the respective APl documentation for Fl ushiMbde or
AsyncKuduSessi on. See KUDU-1767.

https://issues.apache.org/jira/browse/KUDU-1767

Apache Kudu Background Maintenance Tasks

Kudu relies on running background tasks for many important maintenance activities. These tasks include flushing data
from memory to disk, compacting data to improve performance, freeing up disk space, and more.

Maintenance Manager

The maintenance manager schedules and runs background tasks. At any given point in time, the maintenance manager
is prioritizing the next task based on improvements needed at that moment, such as relieving memory pressure,
improving read performance, or freeing up disk space. The number of worker threads dedicated to running background
tasks can be controlled by setting - - mai nt enance_manager _num t hr eads.

Flushing Data to Disk

Flushing data from memory to disk relieves memory pressure and can improve read performance by switching from
a write-optimized, row-oriented in-memory format in the MenRowSet , to a read-optimized, column-oriented format
on disk.

Background tasks that flush data include FI ushMRSOp and Fl ushDel t aMenSt or esQp. The metrics associated with
these operations have the prefix f | ush_nrs and f | ush_dns, respectively.

Compacting On-disk Data

Kudu constantly performs several compaction tasks in order to maintain consistent read and write performance over
time.

¢ A merging compaction, which combines multiple Di skRowSet s together into a single Di skRowSet , is run by
Conpact RowSet sOp.

e Kudu also runs two types of delta store compaction operations: M nor Del t aConpact i onQp and
Maj or Del t aConpact i onOp.

For more information on what these compaction operations do, see the Kudu Tablet design document.

The metrics associated with these tasks have the prefix conpact _rs, del ta_m nor _conpact _rs, and
del t a_mmj or _conpact _rs, respectively.

Write-ahead Log Garbage Collection

Kudu maintains a write-ahead log (WAL) per tablet that is split into discrete fixed-size segments. A tablet periodically
rolls the WAL to a new log segment when the active segment reaches a size threshold (configured by the
--10g_segnent _si ze_nb property). In order to save disk space and decrease startup time, a background task called
LogGCQOp attempts to garbage-collect (GC) old WAL segments by deleting them from disk once it is determined that
they are no longer needed by the local node for durability.

The metrics associated with this background task have the prefix | og_gc.

Tablet History Garbage Collection and the Ancient History Mark

Kudu uses a multiversion concurrency control (MVCC) mechanism to ensure that snapshot scans can proceed isolated
from new changes to a table. Therefore, periodically, old historical data should be garbage-collected (removed) to free
up disk space. While Kudu never removes rows or data that are visible in the latest version of the data, Kudu does
remove records of old changes that are no longer visible.

The specific threshold in time (in the past) beyond which historical MVCC data becomes inaccessible and is free to be
deleted is called the ancient history mark (AHM). The AHM can be configured by setting the
--tabl et _hi story_max_age_sec property.

There are two background tasks that remove historical MVCC data older than the AHM:

https://github.com/apache/kudu/blob/master/docs/design-docs/tablet.md

¢ The one that runs the merging compaction, called Conpact RowSet sOp (see above).

e A separate background task deletes old undo delta blocks, called UndoDel t aBl ockGCOp. Running
UndoDel t aBl ockGCOp reduces disk space usage in all workloads, but particularly in those with a higher volume
of updates or upserts. The metrics associated with this background task have the prefix undo_del t a_bl ock.

Troubleshooting Apache Kudu

This guide covers basic Apache Kudu troubleshooting information. For more details, see the official Kudu documentation
for troubleshooting.

Issues Starting or Restarting the Master or Tablet Server

Error during hole punch test

Kudu requires hole punching capabilities in order to be efficient. Support for hole punching depends on your operating
system kernel version and local filesystem. On Linux, hole punching is the use of the f al | ocat e() system call with
the FALLOC_FL_PUNCH_HOLE option set.

e RHEL or CentOS 6.4 or later, patched to kernel version of 2.6.32-358 or later. Unpatched RHEL or CentOS 6.4 does
not include a kernel with support for hole punching.

e Ubuntu 14.04 includes version 3.13 of the Linux kernel, which supports hole punching.

e Newer versions of the EXT4 or XFS filesystems support hole punching, but EXT3 does not. Older versions of XFS
that do not support hole punching return a EOPNOTSUPP (operation not supported) error. Older versions of either
EXT4 or XFS that do not support hole punching cause Kudu to emit an error message such as the following and to
fail to start:

Error during hole punch test. The | og bl ock manager requires a
filesystemw th hole punching support such as ext4 or xfs. On el 6,

kernel version 2.6.32-358 or newer is required. To run w thout hole
punching (at the cost of sone efficiency and scalability), reconfigure
Kudu with --bl ock_nanager=file. Refer to the Kudu docunentation for nore
details. Raw error nessage foll ows.

e Without hole punching support, the log block manager will never delete blocks and progressively occupy even
more space on disk, which makes it unsafe to use.

¢ If you can’t use hole punching in your environment, you can still try Kudu. Enable the file block manager instead
of the log block manager by adding the - - bl ock_manager =f i | e flag to the commands you use to start the
master and tablet servers. Note that the file block manager does not scale as well as the log block manager, and
should only be used for small-scale deployments.

Clock Synchronization Issues

The clock on each Kudu master and tablet server daemon must be synchronized using Network Time Protocol (NTP).
If NTP is not installed or is not running, you may see errors such as the following:

10929 10: 00: 26. 570979 21371 naster_main.cc:52] Initializing master server...
F0929 10: 00: 26. 571107 21371 naster _mai n. cc: 53] Check failed: _s.ok() Bad status: Service
unavail able: dock is not synchronized:
Error reading clock. O ock considered unsynchroni zed. Errno: Invalid argument

l et _server_mmin.cc:48] Initializing tablet server...
F0929 10: 00: 26. 572041 21370 tabl et _server_mai n.cc: 49] Check failed: _s.ok() Bad status:
Servi ce unavail able: O ock is not synchronized:
Error reading clock. O ock considered unsynchroni zed. Errno: Success

To resolve such errors, make sure that NTP is installed on each master and tablet server, and that all NTP processes
synchronize to the same time source.

¢ To install NTP, use the command appropriate for your operating system:

http://kudu.apache.org/docs/troubleshooting.html
http://kudu.apache.org/docs/troubleshooting.html

oS Command

Debian/Ubuntu sudo apt-get install ntp

RHEL/CentOS sudo yuminstall ntp

e If NTP is installed but the clock is reported as unsynchronized, Kudu will not start, and will emit a message such
as:

F0924 20: 24: 36. 336809 14550 hybrid_clock.cc:191 Couldn't get the current tine: d ock
unsynchroni zed. Status: Service unavailable: Error reading clock. Cock considered
unsynchr oni zed.

You can monitor clock synchronization status by running the nt pt i me command. The relevant value is what is
reported for maxi mum er r or . Note that NTP requires a network connection and may take a few minutes to
synchronize the clock. In some cases a spotty network connection may make NTP report the clock as unsynchronized.
A common, though temporary, workaround for this is to restart NTP with one of the following commands.

oS Command
Debian/Ubuntu sudo service ntp restart
RHEL/CentOS sudo /etc/init.d/ntpd restart

¢ In addition to the clocks being synchronized, the maxi mum cl ock error (notto be mistaken with the estimated
error) must be set to a value relevant to your deployment. The default value is 10 seconds, but it can be configured
using the - - max_cl ock_sync_error _usec flag.

If NTP is installed and synchronized, but the maximum clock error is too high, you will see a message such as:

Sep 17, 8:13:09.873 PM FATAL hybrid_cl ock.cc: 196 Couldn't get the current time: C ock
synchroni zed, but error: 11130000, is past the maxi num all owabl e error: 10000000

or

Sep 17, 8:32:31.135 PM FATAL tabl et _server_main.cc: 38 Check failed: _s.ok() Bad status:
Servi ce unavail abl e: Cannot initialize clock: Cannot initialize Hybridd ock. d ock
synchroni zed but error was too high (11711000 us).

If NTP reports the clock as synchronized, but the maximum error is consistently too high, you can increase the
threshold to a higher value by setting the max_cl ock_sync_error _usec flag. For example, to increase the
maximum error to 20 seconds, set the flag as follows: - - max_cl ock_sync_error _usec=20000000.

Breakpad Minidumps for Kudu

Kudu uses the Google Breakpad library to generate a minidump whenever Kudu experiences a crash. A minidump file
contains important debugging information about the process that crashed, including shared libraries loaded and their
versions, a list of threads running at the time of the crash, the state of the processor registers and a copy of the stack
memory for each thread, and CPU and operating system version information. These minidumps are typically only a
few MB in size and are generated even if core dump generation is disabled. Currently, generating minidumps is only
possible on Linux deployments.

By default, Kudu stores its minidumps in a subdirectory of the configured glog directory called i ni dunps. This location
can be customized by setting the - - ni ni dunp_pat h flag. Kudu will retain only a certain number of minidumps before
deleting the older ones, in an effort to avoid filling up the disk with minidump files. The maximum number of minidumps
that will be retained can be controlled by setting the - - max_mi ni dunps gflag.

https://chromium.googlesource.com/breakpad/breakpad/

Minidumps contain information specific to the binary that created them and are therefore not useful without access
to the exact binary that crashed, or a very similar binary.

Kudu developers can access the minidump tools in their development environment because they are installed as part
of the Kudu thirdparty build. They can be found in the Kudu development environment under uni nst r unent ed/ bi n.
For example, t hi rdparty/i nstal | ed/ uni nst rument ed/ bi n/ mi ni dunp- 2- cor e.

If minidumps are enabled, it is possible to force Kudu to create a minidump without killing the process. To do that,
send a USRI signal to the kudu-t ser ver or kudu- mast er process. For example:

sudo pkill -USR1 kudu-tserver

Viewing the minidump stack trace with GDB

Although a minidump contains no heap information, it does contain thread and stack information. You can convert a
minidump to a core file to view it with GDB.

To convert the minidump (. dnp file) to a core file:

m ni dunp-2-core -0 02chb4a97-ee37-6454- 73a9d9ch-590c7dde. core \
02ch4a97- ee37- 6454- 73a9d9cb- 590c7dde. dnmp

To view the core file with GDB (on a parcel deployment):

gdb /opt/cl oudera/ parcel s/ KUDU | i b/ kudu/ sbi n-rel ease/ kudu- master \
-s [opt/clouderal/parcel s/ KUDU | i b/ debug/ usr/ i b/ kudu/ shi n-rel ease/ kudu- mast er . debug \
02cb4a97- ee37- 6454- 73a9d9cb- 590c7dde. core

For more information, see Getting started with Breakpad and Chrome developer tips for minidump file debugging.

Troubleshooting Performance Issues

Kudu Tracing

The Kudu master and tablet server daemons include built-in support for tracing based on the open source Chromium
Tracing framework. You can use tracing to diagnose latency issues or other problems on Kudu servers.

Accessing the Tracing Web Interface

The tracing interface is part of the embedded web server in each of the Kudu daemons, and can be accessed using a
web browser. Note that while the interface has been known to work in recent versions of Google Chrome, other
browsers may not work as expected.

Daemon URL
Tablet Server <t abl et - server- 1. exanpl e. cone: 8050/t raci ng. ht m
Master <mast er - 1. exanpl e. con®: 8051/t raci ng. ht m

Saving Traces

After you have collected traces, you can save these traces as JSON files by clicking Save. To load and analyze a saved
JSON file, click Load and choose the file.

https://chromium.googlesource.com/breakpad/breakpad/%2B/master/docs/getting_started_with_breakpad.md
https://chromium.googlesource.com/chromium/src/%2B/master/docs/linux_minidump_to_core.md
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool

RPC Timeout Traces

If client applications are experiencing RPC timeouts, the Kudu tablet server WARNI NG level logs should contain a log
entry which includes an RPC-level trace. For example:

W922 00: 56: 52. 313848 10858 i nbound_cal | . cc: 193] Call

kudu. consensus. ConsensusSer vi ce. Updat eConsensus

from 192. 168. 1. 102: 43499 (request call id 3555909) took 1464nms (client timeout 1000).
W)922 00: 56: 52. 314888 10858 i nbound_cal | . cc: 197] Trace:

0922 00: 56: 50. 849505 (+ Ous) service_pool.cc:97] Inserting onto call queue

0922 00: 56: 50. 849527 (+ 22us) service_pool.cc:158] Handling cal

0922 00: 56: 50. 849574 (+ 47us) raft_consensus. cc: 1008] Updating replica for 2 ops
0922 00: 56: 50. 849628 (+ 54us) raft_consensus. cc: 1050] Early marking committed up to
term 8 index: 880241

0922 00: 56: 50. 849968 (+ 340us) raft_consensus. cc: 1056] Triggering prepare for 2 ops
0922 00: 56: 50. 850119 (+ 151us) log.cc:420] Serialized 1555 byte log entry

0922 00: 56: 50. 850213 (+ 94us) raft_consensus.cc: 1131] Marking comitted up to term
8 index: 880241

0922 00: 56: 50. 850218 (+ 5us) raft_consensus. cc: 1148] Updating | ast received op as

term 8 index: 880243

0922 00: 56: 50. 850219 (+ lus) raft_consensus. cc: 1195] Filling consensus response to
| eader .

0922 00: 56: 50. 850221 (+ 2us) raft_consensus.cc: 1169] Waiting on the replicates to

finish | ogging

0922 00: 56:52. 313763 (+1463542us) raft_consensus. cc: 1182] fi ni shed

0922 00: 56:52. 313764 (+ lus) raft_consensus. cc: 1190] Updat eReplicas() finished
0922 00: 56: 52. 313788 (+ 24us) inbound_call.cc:114] Queuei ng success response

These traces can indicate which part of the request was slow. Make sure you include them when filing bug reports
related to RPC latency outliers.

Kernel Stack Watchdog Traces

Each Kudu server process has a background thread called the Stack Watchdog, which monitors other threads in the
server in case they are blocked for longer-than-expected periods of time. These traces can indicate operating system
issues or bottle-necked storage.

When the watchdog thread identifies a case of thread blockage, it logs an entry in the WARNI NG log as follows:

W)921 23:51:54. 306350 10912 kernel _stack_watchdog. cc: 111] Thread 10937 stuck at
/ dat a/ kudu/ consensus/ | og. cc: 505 for 537ms:

Ker nel stack:

ffa00b209d>] do_get_write_access+0x29d/ 0x520 [j bd2]

fa00b2471>] jbd2_journal _get_wite_access+0x31/0x50 [j bd2]

fa00f e6d8>] ~ ext4 journal get wite_access+0x38/0x80 [ext 4]
fa00d9b23>] ext4 reserve_inode_write+0x73/0xa0 [ext4]

fa00d9b9c>] ext4_mark_i node_di rty+0x4c/ 0x1d0 [ext 4]

fa00d9e90>] ext4 dirty_ i node+0x40/ 0x60 [ext 4]

f811ac48b> mar k_i node _di rty+0x3b/ 0x160

£8119c742>] file updat e_time+0xf2/0x170

f8111cle0>] _ generic_ file aio_wite+0x230/ 0x490

f8111c4c8>] generic_file_aio_write+0x88/ 0x100

fa00d3fb1>] ext4_file_wite+0x61/0x1le0 [ext4]

f81180f 5b>] do_sync_readv_writev+0xf b/ 0x140
f81181ee6>] do_readv_writev+0xd6/ Ox1f 0
£81182046>] vfs_writev+0x46/ 0x60
f
f
f

ANANANNNNANNNNANNANN

81182102>] sys_pw it ev+0xa2/ 0xc0
8100b072>] system call _fastpat h+0x16/ 0x1b
f

fiff
fiff
fiff
fiff
fiff
fiff
fiff
fiff
fiff
fiff
fiff
fiff
fiff
fiff
fiff
fiff
frff FIEFfff>] OXFIffffffffffffief

f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

h —h —h —h —h —h —h —h —h —h —h —h —h —h —h

JAY

User stack:

Ox3alacelOc4 (unknown)
0x1262103 (unknown)
0x12622d4 (unknown)
0x12603df (unknown)

0x8e7bfb (unknown)
0x8f 478b (unknown)
0x8f 55db (unknown)
0x12a7b6f (unknown)
0x3al1b007851 (unknown)

SIEISISIGIGISISIS)

@ Ox3alace894d (unknown)
@ (nil) (unknown)

These traces can be useful for diagnosing root-cause latency issues in Kudu especially when they are caused by underlying
systems such as disk controllers or file systems.

Cloudera Manager Metrics for Kudu

The following topics list the metrics collected by Cloudera Manager when a Kudu service is managed by Cloudera
Manager. For more information about metrics in Cloudera Manager, see Cloudera Manager Metrics and Metric

Aggregation.

Kudu Metrics

In addition to these base metrics, many aggregate metrics are available. If an entity type has parents defined, you can
formulate all possible aggregate metrics using the formula base_netri c_across_parents.

In addition, metrics for aggregate totals can be formed by adding the prefix t ot al _ to the front of the metric name.

Use the type-ahead feature in the Cloudera Manager chart browser to find the exact aggregate metric name, in case
the plural form does not end in "s".

For example, the following metric names may be valid for Kudu:

e alerts_rate_across_clusters
e total alerts rate_across_clusters

Some metrics, such as al erts_r at e, apply to nearly every metric context. Others only apply to a certain service or

role.
Metric Name Description Unit Parents CDH Version
alerts rate The number of alerts. events per cluster CDH 4, CDH 5
second
events critical _rate |The number of critical events. |events per cluster CDH 4,CDH 5
second
events_inportant _rate |Thenumberofimportantevents. | events per cluster CDH 4, CDH 5
second
events_infornmational rate|The number of informational events per cluster CDH 4,CDH5
events. second
health_bad rate Percentage of Time with Bad seconds per cluster CDH 4,CDH 5
Health second
heal t h_concer ni ng_r at e | Percentage of Time with seconds per cluster CDH 4,CDH5
Concerning Health second
heal t h_di sabl ed_rate |Percentage of Time with seconds per cluster CDH 4,CDH5
Disabled Health second
heal th_good_rate Percentage of Time with Good |seconds per cluster CDH 4,CDH 5
Health second
heal t h_unknown_r at e Percentage of Time with seconds per cluster CDH 4, CDH 5
Unknown Health second

Kudu Replica Metrics

In addition to these base metrics, many aggregate metrics are available. If an entity type has parents defined, you can
formulate all possible aggregate metrics using the formula base_netri c_across_parents.

In addition, metrics for aggregate totals can be formed by adding the prefix t ot al _ to the front of the metric name.

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_metrics.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_metric_aggregation.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_metric_aggregation.html

Use the type-ahead feature in the Cloudera Manager chart browser to find the exact aggregate metric name, in case
the plural form does not end in "s".

For example, the following metric names may be valid for Kudu Replica:

e kudu_all _transactions_

inflight _across_clusters

e total _kudu_all _transactions_inflight_across_clusters

Some metrics, such as al erts_r at e, apply to nearly every metric context. Others only apply to a certain service or

role.

For more information about metrics, see Cloudera Manager Metrics and Metric Aggregation.

kudu_tablet,
rack

Metric Name Description Unit Parents CDH Version
kudu a | _transacti ons inflight | Number of transactions currently | transactions | cluster, kudu, |CDH 4, CDH 5
in-flight, including any type. kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kdidte steatrasatiasirfligt | Number of alter schema transactions | cluster, kudu, |CDH4,CDH5
transactions currently in-flight kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu bl com| ookups per_op rate| Tracks the number of bloom samples per cluster, kudu, |CDH 4,CDH5
filter lookups performed by each | second kudukudu_tserver,
operation. A single operation kudu_table,
may perform several bloom filter kudu_tablet,
lookups if the tablet is not fully rack
compacted. High frequency of
high values may indicate that
compaction is falling behind. This
is the total number of recorded
samples.
kudu b coml adays pr_ap sumra e| Tracks the number of bloom messageunitsprobes | cluster, kudu, | CDH 4, CDH 5
filter lookups performed by each | per second kudukudu_tserver,
operation. A single operation kudu_table,
may perform several bloom filter kudu_tablet,
lookups if the tablet is not fully rack
compacted. High frequency of
high values may indicate that
compaction is falling behind. This
is the total sum of recorded
samples.
kudu_bl oom | ookups_r at € | Number of times a bloom filter | messageunitsprobes | cluster, kudu, |CDH 4, CDH 5
was consulted per second kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu_byt es_fl ushed_r at e | Amount of data that has been | bytes per cluster, kudu, |CDH 4, CDH5
flushed to disk by this tablet. second kudukudu_tserver;
kudu_table,

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_metrics.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_metric_aggregation.html

Metric Name Description Unit Parents CDH Version
kudu conmit wait duration rate| Time spent waiting for samples per cluster, kudu, |CDH 4,CDH5
COMMIT_WAIT external second kudukudu_tserver,
consistency writes for this tablet. kudu_table,
This is the total number of kudu_tablet,
recorded samples. rack
kudu comint_ veit_drai on sumrate| Time spent waiting for messgursTicEds | cluster, kudu, | CDH 4, CDH 5
COMMIT_WAIT external per second kudukudu_tserver,
consistency writes for this tablet. kudu_table,
This is the total sum of recorded kudu_tablet,
samples. rack
kudu_conpact rs duration rate| Time spent compacting RowSets. | samples per cluster, kudu, |CDH 4,CDH5
This is the total number of second kudukudu_tserver,
recorded samples. kudu_table,
kudu_tablet,
rack
kudu congect_rs durai on sumra e| Time spent compacting RowSets. | mesagunismiaonds | cluster, kudu, | CDH 4, CDH 5
This is the total sum of recorded | per second kudukudu_tserver,
samples. kudu_table,
kudu_tablet,
rack
kudu_conpact _rs_runni ng | Number of RowSet compactions | operations cluster, kudu, |CDH 4,CDH5
currently running. kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kuch cHtafile |l oduys par_ o rae| Tracks the number of delta file | samples per cluster, kudu, |CDH 4,CDH5
lookups performed by each second kudukudu_tserver,
operation. A single operation kudu_table,
may perform several delta file kudu_tablet,
lookups if the tablet is not fully rack
compacted. High frequency of
high values may indicate that
compaction is falling behind. This
is the total number of recorded
samples.
ki cHtafileladys pr g aunrae| Tracks the number of delta file | messageunisprobes | cluster, kudu, | CDH 4, CDH 5
lookups performed by each per second kudukudu_tserver,
operation. A single operation kudu_table,
may perform several delta file kudu_tablet,
lookups if the tablet is not fully rack
compacted. High frequency of
high values may indicate that
compaction is falling behind. This
is the total sum of recorded
samples.
kudu delta fil e | ookups_rate| Number of times a delta file was | messageunitsprobes | cluster, kudu, |CDH 4, CDH 5
consulted per second kudukudu_tserver,
kudu_table,

kudu_tablet,
rack

Metric Name Description Unit Parents CDH Version
koucHtarga aopet rs draiorae| Seconds spent major delta samples per cluster, kudu, |CDH 4,CDH5
compacting. This is the total second kudukudu_tserver,
number of recorded samples. kudu_table,
kudu_tablet,
rack
kdiditargo oyt rsdrdioanrae| Seconds spent major delta seconds per cluster, kudu, |CDH 4,CDH5
compacting. This is the total sum | second kudukudu_tserver,
of recorded samples. kudu_table,
kudu_tablet,
rack
kuc cd ta ngia_capect_rs rumi ng| Number of delta major operations cluster, kudu, |CDH 4,CDH5
compactions currently running. kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
ko cdtanmo apet rsdraianrae| Time spent minor delta samples per cluster, kudu, |CDH 4,CDH5
compacting. This is the total second kudukudu_tserver,
number of recorded samples. kudu_table,
kudu_tablet,
rack
kdiddtarmo oyt rsdrdioanrae Time spent minor delta mesagunismiaonss | cluster, kudu, | CDH 4, CDH 5
compacting. This is the total sum | per second kudukudu_tserver,
of recorded samples. kudu_table,
kudu_tablet,
rack
kuch od ta mnor_capect_rs rumi ng| Number of delta minor operations cluster, kudu, |CDH 4,CDH5
compactions currently running. kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu flush dns duration rate|Time spent flushing samples per cluster, kudu, |CDH 4, CDH5
DeltaMemStores. This is the total | second kudukudu_tserver,
number of recorded samples. kudu_table,
kudu_tablet,
rack
kudu flush dns durati on sumrate | Time spent flushing messgeLnismiaons | cluster, kudu, | CDH 4, CDH 5
DeltaMemStores. This is the total | per second kudukudu_tserver,
sum of recorded samples. kudu_table,
kudu_tablet,
rack
kudu_f 1 ush_dns_runni ng | Number of delta memstore operations cluster, kudu, |CDH 4, CDH5
flushes currently running. kudukudu_tserver;
kudu_table,
kudu_tablet,
rack
kudu flush mis duration rate|Time spent flushing samples per cluster, kudu, |CDH 4, CDH5
MemRowsSets. This is the total |second kudukudu_tserver,
number of recorded samples. kudu_table,

Metric Name Description Unit Parents CDH Version
kudu_tablet,
rack
kudu flush s durati on sumrate| Time spent flushing messgeLnismiaons | cluster, kudu, | CDH 4, CDH 5
MemRowsSets. This is the total | per second kudukudu_tserver,
sum of recorded samples. kudu_table,
kudu_tablet,
rack
kudu_f 1l ush_nrs_runni ng | Number of MemRowSet flushes | operations cluster, kudu, |CDH 4, CDH5
currently running. kudukudu_tserver;
kudu_table,
kudu_tablet,
rack
kdifdl o reay pesrergeatiasrael Number of RPC requests rejected | requests per | cluster, kudu, |CDH 4, CDH 5
due to memory pressure while |second kudukudu_tserver,
FOLLOWER. kudu_table,
kudu_tablet,
rack
kudu_i n_progress_ops | Number of operations in the operations cluster, kudu, |CDH 4, CDH 5
peer's queue ack'd by a minority kudukudu_tserver,
of peers. kudu_table,
kudu_tablet,
rack
kil i reertias faled dp key raee| Number of inserts which failed | messageunitsrows | cluster, kudu, |CDH 4, CDH 5
because the key already existed | per second kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu key file | odaps per_gp rae| Tracks the number of key file samples per cluster, kudu, |CDH 4,CDH5
lookups performed by each second kudukudu_tserver,
operation. A single operation kudu_table,
may perform several key file kudu_tablet,
lookups if the tablet is not fully rack
compacted and if bloom filters
are not effectively culling
lookups. This is the total number
of recorded samples.
kuc key fil e ladays pr_q sumrae| Tracks the number of key file messageunisprobes | cluster, kudu, | CDH 4, CDH 5
lookups performed by each per second kudukudu_tserver,
operation. A single operation kudu_table,
may perform several key file kudu_tablet,
lookups if the tablet is not fully rack
compacted and if bloom filters
are not effectively culling
lookups. This is the total sum of
recorded samples.
kudu key file | ookups_rate|Number of times a key cfile was | messsgeunisprobes | cluster, kudu, |CDH 4, CDH 5
consulted per second kudukudu_tserver,
kudu_table,

kudu_tablet,
rack

Metric Name Description Unit Parents CDH Version
kul e reoy pessrergatias rael Number of RPC requests rejected | requests per | cluster, kudu, |CDH 4, CDH 5
due to memory pressure while |second kudukudu_tserver,
LEADER. kudu_table,
kudu_tablet,
rack
kudu | og append | atency rat e | Microseconds spent on samples per cluster, kudu, |CDH 4,CDH5
appending to the log segment | second kudukudu_tserver,
file. This is the total number of kudu_table,
recorded samples. kudu_tablet,
rack
kudu | og append | a ency sumrate| Microseconds spent on messgUrsTicEes | cluster, kudu, | CDH 4, CDH 5
appending to the log segment | per second kudukudu_tserver,
file. This is the total sum of kudu_table,
recorded samples. kudu_tablet,
rack
kudu | og byt es | ogged rat e | Number of bytes logged since | bytes per cluster, kudu, |CDH 4,CDH5
service start second kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu_| og_cache_num ops | Number of operations in the log | operations cluster, kudu, |CDH 4,CDH5
cache. kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu_| og_cache_si ze Amount of memory in use for | bytes cluster, kudu, |CDH 4,CDH5
caching the local log. kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kol | ag etry ket des pr gap rae| Number of log entry batches in | samples per cluster, kudu, |CDH 4,CDH5
a group commit group. Thisis | second kudukudu_tserver,
the total number of recorded kudu_table,
samples. kudu_tablet,
rack
kil ay etry ktdes pr gapanrae| Number of log entry batches in | requests per | cluster, kudu, |CDH 4, CDH 5
a group commit group. Thisis | second kudukudu_tserver,
the total sum of recorded kudu_table,
samples. kudu_tablet,
rack
kudu_l og_gc_durati on_rat e | Time spent garbage collecting | samples per cluster, kudu, |CDH 4, CDH 5
the logs. This is the total number | second kudukudu_tserver;
of recorded samples. kudu_table,
kudu_tablet,
rack
kudu | og gc duration sumrate| Time spent garbage collecting | mesagunismiaronds | cluster, kudu, | CDH 4, CDH 5
the logs. This is the total sum of | per second kudukudu_tserver,
recorded samples. kudu_table,

Metric Name Description Unit Parents CDH Version
kudu_tablet,
rack
kudu_Il og_gc_runni ng Number of log GC operations | operations cluster, kudu, |CDH 4,CDH5
currently running. kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu | og gragp comit_| @ ey rate| Microseconds spent on samples per cluster, kudu, |CDH 4,CDH5
committing an entire group. This | second kudukudu_tserver;
is the total number of recorded kudu_table,
samples. kudu_tablet,
rack
ki | ay gap camit_| adety sumrae| Microseconds spent on messgL s | cluster, kudu, | CDH 4, CDH 5
committing an entire group. This | per second kudukudu_tserver,
is the total sum of recorded kudu_table,
samples. kudu_tablet,
rack
kudu | og reader_bytes read rate| Data read from the WAL since | bytes per cluster, kudu, |CDH 4,CDH5
tablet start second kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu | og resder_ertries reed rate| Number of entries read from the | entries per cluster, kudu, |CDH 4, CDH5
WAL since tablet start second kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
ki | oy resdr red betch I @@ty rate| Microseconds spent reading log | samples per | cluster, kudu, |CDH 4, CDH 5
entry batches. This is the total |second kudukudu_tserver,
number of recorded samples. kudu_table,
kudu_tablet,
rack
kil yresr rexdbtchl d@ty anmrae| Microseconds spent reading log | bytes per cluster, kudu, |CDH 4,CDH5
entry batches. This is the total |second kudukudu_tserver,
sum of recorded samples. kudu_table,
kudu_tablet,
rack
kudu I og roll | atency_rate|Microseconds spent on rolling | samples per cluster, kudu, |CDH 4,CDH5
over to a new log segment file. |second kudukudu_tserver,
This is the total number of kudu_table,
recorded samples. kudu_tablet,
rack
kudu | og rd | | atency sumrate| Microseconds spent on rolling | messgurisriosads | cluster, kudu, |CDH 4, CDH 5
over to a new log segment file. | per second kudukudu_tserver,
This is the total sum of recorded kudu_table,

samples.

kudu_tablet,
rack

Metric Name Description Unit Parents CDH Version
kudu | og sync | atency_rat e | Microseconds spent on samples per cluster, kudu, |CDH 4,CDH5
synchronizing the log segment | second kudukudu_tserver,
file. This is the total number of kudu_table,
recorded samples. kudu_tablet,
rack
kudu | og sync | atency sumrate| Microseconds spent on messgursTicEds | cluster, kudu, | CDH 4, CDH 5
synchronizing the log segment | per second kudukudu_tserver,
file. This is the total sum of kudu_table,
recorded samples. kudu_tablet,
rack
kudu_mmaj ority_done_ops | Number of operations in the operations cluster, kudu, |CDH 4,CDH5
leader queue ack'd by a majority kudukudu_tserver,
but not all peers. This metric is kudu_table,
always zero for followers. kudu_tablet,
rack
kudu_nenr owset _si ze Size of this tablet's memrowset | bytes cluster, kudu, |CDH 4,CDH5
kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu_nrs_| ookups_rat e |Number of times a MemRowSet | messsgeunisprobes | cluster, kudu, |CDH 4, CDH 5
was consulted. per second kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu_on_di sk_si ze Size of this tablet on disk. bytes cluster, kudu, |CDH 4,CDH5
kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kuou op prepare quete legh rae| Number of operations waiting to | samples per cluster, kudu, |CDH 4,CDH5
be prepared within this tablet. |second kudukudu_tserver,
High queue lengths indicate that kudu_table,
the server is unable to process kudu_tablet,
operations as fast as they are rack
being written to the WAL. This is
the total number of recorded
samples.
kul op rere e | @gh sumrae| Number of operations waiting to | tasks per cluster, kudu, |CDH 4,CDH5
be prepared within this tablet. |second kudukudu_tserver,
High queue lengths indicate that kudu_table,
the server is unable to process kudu_tablet,
operations as fast as they are rack
being written to the WAL. This is
the total sum of recorded
samples.
kudu op prepare queue tine rate| Time that operations spent samples per cluster, kudu, |CDH 4, CDH 5
waiting in the prepare queue second kudukudu_tserver;
before being processed. High kudu_table,

gueue times indicate that the

Metric Name Description Unit Parents CDH Version
server is unable to process kudu_tablet,
operations as fast as they are rack
being written to the WAL. This is
the total number of recorded
samples.
kudu oo prepare qale tine sumrate| Time that operations spent messgL o | cluster, kudu, | CDH 4, CDH 5
waiting in the prepare queue per second kudukudu_tserver,
before being processed. High kudu_table,
gueue times indicate that the kudu_tablet,
server is unable to process rack
operations as fast as they are
being written to the WAL. This is
the total sum of recorded
samples.
kudu op prepare run tine rate| Time that operations spent being | samples per cluster, kudu, |CDH 4, CDH 5
prepared in the tablet. High second kudukudu_tserver;
values may indicate that the kudu_table,
server is under-provisioned or kudu_tablet,
that operations are experiencing rack
high contention with one
another for locks. This is the
total number of recorded
samples.
kudu op prepere run tine sumra e| Time that operations spent being | messgrsrixsmnds | cluster, kudu, | CDH 4, CDH 5
prepared in the tablet. High per second kudukudu_tserver,
values may indicate that the kudu_table,
server is under-provisioned or kudu_tablet,
that operations are experiencing rack
high contention with one
another for locks. This is the
total sum of recorded samples.
kudu_raft _term Current Term of the Raft message.units.units | cluster, kudu, |CDH 4, CDH 5
Consensus algorithm. This kudukudu_tserver,
number increments each time a kudu_table,
leader election is started. kudu_tablet,
rack
kudu_rows_del et ed_r at e | Number of row delete message.unitsrows | cluster, kudu, |CDH 4, CDH 5
operations performed on this per second kudukudu_tserver,
tablet since service start kudu_table,
kudu_tablet,
rack
kudu_rows_i nsert ed_rat e |Number of rows inserted into | messageunitsrows | cluster, kudu, |CDH 4, CDH 5
this tablet since service start per second kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu_rows_updat ed_r at e | Number of row update message.unitsrows | cluster, kudu, |CDH 4, CDH 5
operations performed on this per second kudukudu_tserver,
tablet since service start kudu_table,

kudu_tablet,
rack

Metric Name Description Unit Parents CDH Version
kudu_r ows_upsert ed_r at e | Number of rows upserted into | message.unitsrows | cluster, kudu, |CDH 4, CDH 5
this tablet since service start per second kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kudu scamer_bytes returned rate| Number of bytes returned by | bytes per cluster, kudu, |CDH 4,CDH5
scanners to clients. This count is | second kudukudu_tserver,
measured after predicates are kudu_table,
applied and the data is decoded kudu_tablet,
for consumption by clients, and rack
thus is not a reflection of the
amount of work being done by
scanners.
kol scare bites scared frard krate| Number of bytes read by scan | bytes per cluster, kudu, |CDH 4,CDH5
requests. This is measured as a |second kudukudu_tserver,
raw count prior to application of kudu_table,
predicates, deleted data,or kudu_tablet,
MVCC-based filtering. Thus, this rack
is a better measure of actual 10
that has been caused by scan
operations compared to the
Scanner Bytes Returned metric.
Note that this only counts data
that has been flushed to disk,
and does not include data read
from in-memory stores.
However, itincludes both cache
misses and cache hits.
kudu scamer_cd |'s returned rate| Number of table cells returned | message.unitscells | cluster, kudu, |CDH 4, CDH 5
by scanners to clients. This count | per second kudukudu_tserver,
is measured after predicates are kudu_table,
applied, and thus is not a kudu_tablet,
reflection of the amount of work rack
being done by scanners.
kol sare dls scared frard krate| Number of table cells processed | message.units.cells | cluster, kudu, |CDH 4, CDH 5

by scan requests. This is
measured as a raw count prior
to application of predicates,
deleted data,or MVCC-based
filtering. Thus, this is a better
measure of actual table cells that
have been processed by scan
operations compared to the
Scanner Cells Returned metric.
Note that this only counts data
that has been flushed to disk,
and does not include data read
from in-memory stores.
However, itincludes both cache
misses and cache hits.

per second

kudukudu_tserver,
kudu_table,
kudu_tablet,
rack

Metric Name Description Unit Parents CDH Version
kudu scamer_rovs returned rate| Number of rows returned by message.unitsrows | cluster, kudu, |CDH 4, CDH 5
scanners to clients. This count is | per second kudukudu_tserver,
measured after predicates are kudu_table,
applied, and thus is not a kudu_tablet,
reflection of the amount of work rack
being done by scanners.
kudu scanner_rows_scanned rate| Number of rows processed by | messageunitsrows | cluster, kudu, |CDH 4, CDH 5
scan requests. This is measured | per second kudukudu_tserver,
as a raw count prior to kudu_table,
application of predicates, kudu_tablet,
deleted data,or MVCC-based rack
filtering. Thus, this is a better
measure of actual table rows
that have been processed by
scan operations compared to the
Scanner Rows Returned metric.
kudu_scans_st art ed_r at e | Number of scanners which have | mesageunissaes | cluster, kudu, |CDH 4, CDH 5
been started on this tablet per second kudukudu_tserver,
kudu_table,
kudu_tablet,
rack
kdiggd redirflidt vt drdiarae Time spent waiting for in-flight | samples per cluster, kudu, |CDH 4,CDH5
writes to complete for second kudukudu_tserver,
READ_AT_SNAPSHOT scans. This kudu_table,
is the total number of recorded kudu_tablet,
samples. rack
keusastu rexdirflidt wit drdionamide Time spent waiting for in-flight | messgurisriocannds | cluster, kudu, | CDH 4, CDH 5
writes to complete for per second kudukudu_tserver,
READ_AT_SNAPSHOT scans. This kudu_table,
is the total sum of recorded kudu_tablet,
samples. rack
kditrasati raay pesrergeatiasrdel Number of transactions rejected | transactions | cluster, kudu, |CDH 4, CDH 5
because the tablet's transaction | per second kudukudu_tserver,
memory limit was reached. kudu_table,
kudu_tablet,
rack
kalvitegpaai ondi et poagieiastat/rde Duration of writes to this tablet | samples per cluster, kudu, |CDH 4, CDH5
with external consistency set to | second kudukudu_tserver,
CLIENT_PROPAGATED. Thisis the kudu_table,
total number of recorded kudu_tablet,
samples. rack
kalwmiteqpalii ondiet qagtelasdaty/snmde Duration of writes to this tablet | messgarsrixsonds | cluster, kudu, | CDH 4, CDH 5
with external consistency set to | per second kudukudu_tserver,
CLIENT_PROPAGATED. Thisis the kudu_table,
total sum of recorded samples. kudu_tablet,
rack
kaiwiteqpdrdi onanit \iit @¥get/rde) Duration of writes to this tablet | samples per cluster, kudu, |CDH 4, CDH5
with external consistency set to | second kudukudu_tserver;
COMMIT_WAIT. This is the total kudu_table,

number of recorded samples.

currently in-flight

kudukudu_tserver;
kudu_table,
kudu_tablet,
rack

Metric Name Description Unit Parents CDH Version
kudu_tablet,
rack
kamitegodrdi onamit \ait @rtatysnde Duration of writes to this tablet | messgarsridsonds | cluster, kudu, |CDH 4, CDH 5
with external consistency set to | per second kudukudu_tserver,
COMMIT_WAIT. This is the total kudu_table,
sum of recorded samples. kudu_tablet,
rack
kudu wite transacti ons_ i nfli gt | Number of write transactions | transactions cluster, kudu, |CDH 4, CDH5

Tablet Server Metrics

In addition to these base metrics, many aggregate metrics are available. If an entity type has parents defined, you can
formulate all possible aggregate metrics using the formula base_netri c_across_parents.

In addition, metrics for aggregate totals can be formed by adding the prefix t ot al _ to the front of the metric name.

Use the type-ahead feature in the Cloudera Manager chart browser to find the exact aggregate metric name, in case
the plural form does not end in "s".

For example, the following metric names may be valid for Tablet Server:

e alerts_rate_across_accunul os
e total alerts_rate_across_accunul os

Some metrics, such as al erts_r at e, apply to nearly every metric context. Others only apply to a certain service or

role.

Metric Name Description Unit Parents CDH Version

alerts rate The number of alerts. events per accumulo, CDH 4, CDH 5
second cluster, rack

cgroup_cpu_system rat e | CPU usage of the role's cgroup |seconds per accumulo, CDH 4, CDH 5
second cluster, rack

cgroup_cpu_user _rate |UserSpace CPU usage of the seconds per accumulo, CDH 4, CDH 5
role's cgroup second cluster, rack

cgroup_nem page_cache |Page cache usage of therole's |bytes accumulo, CDH 4, CDH 5
cgroup cluster, rack

cgroup_nmemrss Resident memory of the role's | bytes accumulo, CDH 4,CDH 5
cgroup cluster, rack

cgroup_nmem swap Swap usage of the role's cgroup | bytes accumulo, CDH 4,CDH 5
cluster, rack

cgroup_read_bytes_rat e |Bytes read from all disks by the |bytes per accumulo, CDH4,CDH 5
role's cgroup second cluster, rack

cgroup_read_i os_rate |Number of read I/O operations |ios per second |accumulo, CDH 4,CDH 5

from all disks by the role's
cgroup

cluster, rack

Metric Name Description Unit Parents CDH Version
cgroup_wite_bytes rate |Byteswritten to all disks by the |bytes per accumulo, CDH 4, CDH 5
role's cgroup second cluster, rack
cgroup_write_ i os_rate [Number of write I/O operations |ios per second |accumulo, CDH 4,CDH 5
to all disks by the role's cgroup cluster, rack
cpu_systemrate Total System CPU seconds per accumulo, CDH 4, CDH 5
second cluster, rack
cpu_user_rate Total CPU user time seconds per accumulo, CDH 4, CDH 5
second cluster, rack
events critical _rate |The number of critical events. |events per accumulo, CDH 4,CDH 5
second cluster, rack
events_i nportant _rate |Thenumberofimportantevents. | events per accumulo, CDH 4, CDH 5
second cluster, rack
events_informational rate|The number of informational events per accumulo, CDH 4,CDH 5
events. second cluster, rack
fd_max Maximum number of file file descriptors | accumulo, CDH 4,CDH 5
descriptors cluster, rack
fd_open Open file descriptors. file descriptors | accumulo, CDH4,CDH5
cluster, rack
heal th_bad_rate Percentage of Time with Bad seconds per accumulo, CDH 4,CDH 5
Health second cluster, rack
heal t h_concer ni ng_r at e | Percentage of Time with seconds per accumulo, CDH 4,CDH 5
Concerning Health second cluster, rack
heal t h_di sabl ed_rate |Percentage of Time with seconds per accumulo, CDH 4,CDH5
Disabled Health second cluster, rack
heal t h_good_rate Percentage of Time with Good |seconds per accumulo, CDH 4, CDH 5
Health second cluster, rack
heal t h_unknown_rate Percentage of Time with seconds per accumulo, CDH 4,CDH 5
Unknown Health second cluster, rack
kudu_active_scanners Number of scanners that are messageunissanes | cluster, kudu, | CDH 4, CDH 5
currently active rack
kudu Wl ock cache evi ctions rate| Number of blocks evicted from | blocks per cluster, kudu, |CDH 4,CDH5
the cache second rack
kudu K ock cache hits caching rate| Number of lookups that were | blocks per cluster, kudu, |CDH 4,CDH5
expecting a block that found second rack
one.Use this number instead of
cache_hits when trying to
determine how efficient the
cacheis
kudu_bl ock_cache hits_rate|Number of lookups that found a | blocks per cluster, kudu, |CDH 4,CDH5
block second rack
kudu bl ock cache inserts rate| Number of blocks inserted in the | blocks per cluster, kudu, |CDH 4, CDH5
cache second rack
kudu bl ock_cache | ookups_rat e| Number of blocks looked up blocks per cluster, kudu, |CDH 4, CDH5
from the cache second rack

Metric Name Description Unit Parents CDH Version

kol 1 ok cadre misses cadhi g rate| Number of lookups that were | blocks per cluster, kudu, |CDH 4,CDH5
expecting a block that didn't second rack
yield one.Use this number
instead of cache_misses when
trying to determine how efficient
the cacheis

kudu bl ock cache nisses rate| Number of lookups that didn't | blocks per cluster, kudu, |CDH 4,CDH5
yield a block second rack

kudu_bl ock_cache_usage | Memory consumed by the block | bytes cluster, kudu, |CDH 4,CDH5
cache rack

kudu H ok rereger H ads genreed rg| Number of data blocks currently | blocks cluster, kudu, |CDH 4,CDH5
open for reading rack

kudu H ok rereger H ads genwii ti ng| Number of data blocks currently | blocks cluster, kudu, |CDH 4,CDH5
open for writing rack

ki ok rerege tdd bites reedrae| Number of bytes of block data | bytes per cluster, kudu, |CDH 4,CDH5
read since service start second rack

koubak reee tdd bteswittenrael Number of bytes of block data | bytes per cluster, kudu, |CDH 4, CDH5
written since service start second rack

kdibak reep tdd restiebdalsrael Number of data blocks opened | blocks per cluster, kudu, |CDH 4, CDH5
for reading since service start second rack

kdibak rere tdd witddebalsrael Number of data blocks opened | blocks per cluster, kudu, |CDH 4, CDH5
for writing since service start second rack

kudu_code_cache_hits_rat e| Number of codegen cache hits | hits per second | cluster, kudu, |CDH 4, CDH 5
since start rack

kudu _code cache queries_rate| Number of codegen cache queries per cluster, kudu, |CDH 4, CDH5
queries (hits + misses) since start | second rack

kudu_cpu_stine_rate Total system CPU time of the messgeunismiaonss | cluster, kudu, | CDH 4, CDH 5
process per second rack

kudu _cpu_utine_rate Total user CPU time of the messgeunismiaonss | cluster, kudu, | CDH 4, CDH 5
process per second rack

kol gereric aureat_dl acaed btes| Number of bytes used by the bytes cluster, kudu, |CDH 4,CDH5
application. This will not typically rack
match the memory use reported
by the OS, because it does not
include TCMalloc overhead or
memory fragmentation.

kudu_generi c_heap_si ze | Bytes of system memory bytes cluster, kudu, |CDH 4,CDH5
reserved by TCMalloc. rack

kudu gl og error_nessages rate| Number of ERROR-level log messages per | cluster, kudu, |CDH 4, CDH 5
messages emitted by the second rack
application.

kudu gl og i nfo_nessages _rate| Number of INFO-level log messages per | cluster, kudu, |CDH 4, CDH 5

messages emitted by the
application.

second

rack

Metric Name Description Unit Parents CDH Version
kudu d og varni ng nessages rate| Number of WARNING-level log | messages per | cluster, kudu, |CDH 4, CDH 5
messages emitted by the second rack
application.
Microseconds spent handling | samples per cluster, kudu, |[CDH4,CDH5
kuduconsensusConsensusSenieeChangeConfig) | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling mesggLrsTiosads | cluster, kudu, |CDH 4, CDH 5
kuduconsenausConsensusSenieeChangeConfig) | per second rack
RPC requests. This is the total
sum of recorded samples.
Microseconds spent handling | samples per cluster, kudu, |[CDH4,CDH5
kodursers orsrs sSenieGE s sUsSad) | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling messgLreTioeads | cluster, kudu, |CDH 4, CDH 5
kooumorsErs orsasSavEGH(oeEsUsSad) | per second rack
RPC requests. This is the total
sum of recorded samples.
Microseconds spent handling | samples per cluster, kudu, |[CDH4,CDH5
kudumnsensusConsarausSeniceGetlasOpld) | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling mesggL rvioeads | cluster, kudu, |CDH 4, CDH 5
kuouaonsensusConsarausSeniceGetlasOpld) | per second rack
RPC requests. This is the total
sum of recorded samples.
Microseconds spent handling samples per cluster, kudu, |CDH4,CDH5
kduaoreers s ESavieGaENocedane) | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling messgurkmiosns | cluster, kudu, |CDH 4, CDH 5
kuducoreers sonssnasSavieGaNoce) | per second rack
RPC requests. This is the total
sum of recorded samples.
Microseconds spent handling | samples per cluster, kudu, |CDH4,CDH5
kuoucorers oresnausSaniel esckySepDown) | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling messgLrigriosnds | cluster, kudu, |CDH 4, CDH 5
loobcorers orsnasSaniel eacSepDown|) | per second rack
RPC requests. This is the total
sum of recorded samples.
Microseconds spent handling | samples per cluster, kudu, |[CDH4,CDH5
oBiep:cp:0:Copicp:0nz T (chzo0: Qopicy: second rack

RPC requests. This is the total
number of recorded samples.

Metric Name Description Unit Parents CDH Version
e Microseconds spent handling messgLrisTiosads | cluster, kudu, |CDH 4, CDH 5
il Copicy: (Orers per second rack
RPC requests. Thls is the totaI
sum of recorded samples.
Microseconds spent handling | samples per cluster, kudu, |[CDH4,CDH5
koo sCorersssavieR N eeckrtidion|) | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling mesggLrsTiosads | cluster, kudu, |CDH 4, CDH 5
kuoucorsera sCorersssavieR N eedartidion) | per second rack
RPC requests. This is the total
sum of recorded samples.
Microseconds spent handling |samples per cluster, kudu, |[CDH4,CDH5
i9:0:€ogicy; second rack
RPC requests. Thls is the total
number of recorded samples.
pde Microseconds spent handllng messgLrsTioeads | cluster, kudu, |CDH 4, CDH 5
359:0: €0 pic0:0s per second rack
RPC requests Th|s is the total
sum of recorded samples.
Microseconds spent handling | samples per cluster, kudu, |[CDH4,CDH5
kducorssrasConserasSaniel jockeConsera) | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling mesggL rvioeads | cluster, kudu, |CDH 4, CDH 5
kducorssra sonsrasSaniel jockeConsera) | per second rack
RPC requests. This is the total
sum of recorded samples.
kalfadi | det/ialrae remicdiatdderde Microseconds spent handling | samples per cluster, kudu, |CDH 4, CDH5
kudu.masterMasterService AlterTable() | second rack
RPC requests. This is the total
number of recorded samples.
haliadiz | denialrse Eepicdatdesmte Microseconds spent handling | messgrsrixsmnds | cluster, kudu, | CDH 4, CDH 5
kudu.masterMasterService AlterTable() | per second rack
RPC requests. This is the total
sum of recorded samples.
kaltauiks | dan/haidte remicraddberde Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudu.masterMasterService CreateTable() | second rack
RPC requests. This is the total
number of recorded samples.
haliadkz | denialrae @emicodddbesmte Microseconds spent handling | messgurisrixsnds | cluster, kudu, | CDH 4, CDH 5
kudu.masterMasterSenvice CreateTable() | per second rack
RPC requests. This is the total
sum of recorded samples.
halizdle |dankarae rdemiedddddorde Microseconds spent handling | samples per | cluster, kudu, |CDH 4, CDH 5

kudu.masterMasterService.DeleteTable()
RPC requests. This is the total
number of recorded samples.

second

rack

Metric Name Description Unit Parents CDH Version
halfadiz | denkarse memicddddbesmds Microseconds spent handling | messgursvioosonds | cluster, kudu, | CDH 4, CDH 5
kudu.masterMasterService.DeleteTable() | per second rack
RPC requests. This is the total
sum of recorded samples.
halfzdke [denialize @Ermicgaegddode Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
ludumestedVisderSenieeGetViederRegiiation) | second rack
RPC requests. This is the total
number of recorded samples.
halfadiz| deyhal e demichaadpdoande Microseconds spent handling | messgurisrixsaonds | cluster, kudu, | CDH 4, CDH 5
ludunestedVisderSenvieeGetViederRegitiation) | per second rack
RPC requests. This is the total
sum of recorded samples.
halfadiz [dephaliae Aemicgiddaiarde Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudurmesterMiasterSenvice GetTablel ocationsl) | second rack
RPC requests. This is the total
number of recorded samples.
haltdiz | daial e meicgiddaicame Microseconds spent handling | messgurisrioaonds | cluster, kudu, | CDH 4, CDH 5
kudurmesterMiasterSenvice GetTablel ocationsl) | per second rack
RPC requests. This is the total
sum of recorded samples.
kalizdiz | dasialrae Eeicgdatende Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudumasterViasterSenvice GetTableSchema() | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling mesggL rvioeads | cluster, kudu, |CDH 4, CDH 5
kudumesterViasterSenvice GefTableSchema|) | per second rack
RPC requests. This is the total
sum of recorded samples.
haltadiz |2ankalide deicgidd@iotde Microseconds spent handling | samples per cluster, kudu, |CDH 4, CDH5
kudumestedViasterSenviceGefTabletl ocations) | second rack
RPC requests. This is the total
number of recorded samples.
hallaiz| dephalrae mepiciidaiaeme Microseconds spent handling | messgrsrixsmnds | cluster, kudu, | CDH 4, CDH 5
kudumestedViasterSenviceGefTabletl ocations) | per second rack
RPC requests. This is the total
sum of recorded samples.
halfai | danalrae Aepicidtedabede Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudumesterMiasterSenvice SAlterTableDone() | second rack
RPC requests. This is the total
number of recorded samples.
halladiz | deyhal e memic dtadbaieamie Microseconds spent handling | messgurisrixsnds | cluster, kudu, | CDH 4, CDH 5
kudumesterMiasterSenvice lsAlterTableDonef) | per second rack
RPC requests. This is the total
sum of recorded samples.
haltadlz |dephaliae @emic setdabade Microseconds spent handling | samples per | cluster, kudu, |CDH 4, CDH 5
kudurmestedViasterSenviceCreaieTaboleDonel) | second rack

RPC requests. This is the total
number of recorded samples.

Metric Name Description Unit Parents CDH Version
halfzdke [denializie @emic setdaireame Microseconds spent handling | messgursvioosonds | cluster, kudu, | CDH 4, CDH 5
kudumesterViasterSenice SCreateTaleDoney) | per second rack
RPC requests. This is the total
sum of recorded samples.
halizdie |denkarae r@eicid@mestde Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudu.masterMasterService ListMasters() | second rack
RPC requests. This is the total
number of recorded samples.
kaliauiz |depialrae @ewiclid@asamie Microseconds spent handling | messgurisrixsaonds | cluster, kudu, | CDH 4, CDH 5
kudu.master.MasterService ListMasters() | per second rack
RPC requests. This is the total
sum of recorded samples.
kaltaie | ey ialrate raemiaistdbesrde Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudu.master.MasterService.ListTables() | second rack
RPC requests. This is the total
number of recorded samples.
kaliadiz |daskalrae mewicidtdbosumie Microseconds spent handling | messgurisrioannds | cluster, kudu, | CDH 4, CDH 5
kudu.master.MasterService.ListTables() | per second rack
RPC requests. This is the total
sum of recorded samples.
halfadiz [dephalrae Aemididtddmesde Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudurmesterMiasterSenvice ListTabletSeners) | second rack
RPC requests. This is the total
number of recorded samples.
halladiz | daial e memiciddidmessmie Microseconds spent handling | messggrsrisonds | cluster, kudu, | CDH 4, CDH 5
kudurmasterMiasterSenvice ListTabletSenversl) | per second rack
RPC requests. This is the total
sum of recorded samples.
karade |detykdirse raesvepgrde Microseconds spent handling | samples per cluster, kudu, |CDH 4, CDH5
kudu.master.MasterService.Ping() | second rack
RPC requests. This is the total
number of recorded samples.
kalirzale | den/karae memieiminme Microseconds spent handling | messgarsrixsmnds | cluster, kudu, | CDH 4, CDH 5
kudu.master.MasterService.Ping() | per second rack
RPC requests. This is the total
sum of recorded samples.
kaltaaik |dan/kaide remictdaiiE e Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudu.masterMasterServiceTSHeartbeat() | second rack
RPC requests. This is the total
number of recorded samples.
haliadkz |denialrae @emictdatie amde Microseconds spent handling | messgurisrixsnds | cluster, kudu, | CDH 4, CDH 5
kudu.masterMasterServiceTSHeartbeat() | per second rack
RPC requests. This is the total
sum of recorded samples.
halfzdk |desialepe gricicl dneapde Microseconds spent handling | samples per | cluster, kudu, |CDH 4, CDH 5
kudusenverGenericService HushCoverage() | second rack

RPC requests. This is the total
number of recorded samples.

Metric Name Description Unit Parents CDH Version
haltadiz | den/halepe gricic] dnempamde Microseconds spent handling | messgursvioosond | cluster, kudu, | CDH 4, CDH 5
kudusenverGenericService. HushCoverage() | per second rack
RPC requests. This is the total
sum of recorded samples.
haltzae | den/kalsne gricpiegsdside Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudu.serverGenericService.GetStatus() | second rack
RPC requests. This is the total
number of recorded samples.
kal i | damyalsee g cRiegdasIMe Microseconds spent handling | messgurisrixsaonds | cluster, kudu, | CDH 4, CDH 5
kudu.serverGenericService.GetStatus() | per second rack
RPC requests. This is the total
sum of recorded samples.
kaltaulke | 2y kol spe g iemadakde Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudu.serverGenericService. ServerClock() | second rack
RPC requests. This is the total
number of recorded samples.
halfis | des ol e @i i @dakamde Microseconds spent handling | messgurisrioands | cluster, kudu, | CDH 4, CDH 5
kudu.serverGenericService. ServerClock() | per second rack
RPC requests. This is the total
sum of recorded samples.
kalirzale | e/ kaisp\e g cvesifiayde Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudu.server.GenericService.SetFlag() | second rack
RPC requests. This is the total
number of recorded samples.
haltzuk | den/kalspe gricaicsfiagmde Microseconds spent handling | messgrsrisonds | cluster, kudu, | CDH 4, CDH 5
kudu.server.GenericService.SetFlag() | per second rack
RPC requests. This is the total
sum of recorded samples.
38 Microseconds spent handling samples per cluster, kudu, |CDH4,CDH5
kdusneGaatSaveSsSave\AoddaE) | second rack
RPC requests. This is the total
number of recorded samples.
gmde Microseconds spent handling messgurkmiosons | cluster, kudu, |CDH 4, CDH 5
lkdusneGaatSaveSsSave\Aoddae) | per second rack
RPC requests. This is the total
sum of recorded samples.
1) 2 Mlcroseconds spent handllng samples per cluster, kudu, |CDH4,CDH5
RN ORI SRR R RS | second rack
RPC requests Th|s is the total
number of recorded samples.
Mlcroseconds spent handling messgLrigriosnds | cluster, kudu, |CDH 4, CDH 5
RO SR Rna R et | per second rack
RPC requests This is the total
sum of recorded samples.
& Microseconds spent handllng samples per cluster, kudu, |[CDH4,CDH5
5 second rack

RPC requests. This is the total
number of recorded samples.

Metric Name Description Unit Parents CDH Version
gde Microseconds spent handling messgLrisTiosads | cluster, kudu, |CDH 4, CDH 5
‘ g per second rack
RPC requests. This is the total
sum of recorded samples.
foie Microseconds spent handllng samples per cluster, kudu, |[CDH4,CDH5
FeRe gsir) | second rack
RPC requests. Thls is the total
number of recorded samples.
Microseconds spent handllng mesggLrsTiosads | cluster, kudu, |CDH 4, CDH 5
FERe i : per second rack
RPC requests This is the total
sum of recorded samples.
haltadiz | deyialisee retintdasniciiddade Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudutsenerRemoteBooistrgSenviceFetchDaia|) | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling messgLrsTioeads | cluster, kudu, |CDH 4, CDH 5
kudutsenerRemaoteBooisrgSenviceFetchDaia() | per second rack
RPC requests. This is the total
sum of recorded samples.
Microseconds spent handling | samples per cluster, kudu, |[CDH4,CDH5
kudLiseneflaeSenerAdmisenieAerShad|) | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling mesggL rvioeads | cluster, kudu, |CDH 4, CDH 5
kudLseneflaoeSenerAddmiSenieAerShad|) | per second rack
RPC requests. This is the total
sum of recorded samples.
Microseconds spent handling samples per cluster, kudu, |CDH4,CDH5
kudutsenafaeSener dmintenieeGeaiele) | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling messgurkmiosons | cluster, kudu, |CDH 4, CDH 5
kudutsenafaatSeneridmintenieeGreaielle) | per second rack
RPC requests. This is the total
sum of recorded samples.
Microseconds spent handling | samples per cluster, kudu, |CDH4,CDH5
kudutsenerfabiSener dmirSeniceDelelHY) | second rack
RPC requests. This is the total
number of recorded samples.
Microseconds spent handling messgLrigriosnds | cluster, kudu, |CDH 4, CDH 5
ludutsenefiaoatSenerAdinSenvieDae ey | per second rack
RPC requests. This is the total
sum of recorded samples.
halfadiz | denkaie thememictdards Microseconds spent handling | samples per | cluster, kudu, |CDH 4, CDH 5

kudutserverTabletServerService Chedaumy)
RPC requests. This is the total
number of recorded samples.

second

rack

Metric Name Description Unit Parents CDH Version
haltadiz|depialiwe idtespictaamme Microseconds spent handling | messgursvioosonds | cluster, kudu, | CDH 4, CDH 5
kudutserverabletServerSenviceChedsumy() | per second rack
RPC requests. This is the total
sum of recorded samples.
haltadiz |denhatene thtmemicididitsds Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudutserveiTabletServerSenvice ListTablets() | second rack
RPC requests. This is the total
number of recorded samples.
hallzdiz| dephalte dimemiciddtsame Microseconds spent handling | messgurisrixsaonds | cluster, kudu, | CDH 4, CDH 5
kudutserveiTabletServerSenvice ListTablets() | per second rack
RPC requests. This is the total
sum of recorded samples.
kaltaaiie | dan/kalts\e tddspemicigde Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudu.tserverTabletServerService.Ping() | second rack
RPC requests. This is the total
number of recorded samples.
kaliauiz | depkal e tddemveinpmie Microseconds spent handling | messgurisriosonds | cluster, kudu, | CDH 4, CDH 5
kudu.tserverTabletServerService.Ping() | per second rack
RPC requests. This is the total
sum of recorded samples.
kaltaaiie | dan/halte\e tdidspemicsande Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudu.tserverTabletServerService.Scan() | second rack
RPC requests. This is the total
number of recorded samples.
haliadiz | depiaiwe tidpemiezmme Microseconds spent handling | messgrsricsonds | cluster, kudu, | CDH 4, CDH 5
kudu.tserverTabletServerService.Scan() | per second rack
RPC requests. This is the total
sum of recorded samples.
Microseconds spent handling samples per cluster, kudu, |CDH4,CDH5
kudutsenerabetSenerSenieSamenkesphe|) | second rack
RPC requests. This is the total
number of recorded samples.
mae Microseconds spent handling messgurkmiosons | cluster, kudu, |CDH 4, CDH 5
kudutseneraoaSenerSenieSanmenkesphe|) | per second rack
RPC requests. This is the total
sum of recorded samples.
kaltzuk: | den/kalte (ddemi@itade Microseconds spent handling | samples per cluster, kudu, |CDH 4,CDH5
kudutserverTabletServerService Write() | second rack
RPC requests. This is the total
number of recorded samples.
halfai | danaltee tddpaemicniteame Microseconds spent handling | messgurisrixsnds | cluster, kudu, | CDH 4, CDH 5
kudu.tserverTabletServerService Write() | per second rack
RPC requests. This is the total
sum of recorded samples.
kudu_hybri d_cl ock_error |Server clock maximum error. messgLrsvooEnnd | cluster, kudu, | CDH 4, CDH 5
rack
kudu_hybri d_cl ock_ti nest anp | Hybrid clock timestamp. messgL oo | cluster, kudu, | CDH 4, CDH 5

rack

Metric Name Description Unit Parents CDH Version
kudiind utary aoted_sitdes rae| Total involuntary context mesgrkoetathes | cluster, kudu, |CDH 4, CDH 5
switches per second rack
kil gy ak reregr Bads udy ramgat | Number of data blocks currently | blocks cluster, kudu, |CDH 4,CDH5
under management rack
kudil ayb ak reeee bites udr raegat | Number of bytes of data blocks | bytes cluster, kudu, |CDH 4,CDH5
currently under management rack
kudi | ay H ok rereger aatane's rate| Number of log block containers | mesgritghikoties | cluster, kudu, |CDH 4, CDH 5
per second rack
kil gbak raeg ful ctdaresrael Number of full log block mesgritglikoties | cluster, kudu, |CDH 4, CDH 5
containers per second rack
kudu | ogi cal _cl ock ti nest anp | Logical clock timestamp. message.units.units | cluster, kudu, |CDH 4, CDH 5
rack
kudu ap apd y queve | ength rate| Number of operations waiting to | samples per cluster, kudu, |CDH 4, CDH5
be applied to the tablet. High second rack
queue lengths indicate that the
server is unable to process
operations as fast as they are
being written to the WAL. This is
the total number of recorded
samples.
kdh o gy aBe legh sumrate| Number of operations waiting to | tasks per cluster, kudu, |CDH 4, CDH5
be applied to the tablet. High second rack
queue lengths indicate that the
server is unable to process
operations as fast as they are
being written to the WAL. This is
the total sum of recorded
samples.
kudu op appl y_queue tine rate| Time that operations spent samples per cluster, kudu, |CDH 4, CDH5
waiting in the apply queue second rack
before being processed. High
gueue times indicate that the
server is unable to process
operations as fast as they are
being written to the WAL. This is
the total number of recorded
samples.
kudu op ad y gquele tine sumra e| Time that operations spent messg s | cluster, kudu, | CDH 4, CDH 5
waiting in the apply queue per second rack
before being processed. High
queue times indicate that the
server is unable to process
operations as fast as they are
being written to the WAL. This is
the total sum of recorded
samples.
kudu op apply run tine rate| Time that operations spent being | samples per cluster, kudu, |CDH 4, CDH5
applied to the tablet. High values | second rack

may indicate that the server is

Metric Name Description Unit Parents CDH Version
under-provisioned or that
operations consist of very large
batches. This is the total number
of recorded samples.

kudu ap appl y run tine sumrat e| Time that operations spent being | messgarisrixsnds | cluster, kudu, |CDH 4, CDH 5
applied to the tablet. High values | per second rack
may indicate that the server is
under-provisioned or that
operations consist of very large
batches. This is the total sum of
recorded samples.

kudu rpc comedti as_acogted rate| Number of incoming TCP connections cluster, kudu, |CDH 4, CDH5
connections made to the RPC per second rack
server

kudu rpc i nooning quete tine rae| Number of microseconds samples per cluster, kudu, |CDH 4,CDH5
incoming RPC requests spend in | second rack
the worker queue. This is the
total number of recorded
samples.

kucl ree i rooig qeLe ti e sumrate| Number of microseconds mess s | cluster, kudu, | CDH 4, CDH 5
incoming RPC requests spend in | per second rack
the worker queue. This is the
total sum of recorded samples.

kudu rpcs_gueue overfl owrate| Number of RPCs dropped requests per | cluster, kudu, |CDH 4, CDH5
because the service queue was |second rack
full.

kudu rpes tined ot _in qeue rae| Number of RPCs whose timeout | requests per | cluster, kudu, |CDH 4, CDH 5
elapsed while waiting in the second rack
service queue, and thus were not
processed.

kudu_scanner durati on_rat e | Histogram of the duration of samples per cluster, kudu, |CDH 4, CDH5
active scanners on this tablet. | second rack
This is the total number of
recorded samples.

kudu scanner_durati on sumrate| Histogram of the duration of messgUrsTicEe | cluster, kudu, | CDH 4, CDH 5
active scanners on this tablet. | per second rack
This is the total sum of recorded
samples.

kudu_scanners_expi red_rat e | Number of scanners that have | messgeunissaes | cluster, kudu, |CDH 4, CDH 5
expired since service start per second rack

kudu sp ok catetiontine rae| Amount of time consumed by | messgurisriosds | cluster, kudu, | CDH 4, CDH 5

contention on internal spinlocks
since the server started. If this
increases rapidly, it may indicate
a performance issue in Kudu
internals triggered by a
particular workload and warrant
investigation.

per second

rack

Metric Name Description Unit Parents CDH Version
kditadl acarret tdd threxd@atehtes| A measure of some of the bytes cluster, kudu, |CDH 4,CDH5
memory TCMalloc is using (for rack
small objects).
kautodl o rextdd threed cadebtes| A limit to how much memory | bytes cluster, kudu, |CDH 4,CDH5
TCMalloc dedicates for small rack
objects. Higher numbers trade
off more memory use for -- in
some situations -- improved
efficiency.
kudu tcnal | oc_pegeheap free bytes| Number of bytes in free, mapped | bytes cluster, kudu, |CDH 4,CDH5
pages in page heap. These bytes rack
can be used to fulfill allocation
requests. They always count
towards virtual memory usage,
and unless the underlying
memory is swapped out by the
0S, they also count towards
physical memory usage.
kuc tod | o pecgghesp umaped btes| Number of bytes in free, bytes cluster, kudu, |CDH 4,CDH5
unmapped pages in page heap. rack
These are bytes that have been
released back to the OS, possibly
by one of the MallocExtension
"Release" calls. They can be used
to fulfill allocation requests, but
typically incur a page fault. They
always count towards virtual
memory usage, and depending
on the OS, typically do not count
towards physical memory usage.
kudu_t hreads_runni ng |Current number of running threads cluster, kudu, |CDH 4,CDH5
threads rack
kudu_t hreads_started rat e | Total number of threads started | threads per cluster, kudu, |CDH 4,CDH5
on this server second rack
kcuvd utay coted swtdes rae| Total voluntary context switches | mesgrksoetaates | cluster, kudu, |CDH 4, CDH 5
per second rack
memrss Resident memory used bytes accumulo, CDH 4,CDH 5
cluster, rack
mem swap Amount of swap memory used |bytes accumulo, CDH4,CDH 5
by this role's process. cluster, rack
mem vi rt ual Virtual memory used bytes accumulo, CDH 4,CDH 5
cluster, rack
oomexits rate The number of times the role's | exits per accumulo, CDH 4,CDH 5
backing process was killed due |second cluster, rack

to an OutOfMemory error. This
counter is only incremented if
the Cloudera Manager "Kill
When Out of Memory" option is
enabled.

Cloudera

Manager Metrics for Kudu

read_bytes rate The number of bytes read from | bytes per accumulo, CDH 4, CDH 5
the device second cluster, rack

unexpect ed_exits_rate |The number of times the role's |exits per accumulo, CDH 4, CDH 5
backing process exited second cluster, rack
unexpectedly.

uptine For a host, the amount of time |seconds accumulo, CDH 4,CDH 5
since the host was booted. For a cluster, rack
role, the uptime of the backing
process.

wite bytes rate The number of bytes written to | bytes per accumulo, CDH 4, CDH 5
the device second cluster, rack

Apache Kudu User Guide | 123

More Resources for Apache Kudu

The following is a list of resources that may help you to understand some of the architectural features of Apache Kudu
and columnar data storage. The links further down tend toward the academic and are not required reading in order
to understand how to install, use, and administer Kudu.

Kudu Project
Read the official Kudu documentation and learn how you can get involved.
Kudu Documentation

Read the official Kudu documentation, which includes more in-depth information about installation and configuration
choices.

Kudu Github Repository
Examine the Kudu source code and contribute to the project.

Kudu-Examples Github Repository
View and run several Kudu code examples, as well as the Kudu Quickstart VM.
Kudu White Paper
Read draft of the white paper discussing Kudu's architecture, written by the Kudu development team.

In Search Of An Understandable Consensus Algorithm, Diego Ongaro and John Ousterhout, Stanford University.
2014.

The original whitepaper describing the Raft consensus algorithm.
Column-Stores vs. Row-Stores: How Different Are They Really? Abadi, Madden, Hachem. 2008.

A discussion of the characteristics of column-based and row-based datastores and their characteristics under
different workloads and schemas.

Support

Bug reports and feedback can be submitted through the public JIRA, our Cloudera Community Kudu forum, and a public
mailing list monitored by the Kudu development team and community members. In addition, a public Slack instance
is available to communicate with the team.

http://kudu.apache.org/
http://kudu.apache.org/docs/index.html
http://github.com/cloudera/kudu/
http://github.com/cloudera/kudu-examples/
http://kudu.apache.org/kudu.pdf
https://ramcloud.stanford.edu/raft.pdf
http://db.csail.mit.edu/projects/cstore/abadi-sigmod08.pdf
https://issues.apache.org/jira/browse/KUDU/
http://community.cloudera.com/t5/Beta-Releases-Kudu-RecordService/bd-p/Beta
http://mail-archives.apache.org/mod_mbox/kudu-user/
https://getkudu-slack.herokuapp.com/

	Table of Contents
	About Apache Kudu
	Concepts and Terms
	Columnar Datastore
	Raft Consensus Algorithm
	Table
	Tablet
	Tablet Server
	Master
	Catalog Table
	Logical Replication

	Architectural Overview
	Example Use Cases
	Next Steps

	Apache Kudu Release Notes
	Schema Design and Usage Limitations
	Kudu 1.3.0 / CDH 5.11.2 Release Notes
	Kudu 1.3.0 / CDH 5.11.1 Release Notes
	Kudu 1.3.0 / CDH 5.11.0 Release Notes
	New Features in Kudu 1.3.0 / CDH 5.11.0
	Optimizations and Improvements in Kudu 1.3.0 / CDH 5.11.0
	Fixed Issues in Kudu 1.3.0 / CDH 5.11.0
	Wire Protocol Compatibility
	Incompatible Changes in Kudu 1.3.0 / CDH 5.11.0
	Client Library Compatibility

	Known Issues and Limitations in Kudu 1.3.0 / CDH 5.11.0

	Kudu 1.2.0 / CDH 5.10.2 Release Notes
	Kudu 1.2.0 / CDH 5.10.1 Release Notes
	Kudu 1.2.0 / CDH 5.10.0 Release Notes
	New Features and Improvements in Kudu 1.2.0 / CDH 5.10.0
	Issues Fixed in Kudu 1.2.0 / CDH 5.10.0
	Incompatible Changes in Kudu 1.2.0 / CDH 5.10.0
	Known Issues and Limitations in Kudu 1.2.0 / CDH 5.10.0

	Kudu 1.1.x Release Notes
	New Features in Kudu 1.1.0
	Issues Fixed in Kudu 1.1.0

	Kudu 1.0.1 Release Notes
	Issues Fixed in Kudu 1.0.1

	Kudu 1.0.0 Release Notes
	New Features in Kudu 1.0.0
	Incompatible Changes in Kudu 1.0.0
	Known Issues and Limitations of Kudu 1.0.0
	Issues Fixed in Kudu 1.0.0

	Kudu 0.10.0 Release Notes
	New Features in Kudu 0.10.0
	Other Improvements in Kudu 0.10.0
	Issues Fixed in Kudu 0.10.0
	Incompatible Changes in Kudu 0.10.0

	Kudu 0.9.1 Release Notes
	Issues Fixed in Kudu 0.9.1

	Kudu 0.9.0 Release Notes
	New Features in Kudu 0.9.0
	Other Improvements and Changes in Kudu 0.9.0
	Issues Fixed in Kudu 0.9.0
	Incompatible Changes in Kudu 0.9.0
	Limitations of Kudu 0.9.0
	Upgrade Notes for Kudu 0.9.0

	Kudu 0.8.0 Release Notes
	New Features in Kudu 0.8.0
	Other Improvements in Kudu 0.8.0
	Issues Fixed in Kudu 0.8.0
	Incompatible Changes in Kudu 0.8.0
	Limitations of Kudu 0.8.0
	Upgrade Notes for Kudu 0.8.0

	Kudu 0.7.1 Release Notes
	Issues Fixed in Kudu 0.7.1
	Limitations of Kudu 0.7.1
	Upgrade Notes For Kudu 0.7.1

	Kudu 0.7.0 Release Notes
	New Features in Kudu 0.7.0
	Other Improvements in Kudu 0.7.0
	Issues Fixed in Kudu 0.7.0
	Incompatible Changes in Kudu 0.7.0
	Limitations of Kudu 0.7.0
	Upgrade Notes For Kudu 0.7.0

	Kudu 0.6 Release Notes
	New Features in Kudu 0.6
	Issues Fixed in Kudu 0.6
	Limitations of Kudu 0.6
	Upgrade Notes For Kudu 0.6

	Kudu 0.5 Release Notes
	Limitations of Kudu 0.5

	Next Steps
	Apache Kudu Schema Design and Usage Limitations
	Schema Design Limitations
	Partitioning Limitations
	Scaling Recommendations and Limitations
	Server Management Limitations
	Cluster Management Limitations
	Replication and Backup Limitations
	Impala Integration Limitations
	Spark Integration Limitations
	Security Limitations
	Other Known Issues
	Timeout Possible with Log Force Synchronization Option
	Longer Startup Times with a Large Number of Tablets
	Confusing Descriptions for Kudu TLS/SSL Settings in Cloudera Manager

	Installing and Upgrading Apache Kudu
	Kudu Installation Requirements
	Install Kudu Using Cloudera Manager
	Install Kudu Using Parcels
	Install Kudu Using Packages

	Install Kudu Using the Command Line
	Verify the Installation
	Upgrade Kudu using Cloudera Manager
	Upgrade Kudu Using Parcels
	Upgrade Kudu Using Packages

	Upgrade Kudu Using the Command Line
	Next Steps

	Apache Kudu Configuration
	Configuring the Kudu Master
	Configuring Tablet Servers

	Apache Kudu Administration
	Starting and Stopping Kudu Processes
	Kudu Web Interfaces
	Kudu Master Web Interface
	Kudu Tablet Server Web Interface
	Common Web Interface Pages

	Kudu Metrics
	Listing available metrics
	Collecting metrics via HTTP
	Collecting metrics to a log

	Common Kudu workflows
	Migrating to Multiple Kudu Masters
	Prepare for the migration
	Perform the migration

	Recovering from a dead Kudu Master in a Multi-Master Deployment
	Prepare for the recovery
	Perform the recovery

	Monitoring Cluster Health with ksck
	Recovering from Disk Failure

	Developing Applications With Apache Kudu
	Viewing the API Documentation
	Building the Java Client
	Kudu Example Applications
	Maven Artifacts
	Kudu Python Client
	Example Apache Impala Commands With Kudu
	Kudu Integration with Spark
	Integration with MapReduce, YARN, and Other Frameworks

	Using Apache Impala (incubating) with Kudu
	Impala Database Containment Model
	Internal and External Impala Tables
	Using Impala To Query Kudu Tables
	Querying an Existing Kudu Table from Impala
	Creating a New Kudu Table From Impala
	CREATE TABLE AS SELECT

	Partitioning Tables
	Optimizing Performance for Evaluating SQL Predicates
	Inserting a Row
	Inserting In Bulk
	INSERT and Primary Key Uniqueness Violations

	Updating a Row
	Updating In Bulk

	Upserting a Row
	Deleting a Row
	Deleting In Bulk

	Failures During INSERT, UPDATE, UPSERT, and DELETE Operations
	Altering Table Properties
	Dropping a Kudu Table using Impala

	Security Considerations
	Known Issues and Limitations
	Next Steps

	Apache Kudu Security
	Kudu Authentication with Kerberos
	Internal Private Key Infrastructure (PKI)
	Authentication Tokens
	Scalability

	Encryption
	Coarse-grained Authorization
	Web UI Encryption
	Web UI Redaction
	Log Redaction
	Configuring a Secure Kudu Cluster using Cloudera Manager
	Configuring a Secure Kudu Cluster using the Command Line

	Apache Kudu Schema Design
	The Perfect Schema
	Column Design
	Column Encoding
	Column Compression

	Primary Key Design
	Primary Key Index

	Partitioning
	Range Partitioning
	Hash Partitioning
	Multilevel Partitioning
	Partition Pruning
	Partitioning Examples

	Schema Alterations
	Schema Design Limitations

	Apache Kudu Transaction Semantics
	Single Tablet Write Operations
	Writing to Multiple Tablets
	Read Operations (Scans)
	Known Issues and Limitations
	Reads (Scans)
	Writes

	Apache Kudu Background Maintenance Tasks
	Troubleshooting Apache Kudu
	Issues Starting or Restarting the Master or Tablet Server
	Error during hole punch test
	Clock Synchronization Issues

	Breakpad Minidumps for Kudu
	Troubleshooting Performance Issues
	Kudu Tracing

	Cloudera Manager Metrics for Kudu
	Kudu Metrics
	Kudu Replica Metrics
	Tablet Server Metrics

	More Resources for Apache Kudu

