
Apache Kudu User Guide



Important Notice
© 2010-2017 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or service names or slogans contained
in this document are trademarks of Cloudera and its suppliers or licensors, and may not
be copied, imitated or used, in whole or in part, without the prior written permission
of Cloudera or the applicable trademark holder.

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
1001 Page Mill Road, Bldg 3
Palo Alto, CA 94304
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Apache Kudu 1.3.0 / CDH 5.11.x
Date: December 6, 2017



Table of Contents

About Apache Kudu.................................................................................................9
Concepts and Terms...........................................................................................................................................10
Columnar Datastore.............................................................................................................................................................10

Raft Consensus Algorithm....................................................................................................................................................10

Table.....................................................................................................................................................................................10

Tablet...................................................................................................................................................................................10

Tablet Server........................................................................................................................................................................10

Master..................................................................................................................................................................................10

Catalog Table.......................................................................................................................................................................11

Logical Replication...............................................................................................................................................................11

Architectural Overview.......................................................................................................................................11

Example Use Cases.............................................................................................................................................12

Next Steps..........................................................................................................................................................12

Apache Kudu Release Notes...................................................................................13
Schema Design and Usage Limitations...............................................................................................................13

Kudu 1.3.0 / CDH 5.11.2 Release Notes.............................................................................................................13

Kudu 1.3.0 / CDH 5.11.1 Release Notes.............................................................................................................13

Kudu 1.3.0 / CDH 5.11.0 Release Notes.............................................................................................................13
New Features in Kudu 1.3.0 / CDH 5.11.0............................................................................................................................13

Optimizations and Improvements in Kudu 1.3.0 / CDH 5.11.0.............................................................................................14

Fixed Issues in Kudu 1.3.0 / CDH 5.11.0...............................................................................................................................15

Wire Protocol Compatibility.................................................................................................................................................15

Incompatible Changes in Kudu 1.3.0 / CDH 5.11.0..............................................................................................................15

Known Issues and Limitations in Kudu 1.3.0 / CDH 5.11.0...................................................................................................16

Kudu 1.2.0 / CDH 5.10.2 Release Notes.............................................................................................................16

Kudu 1.2.0 / CDH 5.10.1 Release Notes.............................................................................................................16

Kudu 1.2.0 / CDH 5.10.0 Release Notes.............................................................................................................17
New Features and Improvements in Kudu 1.2.0 / CDH 5.10.0.............................................................................................17

Issues Fixed in Kudu 1.2.0 / CDH 5.10.0...............................................................................................................................18

Incompatible Changes in Kudu 1.2.0 / CDH 5.10.0..............................................................................................................18

Known Issues and Limitations in Kudu 1.2.0 / CDH 5.10.0...................................................................................................19

Kudu 1.1.x Release Notes...................................................................................................................................19
New Features in Kudu 1.1.0.................................................................................................................................................19

Issues Fixed in Kudu 1.1.0....................................................................................................................................................20

Kudu 1.0.1 Release Notes...................................................................................................................................20



Issues Fixed in Kudu 1.0.1....................................................................................................................................................20

Kudu 1.0.0 Release Notes...................................................................................................................................21
New Features in Kudu 1.0.0.................................................................................................................................................21

Incompatible Changes in Kudu 1.0.0....................................................................................................................................22

Known Issues and Limitations of Kudu 1.0.0........................................................................................................................23

Issues Fixed in Kudu 1.0.0....................................................................................................................................................24

Kudu 0.10.0 Release Notes.................................................................................................................................24
New Features in Kudu 0.10.0...............................................................................................................................................25

Other Improvements in Kudu 0.10.0....................................................................................................................................25

Issues Fixed in Kudu 0.10.0..................................................................................................................................................26

Incompatible Changes in Kudu 0.10.0..................................................................................................................................26

Kudu 0.9.1 Release Notes...................................................................................................................................26
Issues Fixed in Kudu 0.9.1....................................................................................................................................................27

Kudu 0.9.0 Release Notes...................................................................................................................................27
New Features in Kudu 0.9.0.................................................................................................................................................27

Other Improvements and Changes in Kudu 0.9.0................................................................................................................27

Issues Fixed in Kudu 0.9.0....................................................................................................................................................27

Incompatible Changes in Kudu 0.9.0....................................................................................................................................28

Limitations of Kudu 0.9.0.....................................................................................................................................................28

Upgrade Notes for Kudu 0.9.0.............................................................................................................................................28

Kudu 0.8.0 Release Notes...................................................................................................................................28
New Features in Kudu 0.8.0.................................................................................................................................................28

Other Improvements in Kudu 0.8.0......................................................................................................................................28

Issues Fixed in Kudu 0.8.0....................................................................................................................................................28

Incompatible Changes in Kudu 0.8.0....................................................................................................................................29

Limitations of Kudu 0.8.0.....................................................................................................................................................29

Upgrade Notes for Kudu 0.8.0.............................................................................................................................................29

Kudu 0.7.1 Release Notes...................................................................................................................................29
Issues Fixed in Kudu 0.7.1....................................................................................................................................................29

Limitations of Kudu 0.7.1.....................................................................................................................................................29

Upgrade Notes For Kudu 0.7.1.............................................................................................................................................29

Kudu 0.7.0 Release Notes...................................................................................................................................29
New Features in Kudu 0.7.0.................................................................................................................................................30

Other Improvements in Kudu 0.7.0......................................................................................................................................30

Issues Fixed in Kudu 0.7.0....................................................................................................................................................30

Incompatible Changes in Kudu 0.7.0....................................................................................................................................30

Limitations of Kudu 0.7.0.....................................................................................................................................................30

Upgrade Notes For Kudu 0.7.0.............................................................................................................................................32

Kudu 0.6 Release Notes......................................................................................................................................32
New Features in Kudu 0.6....................................................................................................................................................32

Issues Fixed in Kudu 0.6.......................................................................................................................................................32

Limitations of Kudu 0.6........................................................................................................................................................32

Upgrade Notes For Kudu 0.6................................................................................................................................................34

Kudu 0.5 Release Notes......................................................................................................................................34



Limitations of Kudu 0.5........................................................................................................................................................34

Next Steps..........................................................................................................................................................36

Apache Kudu Schema Design and Usage Limitations.........................................................................................36
Schema Design Limitations..................................................................................................................................................36

Partitioning Limitations.......................................................................................................................................................37

Scaling Recommendations and Limitations.........................................................................................................................37

Server Management Limitations..........................................................................................................................................38

Cluster Management Limitations.........................................................................................................................................38

Replication and Backup Limitations.....................................................................................................................................38

Impala Integration Limitations............................................................................................................................................38

Spark Integration Limitations..............................................................................................................................................39

Security Limitations..............................................................................................................................................................39

Other Known Issues.............................................................................................................................................................39

Installing and Upgrading Apache Kudu...................................................................41
Kudu Installation Requirements.........................................................................................................................41

Install Kudu Using Cloudera Manager................................................................................................................41
Install Kudu Using Parcels....................................................................................................................................................42

Install Kudu Using Packages.................................................................................................................................................42

Install Kudu Using the Command Line................................................................................................................44

Verify the Installation.........................................................................................................................................46

Upgrade Kudu using Cloudera Manager............................................................................................................47
Upgrade Kudu Using Parcels................................................................................................................................................47

Upgrade Kudu Using Packages ...........................................................................................................................................47

Upgrade Kudu Using the Command Line...........................................................................................................48

Next Steps..........................................................................................................................................................48

Apache Kudu Configuration....................................................................................49
Configuring the Kudu Master.............................................................................................................................49

Configuring Tablet Servers.................................................................................................................................50

Apache Kudu Administration..................................................................................51
Starting and Stopping Kudu Processes...............................................................................................................51

Kudu Web Interfaces..........................................................................................................................................51
Kudu Master Web Interface.................................................................................................................................................51

Kudu Tablet Server Web Interface........................................................................................................................................51

Common Web Interface Pages.............................................................................................................................................51

Kudu Metrics......................................................................................................................................................52
Listing available metrics......................................................................................................................................................52

Collecting metrics via HTTP..................................................................................................................................................52

Collecting metrics to a log...................................................................................................................................................53



Common Kudu workflows..................................................................................................................................53
Migrating to Multiple Kudu Masters...................................................................................................................................54

Recovering from a dead Kudu Master in a Multi-Master Deployment................................................................................57

Monitoring Cluster Health with ksck....................................................................................................................................59

Recovering from Disk Failure...............................................................................................................................................60

Developing Applications With Apache Kudu...........................................................61
Viewing the API Documentation........................................................................................................................61

Building the Java Client......................................................................................................................................61

Kudu Example Applications................................................................................................................................61

Maven Artifacts..................................................................................................................................................62

Kudu Python Client.............................................................................................................................................62

Example Apache Impala Commands With Kudu................................................................................................63

Kudu Integration with Spark...............................................................................................................................63

Integration with MapReduce, YARN, and Other Frameworks............................................................................64

Using Apache Impala (incubating) with Kudu.........................................................65
Impala Database Containment Model...............................................................................................................65

Internal and External Impala Tables...................................................................................................................65

Using Impala To Query Kudu Tables...................................................................................................................66
Querying an Existing Kudu Table from Impala.....................................................................................................................66

Creating a New Kudu Table From Impala.............................................................................................................................67

Partitioning Tables...............................................................................................................................................................67

Optimizing Performance for Evaluating SQL Predicates......................................................................................................71

Inserting a Row....................................................................................................................................................................71

Updating a Row...................................................................................................................................................................72

Upserting a Row...................................................................................................................................................................72

Deleting a Row.....................................................................................................................................................................73

Failures During INSERT, UPDATE, UPSERT, and DELETE Operations.....................................................................................74

Altering Table Properties......................................................................................................................................................74

Dropping a Kudu Table using Impala...................................................................................................................................74

Security Considerations......................................................................................................................................75

Known Issues and Limitations............................................................................................................................75

Next Steps..........................................................................................................................................................75

Apache Kudu Security............................................................................................76
Kudu Authentication with Kerberos...................................................................................................................76
Internal Private Key Infrastructure (PKI)..............................................................................................................................76

Authentication Tokens..........................................................................................................................................................76

Scalability.............................................................................................................................................................................76

Encryption..........................................................................................................................................................77



Coarse-grained Authorization............................................................................................................................77

Web UI Encryption.............................................................................................................................................77

Web UI Redaction..............................................................................................................................................77

Log Redaction.....................................................................................................................................................78

Configuring a Secure Kudu Cluster using Cloudera Manager.............................................................................78

Configuring a Secure Kudu Cluster using the Command Line............................................................................80

Apache Kudu Schema Design.................................................................................81
The Perfect Schema............................................................................................................................................81

Column Design...................................................................................................................................................81
Column Encoding.................................................................................................................................................................82

Column Compression...........................................................................................................................................................82

Primary Key Design............................................................................................................................................82
Primary Key Index................................................................................................................................................................83

Partitioning.........................................................................................................................................................83
Range Partitioning...............................................................................................................................................................83

Hash Partitioning.................................................................................................................................................................84

Multilevel Partitioning.........................................................................................................................................................84

Partition Pruning..................................................................................................................................................................84

Partitioning Examples..........................................................................................................................................................84

Schema Alterations............................................................................................................................................87

Schema Design Limitations................................................................................................................................87

Apache Kudu Transaction Semantics......................................................................88
Single Tablet Write Operations...........................................................................................................................88

Writing to Multiple Tablets.................................................................................................................................88

Read Operations (Scans)....................................................................................................................................89

Known Issues and Limitations............................................................................................................................90
Reads (Scans).......................................................................................................................................................................90

Writes...................................................................................................................................................................................90

Apache Kudu Background Maintenance Tasks........................................................92

Troubleshooting Apache Kudu................................................................................94
Issues Starting or Restarting the Master or Tablet Server..................................................................................94
Error during hole punch test................................................................................................................................................94

Clock Synchronization Issues................................................................................................................................................94

Breakpad Minidumps for Kudu..........................................................................................................................95

Troubleshooting Performance Issues.................................................................................................................96
Kudu Tracing........................................................................................................................................................................96



Cloudera Manager Metrics for Kudu.......................................................................99
Kudu Metrics......................................................................................................................................................99

Kudu Replica Metrics..........................................................................................................................................99

Tablet Server Metrics.......................................................................................................................................110

More Resources for Apache Kudu.........................................................................124



About Apache Kudu

Apache Kudu is a columnar storage manager developed for the Hadoop platform. Kudu shares the common technical
properties of Hadoop ecosystem applications: It runs on commodity hardware, is horizontally scalable, and supports
highly available operation.

Apache Kudu is a top-level project in the Apache Software Foundation.

Kudu's benefits include:

• Fast processing of OLAP workloads.
• Integration with MapReduce, Spark, Flume, and other Hadoop ecosystem components.
• Tight integrationwith Apache Impala (incubating),making it a good,mutable alternative to using HDFSwith Apache

Parquet.
• Strong but flexible consistency model, allowing you to choose consistency requirements on a per-request basis,

including the option for strict serialized consistency.
• Strong performance for running sequential and random workloads simultaneously.
• Easy administration and management through Cloudera Manager.
• High availability. Tablet Servers and Master use the Raft consensus algorithm, which ensures availability as long

as more replicas are available than unavailable. Reads can be serviced by read-only follower tablets, even in the
event of a leader tablet failure.

• Structured data model.

By combining all of these properties, Kudu targets support applications that are difficult or impossible to implement
on currently available Hadoop storage technologies. Applications for which Kudu is a viable solution include:

• Reporting applications where new data must be immediately available for end users
• Time-series applications that must support queries across large amounts of historic data while simultaneously

returning granular queries about an individual entity
• Applications that use predictive models to make real-time decisions, with periodic refreshes of the predictive

model based on all historical data

For more details, see Example Use Cases on page 12.

Kudu-Impala Integration Features

• CREATE/ALTER/DROP TABLE - Impala supports creating, altering, anddropping tables using Kuduas thepersistence
layer. The tables follow the same internal/external approach as other tables in Impala, allowing for flexible data
ingestion and querying.

• INSERT - Data can be inserted into Kudu tables from Impala using the same mechanisms as any other table with
HDFS or HBase persistence.

• UPDATE/DELETE - Impala supports the UPDATE and DELETE SQL commands to modify existing data in a Kudu
table row-by-row or as a batch. The syntax of the SQL commands is designed to be as compatible as possible with
existing solutions. In addition to simple DELETE or UPDATE commands, you can specify complex joins in the FROM
clause of the query, using the same syntax as a regular SELECT statement.

• Flexible Partitioning - Similar to partitioning of tables in Hive, Kudu allows you to dynamically pre-split tables by
hash or range into a predefined number of tablets, in order to distribute writes and queries evenly across your
cluster. You can partition by any number of primary key columns, with any number of hashes, a list of split rows,
or a combination of these. A partition scheme is required.

• Parallel Scan - To achieve the highest possible performance on modern hardware, the Kudu client used by Impala
parallelizes scans across multiple tablets.

• High-efficiency queries - Where possible, Impala pushes down predicate evaluation to Kudu, so that predicates
are evaluated as close as possible to the data. Query performance is comparable to Parquet in many workloads.

Apache Kudu User Guide | 9

About Apache Kudu



Concepts and Terms

Columnar Datastore

Kudu is a columnar datastore. A columnar datastore stores data in strongly-typed columns. With a proper design, a
columnar store can be superior for analytical or data warehousing workloads for the following reasons:

Read Efficiency

For analytical queries, you can read a single column, or a portion of that column, while ignoring other columns. This
means you can fulfill your request while reading a minimal number of blocks on disk. With a row-based store, you
need to read the entire row, even if you only return values from a few columns.

Data Compression

Because a given column contains only one type of data, pattern-based compression can be orders of magnitude
more efficient than compressing mixed data types, which are used in row-based solutions. Combined with the
efficiencies of reading data from columns, compression allows you to fulfill your query while reading even fewer
blocks from disk.

Raft Consensus Algorithm

The Raft consensus algorithm provides a way to elect a leader for a distributed cluster from a pool of potential leaders.
If a follower cannot reach the current leader, it transitions itself to become a candidate. Given a quorum of voters,
one candidate is elected to be the new leader, and the others transition back to being followers. A full discussion of
Raft is out of scope for this documentation, but it is a robust algorithm.

Kudu uses the Raft Consensus Algorithm for the election of masters and leader tablets, as well as determining the
success or failure of a given write operation.

Table

A table is where your data is stored in Kudu. A table has a schema and a totally ordered primary key. A table is split
into segments called tablets, by primary key.

Tablet

A tablet is a contiguous segment of a table, similar to a partition in other data storage engines or relational databases.
A given tablet is replicated onmultiple tablet servers, and at any given point in time, one of these replicas is considered
the leader tablet. Any replica can service reads. Writes require consensus among the set of tablet servers serving the
tablet.

Tablet Server

A tablet server stores and serves tablets to clients. For a given tablet, one tablet server acts as a leader and the others
serve follower replicas of that tablet. Only leaders service write requests, while leaders or followers each service read
requests. Leaders are elected using Raft consensus. One tablet server can serve multiple tablets, and one tablet can
be served by multiple tablet servers.

Master

Themaster keeps track of all the tablets, tablet servers, the catalog table, and other metadata related to the cluster.
At a given point in time, there can only be one actingmaster (the leader). If the current leader disappears, a newmaster
is elected using Raft consensus.

The master also coordinates metadata operations for clients. For example, when creating a new table, the client
internally sends the request to the master. The master writes the metadata for the new table into the catalog table,
and coordinates the process of creating tablets on the tablet servers.

All the master's data is stored in a tablet, which can be replicated to all the other candidate masters.

Tablet servers heartbeat to the master at a set interval (the default is once per second).

10 | Apache Kudu User Guide

About Apache Kudu

http://raftconsensus.github.io/


Catalog Table

The catalog table is the central location for metadata of Kudu. It stores information about tables and tablets. The
catalog table is accessible to clients through themaster, using the client API. The catalog table cannot be read orwritten
directly. Instead, it is accessible only through metadata operations exposed in the client API. The catalog table stores
two categories of metadata:

Contents of the Catalog Table

Table schemas, locations, and statesTables

The list of existing tablets, which tablet servers have replicas of each tablet, the tablet's current
state, and start and end keys.

Tablets

Logical Replication

Kudu replicates operations, not on-disk data. This is referred to as logical replication, as opposed to physical replication.
This has several advantages:

• Although inserts and updates transmit data over the network, deletes do not need to move any data. The delete
operation is sent to each tablet server, which performs the delete locally.

• Physical operations, such as compaction, do not need to transmit the data over the network in Kudu. This is
different from storage systems that use HDFS, where the blocks need to be transmitted over the network to fulfill
the required number of replicas.

• Tablets do not need to perform compactions at the same time or on the same schedule. They do not even need
to remain in sync on the physical storage layer. This decreases the chances of all tablet servers experiencing high
latency at the same time, due to compactions or heavy write loads.

Architectural Overview
The following diagram shows a Kudu cluster with three masters and multiple tablet servers, each serving multiple
tablets. It illustrates how Raft consensus is used to allow for both leaders and followers for both themasters and tablet
servers. In addition, a tablet server can be a leader for some tablets and a follower for others. Leaders are shown in
gold, while followers are shown in grey.

Figure 1: Kudu Architectural Overview

Apache Kudu User Guide | 11

About Apache Kudu



Example Use Cases

Streaming Input with Near Real Time Availability

A common business challenge is one where new data arrives rapidly and constantly, and the same data needs to be
available in near real time for reads, scans, and updates. Kudu offers the powerful combination of fast inserts and
updates with efficient columnar scans to enable real-time analytics use cases on a single storage layer.

Time-Series Application with Widely Varying Access Patterns

A time-series schema is one inwhich data points are organized and keyed according to the time at which they occurred.
This can be useful for investigating the performance of metrics over time or attempting to predict future behavior
based on past data. For instance, time-series customer data might be used both to store purchase click-stream history
and to predict future purchases, or for use by a customer support representative.While these different types of analysis
are occurring, inserts andmutationsmight also be occurring individually and in bulk, and become available immediately
to read workloads. Kudu can handle all of these access patterns simultaneously in a scalable and efficient manner.

Kudu is a good fit for time-series workloads for several reasons. With Kudu's support for hash-based partitioning,
combined with its native support for compound row keys, it is simple to set up a table spread across many servers
without the risk of "hotspotting" that is commonly observed when range partitioning is used. Kudu's columnar storage
engine is also beneficial in this context, because many time-series workloads read only a few columns, as opposed to
the whole row.

In the past, you might have needed to use multiple datastores to handle different data access patterns. This practice
adds complexity to your application and operations, and duplicates your data, doubling (or worse) the amount of
storage required. Kudu can handle all of these access patterns natively and efficiently, without the need to off-load
work to other datastores.

Predictive Modeling

Data scientists often develop predictive learning models from large sets of data. The model and the data might need
to be updated or modified often as the learning takes place or as the situation being modeled changes. In addition,
the scientist might want to change one or more factors in the model to see what happens over time. Updating a large
set of data stored in files in HDFS is resource-intensive, as each file needs to be completely rewritten. In Kudu, updates
happen in near real time. The scientist can tweak the value, re-run the query, and refresh the graph in seconds or
minutes, rather than hours or days. In addition, batch or incremental algorithms can be run across the data at any
time, with near-real-time results.

Combining Data In Kudu With Legacy Systems

Companies generate data from multiple sources and store it in a variety of systems and formats. For instance, some
of your datamight be stored in Kudu, some in a traditional RDBMS, and some in files in HDFS. You can access and query
all of these sources and formats using Impala, without the need to change your legacy systems.

Next Steps
• Read about installing Kudu.
• Learn about using Kudu with Impala.

12 | Apache Kudu User Guide

About Apache Kudu



Apache Kudu Release Notes

This topic includes the release notes for all beta and generally available versions (GA) of Apache Kudu.

Schema Design and Usage Limitations
The Apache Kudu Schema Design and Usage Limitations on page 36 topic describes known issues and limitations with
respect to schema design, integration with Apache Impala (incubating), and security in Kudu, as of the current release.

Kudu 1.3.0 / CDH 5.11.2 Release Notes
Apache Kudu 1.3.0 / CDH 5.11.2 is a bug-fix release which includes the following fixes:

• KUDU-2053 - Fixed a race condition in the Java RequestTracker.
• KUDU-2049 - Fixed an issue where scans on RLE-encoded integer columns would sometimes cause CHECK failures

due to the CHECK condition being too strict.
• KUDU-1963 - Fixed an issue where the Java client misdiagnoses an error and logs a NullPointerException

when a connection is closed by client while a negotiation is in progress.
• KUDU-1853 - Fixed an issue where data blocks could be orphaned after a failed tablet copy

Kudu 1.3.0 / CDH 5.11.1 Release Notes
Apache Kudu 1.3.0 / CDH 5.11.1 is a bug-fix release which includes the following fixes:

• KUDU-1999 - Fixed an issue where the Kudu Spark connector would fail to kinit with the principal and keytab
provided to a job.

• KUDU-1993 - Fixed a validation issue with grouped gflags.

• KUDU-1981 - Fixed an issue where Kudu server components would fail to start on machines with fully-qualified
domain names longer than 64 characters when security was enabled. This was due to hard-coded restrictions in
the OpenSSL library.

• KUDU-1607 - Fixed a case in which a tablet replica on a tablet server could retain blocks of data which prevented
it from being fully deleted.

• KUDU-1933 - Fixed an issue in which a tablet server would crash and fail to restart after a single tablet received
more than two billion write operations.

Kudu 1.3.0 / CDH 5.11.0 Release Notes

Note: Apache Kudu 1.3.0 / CDH 5.11.0 release is the first Kudu release to be supported with Cloudera
Manager 5.11.x and CDH 5.11.x. Any future Kudu 1.3.x maintenance releases will be supported by
corresponding CDH and Cloudera Manager 5.11.x maintenance releases.

New Features in Kudu 1.3.0 / CDH 5.11.0

• The Kudu CSD is now included in Cloudera Manager. Manual installation of the Kudu CSD is not required.
• Kudu 1.3 supports strong authentication using Kerberos. This feature allows users to authenticate themselves to

Kudu using Kerberos tickets, and also provides mutual authentication of servers using Kerberos credentials stored
in keytabs.

Apache Kudu User Guide | 13

Apache Kudu Release Notes

https://issues.apache.org/jira/browse/KUDU-2053
https://issues.apache.org/jira/browse/KUDU-2049
https://issues.apache.org/jira/browse/KUDU-1963
https://issues.apache.org/jira/browse/KUDU-1853
https://issues.apache.org/jira/browse/KUDU-1999
https://issues.apache.org/jira/browse/KUDU-1993
https://issues.apache.org/jira/browse/KUDU-1981
https://issues.apache.org/jira/browse/KUDU-1607
https://issues.apache.org/jira/browse/KUDU-1933


• Added support for encryption of data on the network using Transport Layer Security (TLS). Kudu will now use TLS
to encrypt all network traffic between clients and servers as well as any internal traffic among servers, with the
exception of traffic determined to be within a localhost network connection. Encryption is enabled by default
whenever it can be determined that both the client and server support the feature.

• Added support for coarse-grained service-level authorization checks for access to the cluster. The operator may
set up lists of permitted users who may act as administrators and as clients of the cluster. Combined with the
strong authentication feature described above, this can enable a secure environment for some use cases. Note
that fine-grained access control , for example table-level or column-level, is not yet supported.

• A background task was added to tablet servers that removes historical versions of data that have fallen behind
the configured data retention time. This reduces disk space usage in all workloads, but particularly in those with
a higher volume of updates or upserts. After upgrading, you might see disk usage go down a lot.

• Kudu now incorporates Google Breakpad, a library that writes crash reports in the case of a server crash. These
reports can be found by default under the minidumps directory, or within a configured log directory, and can be
useful during bug diagnosis.

• As of Kudu 1.3, multi-word flags can use a dash '-' separator in lieu of the underscore '_' separator. For example,
the --memory_limit_hard_bytes flag can now be specified as --memory-limit-hard-bytes, or even
--memory_limit-hard_bytes.

Optimizations and Improvements in Kudu 1.3.0 / CDH 5.11.0

• Kudu servers will now change the file permissions of data directories and contained data files based on a new
configuration flag --umask. As a result, after upgrading, permissions on disk may be more restrictive than in
previous versions. The new default configuration improves data security.

• Kudu web UIs will now redact strings that might include sensitive user data. For example, the monitoring page,
which shows in-progress scans, no longer includes the scanner predicate values. The tracing and RPC diagnostics
endpoints no longer include contents of RPCs, which may include table data.

• By default, Kudu now reserves 1% of each configured data volume as free space. If a volume is seen to have less
than 1% of disk space free, Kudu stops writing to that volume to avoid completely filling up the disk.

• The default encoding for numeric columns (int, float, and double) has been changed to BIT_SHUFFLE. The
default encoding for binary and string columns has been changed to DICT_ENCODING. Dictionary encoding
automatically falls back to the old default (PLAIN) when cardinality is too high to be effectively encoded. These
new defaults match the default behavior of other storage mechanisms, such as Apache Parquet, and are likely to
perform better out of the box.

Existing tables with AUTO_ENCODING-configured columns will only be encoded during DiskRowSet compactions,
or if new data is written to them. New tables and columns will have the new defaults.

• Kudu now uses LZ4 compression when writing its Write Ahead Log (WAL). This improves write performance and
stability for many use cases.

• Kudu now uses LZ4 compression when writing delta files. This can improve both read and write performance as
well as save substantial disk usage, especially forworkloads involving a high number of updates or upserts containing
compressible data.

Existing delta files will not get compressed until they are compacted. New files on both old and new tables alike
will be compressed.

• The Kudu API now supports the ability to express IS NULL and IS NOT NULL predicates on scanners. The Spark
DataSource integration will take advantage of these new predicates when possible.

• Both C++ and Java clients have been optimized to prune partitions more effectively when performing scans using
the IN (…) predicate.

• The exception messages produced by the Java client are now truncated to a maximum length of 32KB.

14 | Apache Kudu User Guide

Apache Kudu Release Notes



Fixed Issues in Kudu 1.3.0 / CDH 5.11.0

• KUDU-1968 - Fixed an issue in which the tablet server would delete an incorrect set of data blocks after an aborted
attempt to copy a tablet from another server. This would produce data loss in unrelated tablets.

• KUDU-1962 - Fixed a NullPointerException in the Java client in the case that the Kudu master is overloaded
at the time the client requests location information. This could cause client applications to hang indefinitely
regardless of configured timeouts.

• KUDU-1893 - Fixed a critical bug in which wrong results would be returned when evaluating predicates applied
to columns added using the ALTER TABLE operation.

• KUDU-1905 - Fixed an issue where Kudu would crash after reinserts that resulted in an empty change list. This
occurred in cases where the primary key was composed of all columns.

• KUDU-1899 - Fixed a crash that occurred after inserting a row with an empty string as the single-column primary
key.

• KUDU-1904 - Fixed a potential crash when performing random reads against a column using RLE encoding and
containing long runs of NULL values.

• KUDU-1856 - Fixed an issue in which disk space could be leaked by Kudu servers storing data on partitions using
the XFS file system. Any leaked disk space will now be automatically recovered upon upgrade.

• KUDU-1888, KUDU-1906 - Fixed multiple issues in the Java client where operation callbacks would never be
triggered, causing the client to hang.

Wire Protocol Compatibility

Kudu 1.3.0 is wire-compatible with previous versions of Kudu:

• Kudu 1.3.0 clients can connect to servers running Kudu 1.0.0. If the client uses features that are not available on
the target server, an error will be returned.

• Kudu 1.0.0 clients can connect to servers running Kudu 1.3.0with the exception of the below-mentioned restrictions
regarding secure clusters.

• Rolling upgrade between Kudu 1.2.0 and Kudu 1.3.0 servers is believed to be possible though has not been
sufficiently tested. Users are encouraged to shut down all nodes in the cluster, upgrade the software, and then
restart the daemons on the new version.

Security - The authentication features introduced in Kudu 1.3.0 place the following limitations on wire compatibility
with older versions:

• If a Kudu 1.3.0 cluster is configured with authentication or encryption set to required, older clients will not be
able to connect.

• If a Kudu 1.3.0 cluster is configured with authentication and encryption set to optional or disabled, older
clients will still be able to connect.

Incompatible Changes in Kudu 1.3.0 / CDH 5.11.0

• Due to storage format changes in Kudu 1.3, downgrading from Kudu 1.3 to earlier versions is not supported. After
upgrading to Kudu 1.3, attempting to restart with an earlier version will result in an error.

• In order to support running MapReduce and Spark jobs on secure clusters, these frameworks now connect to the
cluster at job submission time to retrieve authentication credentials which can later be used by the tasks to be
spawned. This means that the process submitting jobs to Kudu clusters must have direct access to that cluster.

• The embedded web servers in Kudu processes now specify the X-Frame-Options: DENY HTTP header which
prevents embedding of Kudu web pages in HTML iframe elements.

Apache Kudu User Guide | 15

Apache Kudu Release Notes

https://issues.apache.org/jira/browse/KUDU-1968
https://issues.apache.org/jira/browse/KUDU-1962
https://issues.apache.org/jira/browse/KUDU-1893
https://issues.apache.org/jira/browse/KUDU-1905
https://issues.apache.org/jira/browse/KUDU-1899
https://issues.apache.org/jira/browse/KUDU-1904
https://issues.apache.org/jira/browse/KUDU-1856
https://issues.apache.org/jira/browse/KUDU-1888
https://issues.apache.org/jira/browse/KUDU-1906


Client Library Compatibility

• Java - The Kudu 1.3.0 Java client library is API- and ABI-compatible with Kudu 1.2.0. Applications written against
Kudu 1.2.0 will compile and run against the Kudu 1.3.0 client library and vice-versa, unless one of the following
newly-added APIs is used:

– [Async]KuduClient.exportAuthenticationCredentials(…) (unstable API)
– [Async]KuduClient.importAuthenticationCredentials(…) (unstable API)
– [Async]KuduClient.getMasterAddressesAsString()

– KuduPredicate.newIsNotNullPredicate()

– KuduPredicate.newIsNullPredicate()

• C++ - The Kudu 1.3.0 C++ client is API- and ABI-forward-compatible with Kudu 1.2.0. Applications written and
compiled against the Kudu 1.2.0 client library will run without modification against the Kudu 1.3.0 client library.
Applications written and compiled against the Kudu 1.3.0 client library will run without modification against the
Kudu 1.2.0 client library unless they use one of the following new APIs:

– kudu::DisableOpenSSLInitialization()

– KuduClientBuilder::import_authentication_credentials(…)

– KuduClient::ExportAuthenticationCredentials(…)

– KuduClient::NewIsNotNullPredicate(…)

– KuduClient::NewIsNullPredicate(…)

• Python - The Kudu 1.3.0 Python client is API-compatible with Kudu 1.2.0. Applications written against Kudu 1.2.0
will continue to run against the Kudu 1.3.0 client and vice-versa.

Known Issues and Limitations in Kudu 1.3.0 / CDH 5.11.0

For a complete list of schema design and usage limitations for Apache Kudu, see Apache Kudu Schema Design and
Usage Limitations on page 36.

Kudu 1.2.0 / CDH 5.10.2 Release Notes
Apache Kudu 1.2.x / CDH 5.10.2 includes the following fixed issues.

• KUDU-1933 - Fixed an issue that truncated the 64-bit log index in the OpId to 32 bits, causing overflow of the log
index.

• KUDU-1607 - Fixed an issue where Kudu could not delete failed tablets using the DROP TABLE command.
• KUDU-1905 - Allow reinserts on tables when all columns are part of the primary key.
• KUDU-1893 - Made a fix to avoid incorrect NULL results and ensure evaluation of predicates for columns added

after table creation.

Kudu 1.2.0 / CDH 5.10.1 Release Notes
Apache Kudu 1.2.x / CDH 5.10.1 includes the following fixed issues.

• KUDU-1904 - Fixed a bug where RLE columns with only NULL values would crash on scan.
• KUDU-1899 - Fixed an issue where tablet servers would crash after inserting an empty string primary key ("").
• KUDU-1851 - Fixed an issue with the Python client which would crash whenever a TableAlterer is instantiated

directly.
• KUDU-1852 - KuduTableAlterer will no longer crash when given nullptr range bound arguments.
• KUDU-1821 - Improved warnings when the catalog manager starts.

16 | Apache Kudu User Guide

Apache Kudu Release Notes

https://issues.apache.org/jira/browse/KUDU-1933
https://issues.apache.org/jira/browse/KUDU-1607
https://issues.apache.org/jira/browse/KUDU-1905
https://issues.apache.org/jira/browse/KUDU-1893
https://issues.apache.org/jira/browse/KUDU-1904
https://issues.apache.org/jira/browse/KUDU-1899
https://issues.apache.org/jira/browse/KUDU-1851
https://issues.apache.org/jira/browse/KUDU-1852
https://issues.apache.org/jira/browse/KUDU-1821


Kudu 1.2.0 / CDH 5.10.0 Release Notes

Note: Apache Kudu 1.2.0 / CDH 5.10.0 release is the first Kudu release to be supported with Cloudera
Manager 5.10.0 and CDH 5.10.0. Any future Kudu 1.2.0 maintenance releases will likely be supported
by corresponding CDH and Cloudera Manager 5.10.x maintenance releases.

Apache Kudu 1.2.x / CDH 5.10.0 includes the following new features, fixed issues, and changes.

New Features and Improvements in Kudu 1.2.0 / CDH 5.10.0

See also Issues resolved for Kudu 1.2.0 and Git changes between 1.1.x and 1.2.x.

New Features

• Kudu clients and servers now redact user data such as cell values from log messages, Java exception messages,
and Status strings. User metadata such as table names, column names, and partition bounds are not redacted.

• Kudu's ability to provide consistency guarantees has been substantially improved:

– Replicas now correctly track their "safe timestamp". This timestamp is the maximum timestamp at which
reads are guaranteed to be repeatable.

– A scan created using the SCAN_AT_SNAPSHOTmode will now either wait for the requested snapshot to be
"safe" at the replica being scanned, or be re-routed to a replica where the requested snapshot is "safe". This
ensures that all such scans are repeatable.

– Kudu Tablet Servers now properly retain historical data when a row with a given primary key is inserted and
deleted, followed by the insertion of a new row with the same key. Previous versions of Kudu would not
retain history in such situations. This allows the server to return correct results for snapshot scans with a
timestamp in the past, even in the presence of such "reinsertion" scenarios.

– The Kudu clients now automatically retain the timestamp of their latest successful read or write operation.
Scans using the READ_AT_SNAPSHOTmode without a client-provided timestamp automatically assign a
timestamp higher than the timestamp of their most recent write. Writes also propagate the timestamp,
ensuring that sequences of operations with causal dependencies between them are assigned increasing
timestamps. Together, these changes allow clients to achieve read-your-writes consistency, and also ensure
that snapshot scans performed by other clients return causally-consistent results.

• User data in log files is now redacted by default.
• Kudu servers now automatically limit the number of log files being stored. By default, 10 log files will be retained

at each severity level.

Optimizations and Improvements

• The logging in the Java and cpp clients has been substantially quieted. Clients no longer log messages in normal
operation unless there is some kind of error.

• The cpp client now includes a KuduSession::SetErrorBufferSpace API which can limit the amount of
memory used to buffer errors from asynchronous operations.

• The Java client now fetches tablet locations from the Kudu Master in batches of 1000, increased from batches of
10 in prior versions. This can substantially improve the performance of Spark and Impala queries running against
Kudu tables with large numbers of tablets.

• Table metadata lock contention in the Kudu Master was substantially reduced. This improves the performance
of tablet location lookups on large clusters with a high degree of concurrency.

• Lock contention in the Kudu Tablet Server during high-concurrency write workloads was also reduced. This can
reduce CPU consumption and improve performance when a large number of concurrent clients are writing to a
smaller number of a servers.

• Lock contention whenwriting logmessages has been substantially reduced. This source of contention could cause
high tail latencies on requests, and when under high load could contribute to cluster instability such as election
storms and request timeouts.

Apache Kudu User Guide | 17

Apache Kudu Release Notes

https://issues.apache.org/jira/browse/KUDU-1812?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.2.0
https://github.com/apache/kudu/compare/branch-1.1.x...branch-1.2.x


• The BITSHUFFLE column encoding has been optimized to use the AVX2 instruction set present on processors
including Intel(R) Sandy Bridge and later. Scans on BITSHUFFLE-encoded columns are now up to 30% faster.

• The kudu tool now accepts hyphens as an alternative to underscores when specifying actions. For example, kudu
local-replica copy-from-remotemay be used as an alternative to kudu local_replica
copy_from_remote.

Issues Fixed in Kudu 1.2.0 / CDH 5.10.0

See Issues resolved for Kudu 1.2.0 and Git changes between 1.1.x and 1.2.x.

• KUDU-1508 - Fixed a long-standing issue in which running Kudu on ext4 file systems could cause file system
corruption. While this issue has been known to still manifest in certain rare cases, the corruption is harmless and
can be repaired as part of a regular fsck. Switching from ext4 to xfs will also solve the problem.

• KUDU-1399 - Implemented an LRU cache for open files, which prevents running out of file descriptors on long-lived
Kudu clusters. By default, Kudu will limit its file descriptor usage to half of its configured ulimit.

• Gerrit #5192 - Fixed an issuewhich caused data corruption and crashes in the case that a table had a non-composite
(single-column) primary key, and that column was specified to use DICT_ENCODING or BITSHUFFLE encodings.
If a tablewith an affected schemawaswritten in previous versions of Kudu, the corruptionwill not be automatically
repaired; users are encouraged to re-insert such tables after upgrading to Kudu 1.2 or later.

• Gerrit #5541 - Fixed a bug in the Spark KuduRDD implementation which could cause rows in the result set to be
silently skipped in some cases.

• KUDU-1551 - Fixed an issue in which the tablet server would crash on restart in the case that it had previously
crashed during the process of allocating a new WAL segment.

• KUDU-1764 - Fixed an issue where Kudu servers would leak approximately 16-32MB of disk space for every 10GB
of data written to disk. After upgrading to Kudu 1.2 or later, any disk space leaked in previous versions will be
automatically recovered on startup.

• KUDU-1750 - Fixed an issue where the API to drop a range partition would drop any partition with a matching
lower _or_ upper bound, rather than any partition with matching lower _and_ upper bound.

• KUDU-1766 - Fixed an issue in the Java client where equality predicates which compared an integer column to its
maximum possible value (e.g. Integer.MAX_VALUE) would return incorrect results.

• KUDU-1780 - Fixed the kudu-client Java artifact to properly shade classes in the com.google.thirdparty
namespace. The lack of proper shading in prior releases could cause conflicts with certain versions of Google
Guava.

• Gerrit #5327 - Fixed shading issues in the kudu-flume-sink Java artifact. The sink now expects that Hadoop
dependencies are provided by Flume, and properly shades the Kudu client's dependencies.

• Fixed a few issues using the Python client library from Python 3.

Incompatible Changes in Kudu 1.2.0 / CDH 5.10.0

Apache Kudu 1.2.0 introduces the following incompatible changes:

• The replication factor of tables is now limited to a maximum of 7. In addition, it is no longer allowed to create a
table with an even replication factor.

• The GROUP_VARINT encoding is now deprecated. Kudu servers have never supported this encoding, and now the
client-side constant has been deprecated to match the server's capabilities.

• Client Library Compatibility

– The Kudu 1.2 Java client is API- and ABI-compatible with Kudu 1.1. Applications written against Kudu 1.1 will
compile and run against the Kudu 1.2 client and vice-versa.

– The Kudu 1.2 cpp client is API- and ABI-forward-compatible with Kudu 1.1. Applications written and compiled
against the Kudu 1.1 client will run without modification against the Kudu 1.2 client. Applications written and
compiled against the Kudu 1.2 client will run without modification against the Kudu 1.1 client unless they use
one of the following new APIs:

– kudu::DisableSaslInitialization()

– KuduSession::SetErrorBufferSpace(...)

18 | Apache Kudu User Guide

Apache Kudu Release Notes

https://issues.apache.org/jira/browse/KUDU-1812?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.2.0
https://github.com/apache/kudu/compare/branch-1.1.x...branch-1.2.x
https://issues.apache.org/jira/browse/KUDU-1508
https://issues.apache.org/jira/browse/KUDU-1399
http://gerrit.cloudera.org:8080/5192
http://gerrit.cloudera.org:8080/5541
https://issues.apache.org/jira/browse/KUDU-1551
https://issues.apache.org/jira/browse/KUDU-1764
https://issues.apache.org/jira/browse/KUDU-1750
https://issues.apache.org/jira/browse/KUDU-1766
https://issues.apache.org/jira/browse/KUDU-1780
http://gerrit.cloudera.org:8080/5327


– The Kudu 1.2 Python client is API-compatiblewith Kudu 1.1. Applicationswritten against Kudu 1.1will continue
to run against the Kudu 1.2 client and vice-versa.

Known Issues and Limitations in Kudu 1.2.0 / CDH 5.10.0

• KUDU-1893 - Certain query results incorrectly include rows with null values for predicates.

Solution - Upgrade to the latest maintenance release.

• Schema and Usage Limitations - For a complete list of schema design and usage limitations for Apache Kudu, see
Apache Kudu Schema Design and Usage Limitations on page 36.

Kudu 1.1.x Release Notes
Apache Kudu 1.1 includes the following new features and fixed issues.

New Features in Kudu 1.1.0

See also Issues resolved for Kudu 1.1.0 and Git changes between 1.0.x and 1.1.x.

• The Python client has been brought up to feature parity with the Java and C++ clients and as such the package
version will be brought to 1.1 with this release (from 0.3). A list of the highlights can be found below.

• Improved Partial Row semantics

• Range partition support

• Scan Token API

• Enhanced predicate support

• Support for all Kududata types (including amapping of Python'sdatetime.datetime toUNIXTIME_MICROS)

• Alter table support

• Enabled Read at Snapshot for Scanners

• Enabled Scanner Replica Selection

• A few bug fixes for Python 3 in addition to various other improvements.

• IN LIST predicate pushdown support was added to allow optimized execution of filters which match on a set of
column values. Support for Spark,MapReduce and Impala queries utilizingIN LIST pushdown is not yet complete.

• The Java client now features client-side request tracing in order to help troubleshoot timeouts. Error messages
are now augmented with traces that show which servers were contacted before the timeout occurred instead of
just the last error. The traces also contain RPCs that were required to fulfill the client's request, such as contacting
themaster to discover a tablet's location. Note that the traces are not available for successful requests and cannot
be queried.

Performance

• Kudu now publishes JAR files for Spark 2.0 compiled with Scala 2.11 along with the existing Spark 1.6 JAR compiled
with Scala 2.10.

• The Java client now allows configuring scanners to read from the closest replica instead of the known leader
replica. The default remains the latter. Use the relevant ReplicaSelection enum with the scanner's builder to
change this behavior.

Wire protocol compatibility

Apache Kudu User Guide | 19

Apache Kudu Release Notes

https://issues.apache.org/jira/browse/KUDU-1893
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.1.0
https://github.com/apache/kudu/compare/branch-1.0.x...branch-1.1.x


• The Java client's sync API (KuduClient, KuduSession, KuduScanner) used to throw either a
NonRecoverableException or a TimeoutException for a timeout, and now it's only possible for the client
to throw the former.

• The Java client's handling of errors in KuduSession was modified so that subclasses of KuduException are
converted into RowErrors instead of being thrown.

Command line tools

• The tool kudu tablet leader_step_down has been added to manually force a leader to step down.

• The tool kudu remote_replica copy has been added to manually copy a replica from one running tablet
server to another.

• The tool kudu local_replica delete has been added to delete a replica of a tablet.

• The kudu test loadgen tool has been added to replace the obsoleted insert-generated-rows standalone
binary. The new tool is enriched with additional functionality and can be used to run load generation tests against
a Kudu cluster.

Client APIs (C++/Java/Python)

• The C++ client no longer requires the old gcc5ABI.WhichABI is actually used depends on the compiler configuration.
Some new distros (e.g. Ubuntu 16.04) will use the new ABI. Your application must use the same ABI as is used by
the client library; an easy way to guarantee this is to use the same compiler to build both.

• TheC++ client'sKuduSession::CountBufferedOperations()method is deprecated. Its behavior is inconsistent
unless the session runs in the MANUAL_FLUSHmode. Instead, to get number of buffered operations, count
invocations of the KuduSession::Apply()method since last KuduSession::Flush() call or, if using
asynchronous flushing, since last invocation of the callback passed into KuduSession::FlushAsync().

• The Java client'sOperationResponse.getWriteTimestampmethodwas renamed togetWriteTimestampRaw
to emphasize that it doesn't return milliseconds, unlike what its Javadoc indicated. The renamedmethod was also
hidden from the public APIs and should not be used.

• The Java client's sync API (KuduClient, KuduSession, KuduScanner) used to throw either a
NonRecoverableException or a TimeoutException for a timeout, and now it's only possible for the client
to throw the former.

• The Java client's handling of errors in KuduSession was modified so that subclasses of KuduException are
converted into RowErrors instead of being thrown.

Issues Fixed in Kudu 1.1.0

See Issues resolved for Kudu 1.1.0 and Git changes between 1.0.x and 1.1.x.

Kudu 1.0.1 Release Notes
Apache Kudu 1.0.1 is a bug fix release, with no new features or backwards incompatible changes.

Issues Fixed in Kudu 1.0.1

• KUDU-1681: Fixed a bug in the tablet server which could cause a crash when the DNS lookup during master
heartbeat failed.

• KUDU-1660: Fixed a bugwhichwould cause the Kudumaster and tablet server to fail to start on single CPU systems.
• KUDU-1652: Fixed a bug that would cause the C++ client, tablet server, and Java client to crash or throw an

exception when attempting to scan a table with a predicate which simplifies to IS NOT NULL on a non-nullable
column. For example, setting a '<= 127' predicate on an INT8 column could trigger this bug, since the predicate
only filters null values.

20 | Apache Kudu User Guide

Apache Kudu Release Notes

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.1.0
https://github.com/apache/kudu/compare/branch-1.0.x...branch-1.1.x
https://issues.apache.org/jira/browse/KUDU-1681
https://issues.apache.org/jira/browse/KUDU-1660
https://issues.apache.org/jira/browse/KUDU-1652


• KUDU-1651: Fixed a bug that would cause the tablet server to crash when evaluating a scan with predicates over
a dictionary encoded column containing an entire block of null values.

• KUDU-1623: Fixed a bug that would cause the tablet server to crash when handling UPSERT operations that only
set values for the primary key columns.

• Gerrit #4488: Fixed a bug in the Java client's KuduException class which could cause an unexpected
NullPointerException to be thrown when the exception did not have an associated message.

• KUDU-1090: Fixed a bug in the memory tracker which could cause a rare crash during tablet server startup.

Kudu 1.0.0 Release Notes
After approximately a year of beta releases, Apache Kudu has reached version 1.0. This version number signifies that
the development team feels that Kudu is stable enough for usage in production environments.

Kudu 1.0.0 delivers a number of new features, bug fixes, and optimizations.

To upgrade Kudu to 1.0.0, see Upgrade Parcels or Upgrade Packages.

Other Noteworthy Changes

• This is the first non-beta release of the Apache Kudu project. (Although because Kudu is not currently integrated
into CDH, it is not yet an officially supported CDH component.)

New Features in Kudu 1.0.0

See also Issues resolved for Kudu 1.0.0 and Git changes between 0.10.0 and 1.0.0.

• Removal of multiversion concurrency control (MVCC) history is now supported. This is known as tablet history
GC. This allows Kudu to reclaim disk space, where previously Kudu would keep a full history of all changes made
to a given table since the beginning of time. Previously, the only way to reclaim disk space was to drop a table.

• Kudu will still keep historical data, and the amount of history retained is controlled by setting the configuration
flag --tablet_history_max_age_sec, which defaults to 15 minutes (expressed in seconds). The timestamp
represented by the current time minus tablet_history_max_age_sec is known as the ancient history mark
(AHM). When a compaction or flush occurs, Kudu will remove the history of changes made prior to the ancient
historymark. This only affects historical data; currently-visible datawill not be removed. A specializedmaintenance
manager background task to remove existing “cold” historical data that is not in a row affected by the normal
compaction process will be added in a future release.

• Most of Kudu’s command line tools have been consolidated under a new top-level kudu tool. This reduces the
number of large binaries distributed with Kudu and also includes much-improved help output.

• The Kudu Flume Sink now supports processing events containing Avro-encoded records, using the new
AvroKuduOperationsProducer.

• Administrative tools including kudu cluster ksck now support running against multi-master Kudu clusters.

• The output of the ksck tool is now colorized and much easier to read.

• The C++ client API now supports writing data in AUTO_FLUSH_BACKGROUNDmode. This can provide higher
throughput for ingest workloads.

Performance

• The performance of comparison predicates on dictionary-encoded columns has been substantially optimized.
Users are encouraged to use dictionary encoding on any string or binary columns with low cardinality, especially
if these columns will be filtered with predicates.

• The Java client is now able to prune partitions from scanners based on the provided predicates. For example, an
equality predicate on a hash-partitioned column will now only access those tablets that could possibly contain

Apache Kudu User Guide | 21

Apache Kudu Release Notes

https://issues.apache.org/jira/browse/KUDU-1651
https://issues.apache.org/jira/browse/KUDU-1623
http://gerrit.cloudera.org:8080/4488
https://issues.apache.org/jira/browse/KUDU-1090
http://kudu.apache.org/docs/installation.html#upgrade
https://issues.apache.org/jira/browse/KUDU-1571?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.0.0
https://github.com/apache/kudu/compare/0.10.0...1.0.0


matching data. This is expected to improve performance for the Spark integration as well as applications using
the Java client API.

• The performance of compaction selection in the tablet server has been substantially improved. This can increase
the efficiency of the background maintenance threads and improve overall throughput of heavy write workloads.

• The policy by which the tablet server retains write-ahead log (WAL) files has been improved so that it takes into
account other replicas of the tablet. This should help mitigate the spurious eviction of tablet replicas on machines
that temporarily lag behind the other replicas.

Wire protocol compatibility

• Kudu 1.0.0 maintains client-server wire-compatibility with previous releases. Applications using the Kudu client
libraries may be upgraded either before, at the same time, or after the Kudu servers.

• Kudu 1.0.0 does notmaintain server-server wire compatibility with previous releases. Therefore, rolling upgrades
between earlier versions of Kudu and Kudu 1.0.0 are not supported.

Incompatible Changes in Kudu 1.0.0

Command line tools

• The kudu-pbc-dump tool has been removed. The same functionality is now implemented as kudu pbc dump.

• The kudu-ksck tool has been removed. The same functionality is now implemented as kudu cluster ksck.

• The cfile-dump tool has been removed. The same functionality is now implemented as kudu fs cfile dump.

• The log-dump tool has been removed. The same functionality is now implemented as kudu wal dump and kudu
local_replica dump wals.

• The kudu-admin tool has been removed. The same functionality is now implemented within kudu table and
kudu tablet.

• The kudu-fs_dump tool has been removed. The same functionality is now implemented as kudu fs dump.

• The kudu-ts-cli tool has been removed. The same functionality is now implemented within kudu master,
kudu remote_replica, and kudu tserver.

• The kudu-fs_list tool has been removed and some similar useful functionality has been moved under kudu
local_replica.

Configuration flags

Some configuration flags are marked 'unsafe' and 'experimental'. Such flags are disabled by default. You can access
these flags by enabling the additional flags,--unlock_unsafe_flags and--unlock_experimental_flags. Note
that these flagsmight be removed ormodifiedwithout a deprecation period or any prior notice in future Kudu releases.
Cloudera does not support using unsafe and experimental flags. As a rule of thumb, Cloudera will not support any
configuration flags not explicitly documented in the Kudu Configuration Reference Guide.

Client APIs (C++/Java/Python)

The TIMESTAMP column type has been renamed to UNIXTIME_MICROS in order to reduce confusion between Kudu’s
timestamp support and the timestamps supported by other systems such as ApacheHive andApache Impala (incubating).
Existing tables will automatically be updated to use the new name for the type.

Clients upgrading to the new client libraries must move to the new name for the type. Clients using old client libraries
will continue to operate using the old type name, even when connected to clusters that have been upgraded. Similarly,
if clients are upgraded before servers, existing timestamp columns will be available using the new type name.

KuduSessionmethods in the C++ library are no longer advertised as thread-safe to have one set of semantics for
both C++ and Java Kudu client libraries.

22 | Apache Kudu User Guide

Apache Kudu Release Notes

http://kudu.apache.org/docs/configuration_reference.html


The KuduScanToken::TabletServersmethod in the C++ library has been removed. The same information can
now be found in the KuduScanToken::tabletmethod.

Apache Flume Integration

The KuduEventProducer interface used to process Flume events into Kudu operations for the Kudu Flume Sink has
changed, and has been renamed KuduOperationsProducer. The existing KuduEventProducers have been updated
for the new interface, and have been renamed similarly.

Known Issues and Limitations of Kudu 1.0.0

Schema and Usage Limitations

• Kudu is primarily designed for analytic use cases. You are likely to encounter issues if a single row containsmultiple
kilobytes of data.

• The columns which make up the primary key must be listed first in the schema.

• Key columns cannot be altered. You must drop and recreate a table to change its keys.

• Key columns must not be null.

• Columns with DOUBLE, FLOAT, or BOOL types are not allowed as part of a primary key definition.

• Type and nullability of existing columns cannot be changed by altering the table.

• A table's primary key cannot be changed.

• Dropping a column does not immediately reclaim space. Compaction must run first. There is no way to run
compaction manually, but dropping the table will reclaim the space immediately.

Partitioning Limitations

• Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Range partitions may be added or dropped after a table has been created. See Schema Design for
more information.

• Data in existing tables cannot currently be automatically repartitioned. As a workaround, create a new table with
the new partitioning and insert the contents of the old table.

Replication and Backup Limitations

• Kudu does not currently include any built-in features for backup and restore. Users are encouraged to use tools
such as Spark or Impala to export or import tables as necessary.

Impala Limitations

• To use Kudu with Impala, you must install a special release of Impala called Impala_Kudu. Obtaining and installing
a compatible Impala release is detailed in Using Apache Impala (incubating) with Kudu on page 65.

• To use Impala_Kudu alongside an existing Impala instance, you must install using parcels.

• Updates, inserts, and deletes via Impala are non-transactional. If a query fails part of the way through, its partial
effects will not be rolled back.

• All queries will be distributed across all Impala hosts which host a replica of the target table(s), even if a predicate
on a primary key could correctly restrict the query to a single tablet. This limits themaximum concurrency of short
queries made via Impala.

• No TIMESTAMP and DECIMAL type support. (The underlying Kudu type formerly known as TIMESTAMP has been
renamed to UNIXTIME_MICROS; currently, there is no Impala-compatible TIMESTAMP type.)

• The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or use large tables.

Apache Kudu User Guide | 23

Apache Kudu Release Notes



• Impala is only able to push down predicates involving =, <=, >=, or BETWEEN comparisons between any column
and a literal value, and < and > for integer columns only. For example, for a table with an integer key ts, and a
string key name, the predicate WHERE ts >= 12345 will convert into an efficient range scan, whereas where
name > 'lipcon' will currently fetch all data from the table and evaluate the predicate within Impala.

Security Limitations

• Authentication and authorization features are not implemented.

• Data encryption is not built in. Kudu has been reported to run correctly on systems using local block device
encryption (e.g. dmcrypt).

Client and API Limitations

• ALTER TABLE is not yet fully supported via the client APIs. More ALTER TABLE operations will become available
in future releases.

Other Known Issues

The following are known bugs and issues with the current release of Kudu. They will be addressed in later releases.
Note that this list is not exhaustive, and is meant to communicate only the most important known issues.

• If the Kudu master is configured with the -log_fsync_all option, tablet servers and clients will experience
frequent timeouts, and the cluster may become unusable.

• If a tablet server has a very large number of tablets, it may take several minutes to start up. It is recommended
to limit the number of tablets per server to 100 or fewer. Consider this limitation when pre-splitting your tables.
If you notice slow start-up times, you can monitor the number of tablets per server in the web UI.

• Due to a known bug in Linux kernels prior to 3.8, running Kudu on ext4 mount points may cause a subsequent
fsck to fail with errors such as  Logical start <N> does not match logical start <M> at next
level . These errors are repairable using fsck -y, but may impact server restart time.

This affects RHEL/CentOS 6.8 and below. A fix is planned for RHEL/CentOS 6.9. RHEL 7.0 and higher are not affected.
Ubuntu 14.04 and later are not affected. SLES 12 and later are not affected.

Issues Fixed in Kudu 1.0.0

See Issues resolved for Kudu 1.0.0 and Git changes between 0.10.0 and 1.0.0.

Kudu 0.10.0 Release Notes
Kudu 0.10.0 delivers a number of new features, bug fixes, and optimizations.

See also Issues resolved for Kudu 0.10.0 and Git changes between 0.9.1 and 0.10.0.

To upgrade Kudu to 0.10.0, see Upgrade Parcels or Upgrade Packages.

Kudu 0.10.0 maintains wire-compatibility with previous releases, meaning that applications using the Kudu client
libraries may be upgraded either before, at the same time, or after the Kudu servers. However, if you begin using new
features of Kudu 0.10.0 such as manually range-partitioned tables, you must first upgrade all clients to this release.

After upgrading to Kudu 0.10.0, it is possible to downgrade to 0.9.x with the following exceptions:

• Tables created in 0.10.0 will not be accessible after a downgrade to 0.9.x.

• A multi-master setup formatted in 0.10.0 may not be downgraded to 0.9.x.

This release does not maintain full Java API or ABI compatibility with Kudu 0.9.x due to a package rename and some
other small changes. See Incompatible Changes in Kudu 0.10.0 on page 26 for details.

24 | Apache Kudu User Guide

Apache Kudu Release Notes

https://issues.apache.org/jira/browse/KUDU-1571?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%201.0.0
https://github.com/apache/kudu/compare/0.10.0...1.0.0
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.10.0
https://github.com/apache/kudu/compare/0.9.1...0.10.0
http://kudu.apache.org/docs/installation.html#upgrade


Other Noteworthy Changes

• This is the first release of Apache Kudu as a top-level (non-incubating) project.
• The default false positive rate for Bloom filters has been changed from 1% to 0.01%. This will increase the space

consumption of Bloom filters by a factor of two (from approximately 10 bits per row to approximately 20 bits per
row). This is expected to substantially improve the performance of random-write workloads at the cost of an
incremental increase in disk space usage.

• The Kudu C++ client library now has Doxygen-based API documentation available online.
• Kudu now uses the Raft consensus algorithm even for unreplicated tables. This change simplifies code and will

also allow administrators to enable replication on a previously unreplicated table. This change is internal and
should not be visible to users.

New Features in Kudu 0.10.0

• Users may now manually manage the partitioning of a range-partitioned table. When a table is created, the user
may specify a set of range partitions that do not cover the entire available key space. A user may add or drop
range partitions to existing tables.

This feature can be particularly helpful with time series workloads in which new partitions can be created on an
hourly or daily basis. Old partitions may be efficiently dropped if the application does not need to retain historical
data past a certain point.

• Support for running Kudu clusters with multiple masters has been stabilized. Users may start a cluster with three
or five masters to provide fault tolerance despite a failure of one or two masters, respectively.

Certain tools such as ksck lack complete support for multiple masters. These deficiencies will be addressed in a
following release.

• Kudu now supports the ability to reserve a certain amount of free disk space in each of its configured data
directories. If a directory's free disk space drops to less than the configured minimum, Kudu will stop writing to
that directory until space becomes available. If no space is available in any configured directory, Kudu will abort.

This feature may be configured using the --fs_data_dirs_reserved_bytes and
--fs_wal_dir_reserved_bytes flags.

• The Spark integration's KuduContext now supports four new methods for writing to Kudu tables: insertRows,
upsertRows, updateRows, and deleteRows. These are now the preferred way to write to Kudu tables from
Spark.

Other Improvements in Kudu 0.10.0

• KUDU-1516: The kudu-ksck tool has been improved and now detects problems such as when a tablet does not
have a majority of replicas on live tablet servers, or if those replicas aren’t in a good state. Users who currently
depend on the tool to detect inconsistencies may now see failures when before they wouldn't see any.

• Gerrit #3477: The way operations are buffered in the Java client has been reworked. Previously, the session's
buffer size was set per tablet, meaning that a buffer size of 1,000 for 10 tablets being written to allowed for 10,000
operations to be buffered at the same time. With this change, all the tablets share one buffer, so users might
need to set a bigger buffer size in order to reach the same level of performance as before.

• Gerrit #3674: Added LESS and GREATER options for column predicates.

• KUDU-1444: Added support for passing back basic per-scan metrics, such as cache hit rate, from the server to the
C++ client. See theKuduScanner::GetResourceMetrics()API for detailed usage. This featurewill be supported
in the Java client API in a future release.

• KUDU-1446: Improved the order in which the tablet server evaluates predicates, so that predicates on smaller
columns are evaluated first. Thismay improve performance on querieswhich apply predicates onmultiple columns
of different sizes.

Apache Kudu User Guide | 25

Apache Kudu Release Notes

http://kudu.apache.org/apidocs/cpp-client-api/
http://kudu.apache.org/2016/06/17/raft-consensus-single-node.html
https://issues.apache.org/jira/browse/KUDU-1516
https://gerrit.cloudera.org:8080/3477
https://gerrit.cloudera.org/#/c/3674/
https://issues.apache.org/jira/browse/KUDU-1444
https://issues.apache.org/jira/browse/KUDU-1446


• KUDU-1398: Improved the storage efficiency of Kudu's internal primary key indexes. This optimization should
decrease space usage and improve random access performance, particularly for workloads with lengthy primary
keys.

Issues Fixed in Kudu 0.10.0

• Gerrit #3541: Fixed a problem in the Java client whereby an RPC could be dropped when a connection to a tablet
server or master was forcefully closed on the server-side while RPCs to that server were in the process of being
encoded. The effect was that the RPC would not be sent, and users of the synchronous API would receive a
TimeoutException. Several other Java client bugs which could cause similar spurious timeouts were also fixed
in this release.

• Gerrit #3724: Fixed a problem in the Java client whereby an RPC could be dropped when a socket timeout was
fired while that RPC was being sent to a tablet server or master. This would manifest itself in the same way as
Gerrit #3541.

• KUDU-1538: Fixed a bug in which recycled block identifiers could cause the tablet server to lose data. Following
this bug fix, block identifiers will no longer be reused.

Incompatible Changes in Kudu 0.10.0

• Gerrit #3737: The Java client has been repackaged under org.apache.kudu instead of org.kududb. Import
statements for Kudu classesmust bemodified in order to compile against 0.10.0.Wire compatibility is maintained.

• Gerrit #3055: The Java client's synchronous API methods now throw KuduException instead of Exception.
Existing code that catches Exception should still compile, but introspection of an exception's message may be
impacted. This change was made to allow thrown exceptions to be queried more easily using
KuduException.getStatus and calling one of Status'smethods. For example, an operation that tries to delete
a table that doesn't exist would return a Status that returns true when queried on isNotFound().

• The Java client's KuduTable.getTabletsLocations set of methods is now deprecated. Additionally, they now
take an exclusive end partition key instead of an inclusive key. Applications are encouraged to use the scan tokens
API instead of these methods in the future.

• The C++ API for specifying split points on range-partitioned tables has been improved to make it easier for callers
to properly manage the ownership of the provided rows.

• TheTableCreator::split_rowsAPI took avector<const KuduPartialRow*>, whichmade it very difficult
for the calling application to do proper error handlingwith cleanupwhen setting the fields of theKuduPartialRow.
This API has been now been deprecated and replaced by a new method TableCreator::add_range_split
which allows easier use of smart pointers for safe memory management.

• The Java client's internal buffering has been reworked. Previously, the number of buffered write operations was
constrained on a per-tablet-server basis. Now, the configured maximum buffer size constrains the total number
of buffered operations across all tablet servers in the cluster. This provides amore consistent bound on thememory
usage of the client regardless of the size of the cluster to which it is writing. This change can negatively affect the
write performance of Java clients which rely on buffered writes. Consider using the setMutationBufferSpace
API to increase a session's maximum buffer size if write performance seems to be degraded after upgrading to
Kudu 0.10.0.

• The "remote bootstrap" process used to copy a tablet replica from one host to another has been renamed to
"Tablet Copy". This resulted in the renaming of several RPC metrics. Any users previously explicitly fetching or
monitoring metrics related to Remote Bootstrap should update their scripts to reflect the new names.

• The SparkSQL datasource for Kudu no longer supports mode Overwrite. Users should use the new
KuduContext.upsertRowsmethod instead. Additionally, inserts using the datasource are now upserts by
default. The older behavior can be restored by setting the operation parameter to insert.

Kudu 0.9.1 Release Notes
Kudu 0.9.1 delivers incremental bug fixes over Kudu 0.9.0. It is fully compatiblewith Kudu 0.9.0. See also Issues resolved
for Kudu 0.9.1 and Git changes between 0.9.0 and 0.9.1.

To upgrade Kudu to 0.9.1, see Upgrade Parcels or Upgrade Packages.

26 | Apache Kudu User Guide

Apache Kudu Release Notes

https://issues.apache.org/jira/browse/KUDU-1398
https://gerrit.cloudera.org/#/c/3541/
https://gerrit.cloudera.org/#/c/3724/
https://gerrit.cloudera.org/#/c/3541/
https://issues.apache.org/jira/browse/KUDU-1538
http://gerrit.cloudera.org:8080/3737
https://gerrit.cloudera.org/#/c/3055/
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.9.1
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.9.1
https://github.com/apache/kudu/compare/0.9.0...0.9.1
http://kudu.apache.org/docs/installation.html#upgrade


Issues Fixed in Kudu 0.9.1

• KUDU-1469 fixes a bug in Kudu's Raft consensus implementation that could cause a tablet to stopmaking progress
after a leader election.

• Gerrit #3456 fixes a bug in which servers under high load could store metric information in incorrect memory
locations, causing crashes or data corruption.

• Gerrit #3457 fixes a bug in which errors from the Java client would carry an incorrect error message.
• Other small bug fixes were backported to improve stability.

Kudu 0.9.0 Release Notes
Kudu 0.9.0 delivers incremental features, improvements, and bug fixes. See also Issues resolved for Kudu 0.9 and Git
changes between 0.8.0 and 0.9.0.

To upgrade Kudu to 0.9.0, see Upgrade Parcels or Upgrade Packages.

New Features in Kudu 0.9.0

• KUDU-1306: Scan token API for creating partition-aware scan descriptors. This API simplifies executing parallel
scans for clients and query engines.

• KUDU-1002: Added support for UPSERT operations, whereby a row is inserted if it does not yet exist, but updated
if it does. Support for UPSERT is included in the Java, C++, and Python APIs, but not Impala.

• Gerrit 2848: Added a Kudu datasource for Spark. This datasource uses the Kudu client directly instead of using
theMapReduce API. Predicate pushdowns for spark-sql and Spark filters are included, aswell as parallel retrieval
for multiple tablets and column projections. See an example of Kudu integration with Spark.

• Gerrit 2992: Added the ability to update and insert from Spark using a Kudu datasource.

Other Improvements and Changes in Kudu 0.9.0

All Kudu clients have longer default timeout values, as listed below.

Java

• The default operation timeout and the default admin operation timeout are now set to 30 seconds instead of
10.

• The default socket read timeout is now 10 seconds instead of 5.

C++

• The default admin timeout is now 30 seconds instead of 10.
• The default RPC timeout is now 10 seconds instead of 5.
• The default scan timeout is now 30 seconds instead of 15.

Some default settings related to I/O behavior during flushes and compactions have been changed:

• The default for flush_threshold_mb has been increased from 64 MB to 1000 MB.
• The default for cfile_do_on_finish has been changed from close to flush. Experiments using YCSB indicate

that these values provide better throughput for write-heavy applications on typical server hardware.

• KUDU-1415: Added statistics in the Java client, such as the number of bytes written and the number of operations
applied.

• KUDU-1451: Tablet servers take less time to restart when the tablet server must clean upmany previously deleted
tablets. Tablets are now cleaned up after they are deleted.

Issues Fixed in Kudu 0.9.0

• KUDU-678: Fixed a leak that occurred during DiskRowSet compactions where tiny blocks were still written to
disk even if there were no REDO records. With the default block manager, this often resulted in block containers
with thousands of tiny blocks.

Apache Kudu User Guide | 27

Apache Kudu Release Notes

https://issues.apache.org/jira/browse/KUDU-1469
https://gerrit.cloudera.org/#/c/3456/
https://gerrit.cloudera.org/#/c/3457/
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.9.0
https://github.com/apache/kudu/compare/0.8.0...0.9.0
https://github.com/apache/kudu/compare/0.8.0...0.9.0
http://kudu.apache.org/docs/installation.html#upgrade
https://issues.apache.org/jira/browse/KUDU-1306
https://issues.apache.org/jira/browse/KUDU-1002
http://gerrit.cloudera.org:8080/#/c/2848/
https://kudu.apache.org/docs/developing.html#_kudu_integration_with_spark
http://gerrit.cloudera.org:8080/#/c/2992/
http://kudu.apache.org/2016/04/26/ycsb.html
https://issues.apache.org/jira/browse/KUDU-1415
https://issues.apache.org/jira/browse/KUDU-1451
https://issues.apache.org/jira/browse/KUDU-678


• KUDU-1437: Fixed a data corruption issue that occurred after compacting sequences of negative INT32 values in
a column that was configured with RLE encoding.

Incompatible Changes in Kudu 0.9.0

• The KuduTableInputFormat command has changed the way in which it handles scan predicates, including how
it serializes predicates to the job configuration object. The new configuration key is
kudu.mapreduce.encoded.predicate. Clients using theTableInputFormatConfigurator are not affected.

• The kudu-spark sub-project has been renamed to follow naming conventions for Scala. The new name is
kudu-spark_2.10.

• Default table partitioning has been removed. All tables must now be created with explicit partitioning. Existing
tables are unaffected. See the schema design guide for more details.

Limitations of Kudu 0.9.0

Kudu 0.9.0 has the same limitations as Kudu 0.8, listed in Limitations of Kudu 0.7.0 on page 30.

Upgrade Notes for Kudu 0.9.0

Before upgrading to Kudu 0.9.0, see Incompatible Changes in Kudu 0.9.0 on page 28.

Kudu 0.8.0 Release Notes
Kudu 0.8.0 delivers incremental features, improvements, and bug fixes over the previous versions. See also Issues
resolved for Kudu 0.8 and Git changes between 0.7.1 and 0.8.0

To upgrade Kudu to 0.8.0, see Upgrade Parcels or Upgrade Packages

New Features in Kudu 0.8.0

• KUDU-431: A simple Flume sink has been implemented.

Other Improvements in Kudu 0.8.0

• KUDU-839: Java RowError now uses an enum error code.
• Gerrit 2138: The handling of column predicates has been re-implemented in the server and clients.
• KUDU-1379: Partition pruning has been implemented for C++ clients (but not yet for the Java client). This feature

allows you to avoid reading a tablet if you know it does not serve the row keys you are querying.
• Gerrit 2641: Kudu nowusesearliest-deadline-firstRPC scheduling and rejection. This changes the behavior

of the RPC service queue to prevent unfairness when processing a backlog of RPC threads and to increase the
likelihood that an RPC will be processed before it can time out.

• Gerrit 2239: The concept of "feature flags" was introduced in order to manage compatibility between different
Kudu versions. One case where this is helpful is if a newer client attempts to use a feature unsupported by the
currently-running tablet server. Rather than receiving a cryptic error, the user gets an error message that is easier
to interpret. This is an internal change for Kudu system developers and requires no action by users of the clients
or API.

Issues Fixed in Kudu 0.8.0

• KUDU-1337: Tablets from tables that were deleted might be unnecessarily re-bootstrapped when the leader gets
the notification to delete itself after the replicas do.

• KUDU-969: If a tablet server shuts downwhile compacting a rowset and receiving updates for it, itmight immediately
crash upon restart while bootstrapping that rowset's tablet.

• KUDU-1354: Due to a bug in the Kudu implementation of MVCC where row locks were released before the MVCC
commit happened, flushed datawould include out-of-order transactions, triggering a crash on the next compaction.

• KUDU-1322: The C++ client now retries write operations if the tablet it is trying to reach has already been deleted.

28 | Apache Kudu User Guide

Apache Kudu Release Notes

https://issues.apache.org/jira/browse/KUDU-1437
https://kudu.apache.org/docs/schema_design.html#no_default_partitioning
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.8.0
https://issues.apache.org/jira/issues/?jql=project%20%3D%20KUDU%20AND%20status%20%3D%20Resolved%20AND%20fixVersion%20%3D%200.8.0
https://github.com/apache/kudu/compare/0.7.1...0.8.0
http://kudu.apache.org/docs/installation.html#upgrade
https://issues.apache.org/jira/browse/KUDU-431
https://issues.apache.org/jira/browse/KUDU-839
http://gerrit.cloudera.org:8080/#/c/2138/
https://issues.apache.org/jira/browse/KUDU-1379
http://gerrit.cloudera.org:8080/#/c/2641
http://gerrit.cloudera.org:8080/#/c/2239/
https://issues.cloudera.org/browse/KUDU-1337
https://issues.cloudera.org/browse/KUDU-969
https://issues.cloudera.org/browse/KUDU-1354
https://issues.apache.org/jira/browse/KUDU-1322


• Gerrit 2571: Due to a bug in the Java client, users were unable to close the kudu-spark shell because of lingering
non-daemon threads.

Incompatible Changes in Kudu 0.8.0

0.8.0 clients are not fully compatible with servers running Kudu 0.7.1 or lower. In particular, scans that specify column
predicates will fail. To work around this issue, upgrade all Kudu servers before upgrading clients.

Limitations of Kudu 0.8.0

Kudu 0.8.0 has the same limitations as Kudu 0.7.0, listed in Limitations of Kudu 0.7.0 on page 30.

Upgrade Notes for Kudu 0.8.0

Before upgrading to Kudu 0.8.0, see Incompatible Changes in Kudu 0.8.0 on page 29.

Kudu 0.7.1 Release Notes
Kudu 0.7.1 is a bug-fix release for 0.7.0. Users of Kudu 0.7.0 should upgrade to this version. See also Issues resolved
for Kudu 0.7.1 and Git changes between 0.7.0 and 0.7.1.

To upgrade Kudu to 0.7.1, see Upgrade Parcels or Upgrade Packages.

Issues Fixed in Kudu 0.7.1

For a list of issues fixed in Kudu 0.7.1, see this JIRA query. The following notable fixes are included:

• KUDU-1325 fixes a tablet server crash that could occur during table deletion. In some cases, while a table was
being deleted, other replicas would attempt to re-replicate tablets to servers that had already processed the
deletion. This could trigger a race condition that caused a crash.

• KUDU-1341 fixes a potential data corruption and crash that could happen shortly after tablet server restarts in
workloads that repeatedly delete and re-insert rows with the same primary key. In most cases, this corruption
affected only a single replica and could be repaired by re-replicating from another.

• KUDU-1343 fixes a bug in the Java client that occurs when a scanner has to scan multiple batches from one tablet
and then start scanning from another. In particular, this affected any scans using the Java client that read large
numbers of rows from multi-tablet tables.

• KUDU-1345 fixes a bug where the hybrid clock could jump backwards, resulting in a crash followed by an inability
to restart the affected tablet server.

• KUDU-1360 fixes a bug in the kudu-sparkmodule that prevented reading rows with NULL values.

Limitations of Kudu 0.7.1

Kudu 0.7.1 has the same limitations as Kudu 0.7.0, listed in Limitations of Kudu 0.7.0 on page 30.

Upgrade Notes For Kudu 0.7.1

Kudu 0.7.1 has the same upgrade notes as Kudu 0.7.0, listed in Upgrade Notes For Kudu 0.7.0 on page 32.

Kudu 0.7.0 Release Notes
Kudu 0.7.0 is the first release as part of the Apache Incubator and includes a number of changes, new features,
improvements, and fixes. See also Issues resolved for Kudu 0.7.0 and Git changes between 0.6.0 and 0.7.0.

To upgrade Kudu to 0.7, see Upgrade Parcels or Upgrade Packages.

Apache Kudu User Guide | 29

Apache Kudu Release Notes

http://gerrit.cloudera.org:8080/#/c/2571/
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.7.1
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.7.1
https://github.com/apache/kudu/compare/0.7.0...0.7.1
http://kudu.apache.org/docs/installation.html#upgrade
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.7.1
https://issues.apache.org/jira/browse/KUDU-1325
https://issues.apache.org/jira/browse/KUDU-1341
https://issues.apache.org/jira/browse/KUDU-1343
https://issues.apache.org/jira/browse/KUDU-1345
https://issues.apache.org/jira/browse/KUDU-1360
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.7.0
https://github.com/apache/kudu/compare/branch-0.6.0...branch-0.7.0
http://kudu.apache.org/docs/installation.html#upgrade


New Features in Kudu 0.7.0

Initial work for Spark integration

With the goal of Spark integration, a new kuduRDDAPI has been added thatwraps newAPIHadoopRDD and includes
a default source for Spark SQL.

Other Improvements in Kudu 0.7.0

• Support for RHEL 7, CentOS 7, and SLES 12 has been added.
• The Python client is no longer considered experimental.
• The file block manager performance is improved, but it is still not recommended for real-world use.
• The master now attempts to spread tablets more evenly across the cluster during table creation. This has no

impact on existing tables, but improves the speed at which under-replicated tablets are re-replicated after a tablet
server failure.

• All licensing documents have been modified to adhere to ASF guidelines.
• The C++ client library is now explicitly built against the old GCC 5 ABI. If you use gcc5 to build a Kudu application,

your applicationmust use the old ABI aswell. This is typically achieved by defining the _GLIBCXX_USE_CXX11_ABI
macro at compile time when building your application. For more information, see GCC 5 and the C++ 11 ABI.

Issues Fixed in Kudu 0.7.0

For a list of issues fixed in Kudu 0.7, see this JIRA query.

Incompatible Changes in Kudu 0.7.0

• The C++ client includes a new API, KuduScanBatch, which performs better when a large number of small rows
are returned in a batch. The old API of vector<KuduRowResult> is deprecated.

Note: This change is API-compatible but not ABI-compatible.

• The default replication factor has been changed from 1 to 3. Existing tables continue to use the replication factor
they were created with. Applications that create tables may not work properly if they assume a replication factor
of 1 and fewer than 3 replicas are available. To use the previous default replication factor, start the master with
the configuration flag --default_num_replicas=1.

• The Python client has been rewritten, with a focus on improving code quality and testing. The read path (scanners)
has been improved by adding many of the features already supported by the C++ and Java clients. The Python
client is no longer considered experimental.

Limitations of Kudu 0.7.0

Operating System Limitations

• RHEL 7 or 6.4 or newer, CentOS 7 or 6.4 or newer, and Ubuntu Trusty are the only operating systems supported
for installation in the public beta. Others may work but have not been tested. You can build Kudu from source on
SLES 12, but binaries are not provided.

Storage Limitations

• Kudu has been tested with up to 4 TB of data per tablet server. More testing is needed for denser storage
configurations.

Schema Limitations

• Testing with more than 20 columns has been limited.
• Multi-kilobyte rows have not been thoroughly tested.

30 | Apache Kudu User Guide

Apache Kudu Release Notes

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html
http://developerblog.redhat.com/2015/02/05/gcc5-and-the-c11-abi/
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.7.0


• The columns that make up the primary key must be listed first in the schema.
• Key columns cannot be altered. You must drop and re-create a table to change its keys.
• Key columns must not be null.
• Columns with DOUBLE, FLOAT, or BOOL types are not allowed as part of a primary key definition.
• Type and nullability of existing columns cannot be changed by altering the table.
• A table’s primary key cannot be changed.
• Dropping a column does not immediately reclaim space.; compaction must run first. You cannot run compaction

manually. Dropping the table reclaims space immediately.

Ingest Limitations

• Ingest through Sqoop or Flume is not supported in the public beta. For bulk ingest, use Impala’s CREATE TABLE
AS SELECT functionality or use Kudu's Java or C++ API.

• Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Instead, add split rows at table creation.

• Tablets cannot currently be merged. Instead, create a new table with the contents of the old tables to be merged.

Cloudera Manager Limitations

• Some metrics, such as latency histograms, are not yet available in Cloudera Manager.
• Some service and role chart pages are still under development. More charts and metrics will be visible in future

releases.

Replication and Backup Limitations

• Replication and failover of Kudu masters is considered experimental. Cloudera recommends running a single
master and periodically perform a manual backup of its data directories.

Impala Limitations

• To use Kudu with Impala, youmust install a special release of Impala. Obtaining and installing a compatible Impala
release is detailed in Using Apache Impala (incubating) with Kudu on page 65.

• To use Impala_Kudu alongside an existing Impala instance, you must install using parcels.
• Updates, inserts, and deletes through Impala are nontransactional. If a query fails, any partial effects are not be

rolled back.
• All queries are distributed across all Impala nodes that host a replica of the target table(s), even if a predicate on

a primary key could correctly restrict the query to a single tablet. This limits the maximum concurrency of short
queries made through Impala.

• Timestamp and decimal type are not supported.
• The maximum parallelism of a single query is limited to the number of tablets in a table. To optimize analytic

performance, spread your data across 10 or more tablets per host for a large table.
• Impala can push down only predicates involving =, <=, >=, or BETWEEN comparisons between a column and a

literal value. Impala pushes down predicates < and > for integer columns only. For example, for a table with an
integer key ts, and a string key name, the predicate WHERE ts >= 12345 converts to an efficient range scan,
whereas WHERE name > smith currently fetches all data from the table and evaluates the predicate within
Impala.

Security Limitations

• Authentication and authorization are not included in the public beta.
• Data encryption is not included in the public beta.

Client and API Limitations

• Potentially incompatible C++ and Java API changes may be required during the public beta.

Apache Kudu User Guide | 31

Apache Kudu Release Notes



• ALTER TABLE is not yet fully supported through the client APIs. More ALTER TABLE operations will be available
in future betas.

Application Integration Limitations

• The Spark DataFrame implementation is not yet complete.

Other Known Issues

The following are known bugs and issues with the current beta release. They will be addressed in later beta releases.

• Building Kudu from source using gcc 4.6 or 4.7 causes runtime and test failures. Be sure you are using a different
version of gcc if you build Kudu from source.

• If the Kudu master is configured with the -log_fsync_all option, tablet servers and clients will experience
frequent timeouts, and the cluster may become unusable.

• If a tablet server has a very large number of tablets, it may take several minutes to start up. Limit the number of
tablets per server to 100 or fewer, and consider this limitation when pre-splitting your tables. If you notice slow
start-up times, you can monitor the number of tablets per server in the web UI.

Upgrade Notes For Kudu 0.7.0

• Kudu 0.7.0 maintains wire compatibility with Kudu 0.6.0. A Kudu 0.7.0 client can communicate with a Kudu 0.6.0
cluster, and vice versa. For that reason, you do not need to upgrade client JARs at the same time the cluster is
upgraded.

• The same wire compatibility guarantees apply to the Impala_Kudu fork that was released with Kudu 0.5.0.
• Review Incompatible Changes in Kudu 0.7.0 on page 30 before upgrading to Kudu 0.7.

See Upgrading Kudu for instructions.

Kudu 0.6 Release Notes
To upgrade Kudu to 0.6, see Upgrade Parcels or Upgrade Packages.

New Features in Kudu 0.6

Row Error Reporting

The Java client includes new methods countPendingErrors() and getPendingErrors() on KuduSession.
These methods allow you to count and retrieve outstanding row errors when configuring sessions with
AUTO_FLUSH_BACKGROUND.

New Server-Side Metrics

New server-level metrics allow you to monitor CPU usage and context switching.

Issues Fixed in Kudu 0.6

For a list of issues addressed in Kudu 0.6, see this JIRA query.

Limitations of Kudu 0.6

Operating System Limitations

• RHEL 6.4 or newer, CentOS 6.4 or newer, and Ubuntu Trusty are the only operating systems supported for
installation in the public beta. Others may work but have not been tested.

32 | Apache Kudu User Guide

Apache Kudu Release Notes

http://kudu.apache.org/docs/installation.html#upgrade
https://issues.apache.org/jira/issues/?jql=project%20%3D%20kudu%20and%20fixVersion%20%3D%200.6.0


Storage Limitations

• Kudu has been tested with up to 4 TB of data per tablet server. More testing is needed for denser storage
configurations.

Schema Limitations

• Testing with more than 20 columns has been limited.
• Multi-kilobyte rows have not been thoroughly tested.
• The columns which make up the primary key must be listed first in the schema.
• Key columns cannot be altered. You must drop and recreate a table to change its keys.
• Key columns must not be null.
• Columns with DOUBLE, FLOAT, or BOOL types are not allowed as part of a primary key definition.
• Type and nullability of existing columns cannot be changed by altering the table.
• A table’s primary key cannot be changed.
• Dropping a column does not immediately reclaim space. Compaction must run first. There is no way to run

compaction manually, but dropping the table will reclaim the space immediately.

Ingest Limitations

• Ingest using Sqoop or Flume is not supported in the public beta. The recommended approach for bulk ingest is to
use Impala’s CREATE TABLE AS SELECT functionality or use the Kudu's Java or C++ API.

• Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Instead, add split rows at table creation.

• Tablets cannot currently be merged. Instead, create a new table with the contents of the old tables to be merged.

Cloudera Manager Limitations

• Some metrics, such as latency histograms, are not yet available in Cloudera Manager.
• Some service and role chart pages are still under development. More charts and metrics will be visible in future

releases.

Replication and Backup Limitatinos

• Replication and failover of Kudu masters is considered experimental. It is recommended to run a single master
and periodically perform a manual backup of its data directories.

Impala Limitations

• To use Kudu with Impala, youmust install a special release of Impala. Obtaining and installing a compatible Impala
release is detailed in Using Apache Impala (incubating) with Kudu on page 65.

• To use Impala_Kudu alongside an existing Impala instance, you must install using parcels.
• Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of theway through, its partial

effects will not be rolled back.
• All queries will be distributed across all Impala nodes which host a replica of the target table(s), even if a predicate

on a primary key could correctly restrict the query to a single tablet. This limits themaximum concurrency of short
queries made using Impala.

• No timestamp and decimal type support.
• The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic

performance, aim for 10 or more tablets per host or large tables.
• Impala is only able to push down predicates involving =, <=, >=, or BETWEEN comparisons between a column and

a literal value. Impala pushes down predicates < and > for integer columns only. For example, for a table with an
integer key ts, and a string key name, the predicate WHERE ts >= 12345 will convert into an efficient range
scan, whereas WHERE name > smith will currently fetch all data from the table and evaluate the predicate
within Impala.

Apache Kudu User Guide | 33

Apache Kudu Release Notes



Security Limitations

• Authentication and authorization are not included in the public beta.
• Data encryption is not included in the public beta.

Client and API Limitations

• Potentially-incompatible C++ and Java API changes may be required during the public beta.
• ALTER TABLE is not yet fully supported using the client APIs.More ALTER TABLE operationswill become available

in future betas.
• The Python API is not supported.

Application Integration Limitations

• The Spark DataFrame implementation is not yet complete.

Other Known Issues

The following are known bugs and issues with the current beta release. They will be addressed in later beta releases.

• Building Kudu from source using gcc 4.6 or 4.7 causes runtime and test failures. Be sure you are using a different
version of gcc if you build Kudu from source.

• If the Kudu master is configured with the -log_fsync_all option, tablet servers and clients will experience
frequent timeouts, and the cluster may become unusable.

• If a tablet server has a very large number of tablets, it may take several minutes to start up. It is recommended
to limit the number of tablets per server to 100 or fewer. Consider this limitation when pre-splitting your tables.
If you notice slow start-up times, you can monitor the number of tablets per server in the web UI.

Upgrade Notes For Kudu 0.6

• Kudu 0.6.0 maintains wire compatibility with Kudu 0.5.0. This means that a Kudu 0.6.0 client can communicate
with a Kudu 0.5.0 cluster, and vice versa. For that reason, you do not need to upgrade client JARs at the same
time the cluster is upgraded.

• The same wire compatibility guarantees apply to the Impala_Kudu fork that was released with Kudu 0.5.0 and
0.6.0.

• The Kudu 0.6.0 client API is not compatible with the Kudu 0.5.0 client API. See the Kudu 0.6.0 release notes for
details.

See Upgrading Kudu for instructions.

Kudu 0.5 Release Notes

Limitations of Kudu 0.5

Operating System Limitations

• RHEL 6.4 or newer, CentOS 6.4 or newer, and Ubuntu Trusty are the only operating systems supported for
installation in the public beta. Others may work but have not been tested.

Storage Limitations

• Kudu has been tested with up to 4 TB of data per tablet server. More testing is needed for denser storage
configurations.

34 | Apache Kudu User Guide

Apache Kudu Release Notes



Schema Limitations

• Testing with more than 20 columns has been limited.
• Multi-kilobyte rows have not been thoroughly tested.
• The columns which make up the primary key must be listed first in the schema.
• Key columns cannot be altered. You must drop and recreate a table to change its keys.
• Key columns must not be null.
• Columns with DOUBLE, FLOAT, or BOOL types are not allowed as part of a primary key definition.
• Type and nullability of existing columns cannot be changed by altering the table.
• A table’s primary key cannot be changed.
• Dropping a column does not immediately reclaim space. Compaction must run first. There is no way to run

compaction manually, but dropping the table will reclaim the space immediately.

Ingest Limitations

• Ingest using Sqoop or Flume is not supported in the public beta. The recommended approach for bulk ingest is to
use Impala’s CREATE TABLE AS SELECT functionality or use the Kudu's Java or C++ API.

• Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Instead, add split rows at table creation.

• Tablets cannot currently be merged. Instead, create a new table with the contents of the old tables to be merged.

Cloudera Manager Limitations

• Some metrics, such as latency histograms, are not yet available in Cloudera Manager.
• Some service and role chart pages are still under development. More charts and metrics will be visible in future

releases.

Replication and Backup Limitatinos

• Replication and failover of Kudu masters is considered experimental. It is recommended to run a single master
and periodically perform a manual backup of its data directories.

Impala Limitations

• To use Kudu with Impala, youmust install a special release of Impala. Obtaining and installing a compatible Impala
release is detailed in Using Apache Impala (incubating) with Kudu on page 65.

• To use Impala_Kudu alongside an existing Impala instance, you must install using parcels.
• Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of theway through, its partial

effects will not be rolled back.
• All queries will be distributed across all Impala nodes which host a replica of the target table(s), even if a predicate

on a primary key could correctly restrict the query to a single tablet. This limits themaximum concurrency of short
queries made using Impala.

• No timestamp and decimal type support.
• The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic

performance, aim for 10 or more tablets per host or large tables.
• Impala is only able to push down predicates involving =, <=, >=, or BETWEEN comparisons between a column and

a literal value. Impala pushes down predicates < and > for integer columns only. For example, for a table with an
integer key ts, and a string key name, the predicate WHERE ts >= 12345 will convert into an efficient range
scan, whereas WHERE name > smith will currently fetch all data from the table and evaluate the predicate
within Impala.

Security Limitations

• Authentication and authorization are not included in the public beta.
• Data encryption is not included in the public beta.

Apache Kudu User Guide | 35

Apache Kudu Release Notes



Client and API Limitations

• Potentially-incompatible C++ and Java API changes may be required during the public beta.
• ALTER TABLE is not yet fully supported using the client APIs.More ALTER TABLE operationswill become available

in future betas.
• The Python API is not supported.

Application Integration Limitations

• The Spark DataFrame implementation is not yet complete.

Other Known Issues

The following are known bugs and issues with the current beta release. They will be addressed in later beta releases.

• Building Kudu from source using gcc 4.6 or 4.7 causes runtime and test failures. Be sure you are using a different
version of gcc if you build Kudu from source.

• If the Kudu master is configured with the -log_fsync_all option, tablet servers and clients will experience
frequent timeouts, and the cluster may become unusable.

• If a tablet server has a very large number of tablets, it may take several minutes to start up. It is recommended
to limit the number of tablets per server to 100 or fewer. Consider this limitation when pre-splitting your tables.
If you notice slow start-up times, you can monitor the number of tablets per server in the web UI.

Next Steps
Kudu Quickstart

Installing Kudu

Configuring Kudu

Apache Kudu Schema Design and Usage Limitations
The following sections describe known issues and limitations in Kudu, as of the current release.

Schema Design Limitations

Primary Key

• The columns which make up the primary key must be listed first in the schema.

• Columns with DOUBLE, FLOAT, or BOOL types are not allowed as part of a primary key definition. Additionally,
all columns that are part of a primary key definition must be NOT NULL.

• The primary key of a row cannot be modified using the UPDATE functionality. To modify a row’s primary key,
the row must be deleted and re-inserted with the modified key. Such a modification is non-atomic.

• Columns that are part of the primary key cannot be renamed. The primary key may not be changed after the
table is created. You must drop and recreate a table to select a new primary key or rename key columns.

• Auto-generated primary keys are not supported.

• Cells making up a composite primary key are limited to a total of 16KB after internal composite-key encoding
is done by Kudu.

Columns

• By default, Kudu will not permit the creation of tables with more than 300 columns. We recommend schema
designs that use fewer columns for best performance.

36 | Apache Kudu User Guide

Apache Kudu Release Notes

http://kudu.apache.org/docs/quickstart.html
http://kudu.apache.org/docs/configuration.html


• TIMESTAMP, DECIMAL, CHAR, VARCHAR, DATE, and complex types such as ARRAY are not supported.

• Type, nullability, compression, and encoding of existing columns cannot be changed by altering the table.

Tables

• Tables must have an odd number of replicas, with a maximum of 7.

• Replication factor (set at table creation time) cannot be changed.

Cells

No individual cell may be larger than 64KB before encoding or compression. The cells making up a composite key
are limited to a total of 16KB after the internal composite-key encoding done by Kudu. Inserting rows not conforming
to these limitations will result in errors being returned to the client.

Rows

Kudu was primarily designed for analytic use cases. Although individual cells may be up to 64KB, and Kudu supports
up to 300 columns, it is recommended that no single row be larger than a few hundred KB. You are likely to encounter
issues if a single row contains multiple kilobytes of data.

Dropping Columns and Tables

• Dropping a column does not immediately reclaim space. Compaction must run first.

• There is no way to run compaction manually, but dropping the table will reclaim the space immediately.

Other Usage Limitations

• Identifiers such as table and column names must be valid UTF-8 sequences and no longer than 256 bytes.

• Secondary indexes are not supported.

• Multi-row transactions are not supported.

• Relational features, such as foreign keys, are not supported.

• Identifiers such as column and table names are restricted to be valid UTF-8 strings. Additionally, a maximum
length of 256 characters is enforced.

If you are using Apache Impala (incubating) to query Kudu tables, refer the section on Impala Integration Limitations
on page 38 as well.

Partitioning Limitations

• Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Kudu does not allow you to change how a table is partitioned after creation, with the exception of
adding or dropping range partitions. See Apache Kudu Schema Design on page 81 for more information.

• Data in existing tables cannot currently be automatically repartitioned. As a workaround, create a new table with
the new partitioning and insert the contents of the old table.

• Tablets that lose a majority of replicas (such as 1 left out of 3) require manual intervention to be repaired.

Scaling Recommendations and Limitations

• Recommended maximum number of tablet servers is 100.

• Recommended maximum number of masters is 3.

• Recommendedmaximum amount of stored data, post-replication and post-compression, per tablet server is 4TB.

• Recommended maximum number of tablets per tablet server is 1000, post-replication.

Apache Kudu User Guide | 37

Apache Kudu Release Notes



• Maximum number of tablets per table for each tablet server is 60, post-replication, at table-creation time.

Server Management Limitations

• Production deployments should configure a least 4GB of memory for tablet servers, and ideally more than 10GB.

• Write ahead logs (WALs) can only be stored on one disk.

• Disk failures are not tolerated and tablets servers will crash as soon as one is detected.

• Failed disks with unrecoverable data requires formatting of all Kudu data for that tablet server before it can be
started again.

• Data directories cannot be added/removed; they must be reformatted to change the set of directories.

• Tablet servers cannot be gracefully decommissioned.

• Tablet servers cannot change their address or port.

• Kudu has a hard requirement on having an up-to-date NTP. Kudu masters and tablet servers will crash when out
of sync.

• Kudu releases have only been tested with NTP. Other time synchronization providers such as Chrony may not
work.

Cluster Management Limitations

• Rack awareness is not supported.

• Multi-datacenter is not supported.

• Rolling restart is not supported.

Replication and Backup Limitations

• Kudu does not currently include any built-in features for backup and restore. Users are encouraged to use tools
such as Spark or Impala to export or import tables as necessary.

Impala Integration Limitations

• When creating a Kudu table, the CREATE TABLE statement must include the primary key columns before other
columns, in primary key order.

• Impala cannot update values in primary key columns.

• Impala cannot create Kudu tables with TIMESTAMP, DECIMAL, VARCHAR, or nested-typed columns.

• Kudu tables with a name containing upper case or non-ASCII characters must be assigned an alternate namewhen
used as an external table in Impala.

• Kudu tables with a column name containing upper case or non-ASCII characters may not be used as an external
table in Impala. Non-primary key columns may be renamed in Kudu to work around this issue.

• Kudu tables containing UNIXTIME_MICROS-typed columns may not be used as an external table in Impala.

• NULL, NOT NULL, !=, and LIKE predicates are not pushed to Kudu, and instead will be evaluated by the Impala
scan node. This may decrease performance relative to other types of predicates.

• Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of theway through, its partial
effects will not be rolled back.

38 | Apache Kudu User Guide

Apache Kudu Release Notes



• The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or use large tables.

Impala Keywords Not Supported for Creating Kudu Tables

• PARTITIONED

• LOCATION

• ROWFORMAT

Spark Integration Limitations

• Kudu tables with a name containing upper case or non-ASCII characters must be assigned an alternate namewhen
registered as a temporary table.

• Kudu tables with a column name containing upper case or non-ASCII characters must not be used with SparkSQL.
Columns can be renamed in Kudu to work around this issue.

• <> andORpredicates are not pushed to Kudu, and insteadwill be evaluated by the Spark task. OnlyLIKE predicates
with a suffix wildcard are pushed to Kudu. Thismeans LIKE "FOO%"will be pushed, but LIKE "FOO%BAR"won't.

• Kudu does not support all the types supported by Spark SQL. For example, Date, Decimal, and complex types
are not supported on Kudu.

• Kudu tables can only be registered as temporary tables in SparkSQL.

• Kudu tables cannot be queried using HiveContext.

Security Limitations

• Disk encryption is not built in. Kudu has been reported to run correctly on systems using local block device
encryption (e.g. dmcrypt).

• Authorization is only available at a system-wide, coarse-grained level. Kudu does not have the ability to restrict
access based on the type of operation, or the target (table, column, row, etc). ACLs do not currently support
authorization based on membership in a group.

• Kudu does not support configuring a custom service principal for Kudu processes. The principal must follow the
pattern kudu/<HOST>@<DEFAULT.REALM>.

• Kudu does not support externally-issued certificates for internal wire encryption (server to server and client to
server).

• Kudu integration with Apache Flume does not support writing to Kudu clusters that require authentication or
encryption.

• Kudu client instances retrieve authentication tokens upon first contact with the cluster. However, these tokens
expire after one week and Kudu clients do not automatically request fresh tokens after initial token expiration.
Therefore, Kudu clients that are active for more than a week are not supported.

Use of a single Kudu client instance for more than one week is only supported by the C++ client, not by the Java
client.

Note that applications such as Apache Impala (incubating) construct new clients for each query. Therefore, this
limitation only affects the runtime of a single query.

Other Known Issues

The following are known bugs and issues with the current release of Kudu. They will be addressed in later releases.
Note that this list is not exhaustive, and is meant to communicate only the most important known issues.

Apache Kudu User Guide | 39

Apache Kudu Release Notes



Timeout Possible with Log Force Synchronization Option

If the Kudu master is configured with the -log_force_fsync_all option, tablet servers and clients will experience
frequent timeouts, and the cluster may become unusable.

Longer Startup Times with a Large Number of Tablets

If a tablet server has a very large number of tablets, it may take several minutes to start up. It is recommended to limit
the number of tablets per server to 100 or fewer. Consider this limitation when pre-splitting your tables. If you notice
slow start-up times, you can monitor the number of tablets per server in the web UI.

Confusing Descriptions for Kudu TLS/SSL Settings in Cloudera Manager

Descriptions in the ClouderaManager Admin Console for TLS/SSL settings are confusing, andwill be replaced in a future
release. The correct information about the settings is in the Usage Notes column:

Usage NotesField

Set to the default principal, kudu.Kerberos Principal

Select this checkbox to enable authentication and RPC encryption between all
Kudu clients and servers, as well as between individual servers. Only enable this
property after you have configured Kerberos.

Enable Secure Authentication And
Encryption

Set to the path containing the Kudumaster host's private key (PEM-format). This
is used to enable TLS/SSL encryption (over HTTPS) for browser-based connections
to the Kudu master web UI.

Master TLS/SSL Server Private Key
File (PEM Format)

Set to the path containing the Kudu tablet server host's private key (PEM-format).
This is used to enable TLS/SSL encryption (over HTTPS) for browser-based
connections to Kudu tablet server web UIs.

Tablet Server TLS/SSL Server
Private Key File (PEM Format)

Set to the path containing the signed certificate (PEM-format) for the Kudumaster
host's private key (set in Master TLS/SSL Server Private Key File). The certificate

Master TLS/SSL Server Certificate
File (PEM Format)

file can be created by concatenating all the appropriate root and intermediate
certificates required to verify trust.

Set to the path containing the signed certificate (PEM-format) for the Kudu tablet
server host's private key (set in Tablet Server TLS/SSL Server Private Key File).

Tablet Server TLS/SSL Server
Certificate File (PEM Format)

The certificate file can be created by concatenating all the appropriate root and
intermediate certificates required to verify trust.

Disregard this field.Master TLS/SSL Server CA
Certificate (PEM Format)

Disregard this field.Tablet Server TLS/SSL Server CA
Certificate (PEM Format)

Enables HTTPS encryption on the Kudu master web UI.Enable TLS/SSL for Master Server

Enables HTTPS encryption on the Kudu tablet server web UIs.Enable TLS/SSL for Tablet Server

40 | Apache Kudu User Guide

Apache Kudu Release Notes



Installing and Upgrading Apache Kudu

You can install Apache Kudu in a cluster managed by Cloudera Manager, using either parcels or packages. If you do
not use Cloudera Manager, you can install Kudu using packages.
Tip: To start using Kudu in minutes, without the need to install anything, see the Kudu Quickstart documentation.

Kudu Installation Requirements
• Hardware

– One or more hosts to run Kudu masters. You should have either one master (provides no fault tolerance),
three masters (can tolerate one failure), or five masters (can tolerate two failures).

– One ormore hosts to run Kudu tablet servers.With replication, aminimumof three tablet servers is necessary.

• Operating systems

– Linux

– RHEL/CentOS 6.4, 6.5, 6.6, 6.7, 6.8, 7.1, 7.2, 7.3
– Oracle Linux (OL) 6.4, 6.5, 6.6, 6.7, 6.8, 7.1, 7.2, 7.3
– Ubuntu 14.04 (Trusty), 16.04 (Xenial)
– Debian 8.2, 8.4 (Jessie)
– SLES 12 Service Pack 1
– A kernel version and filesystem that support hole punching. Hole punching is the use of thefallocate(2)

system call with the FALLOC_FL_PUNCH_HOLE option set. See Error during hole punch test on page 94.
If you cannot meet this requirement, use this workaround.

– NTP
– xfs or ext4 formatted drives.

– MacOS

– OS X 10.10 Yosemite, OS X 10.11 El Capitan, and macOS Sierra.
– Pre-built macOS packages are not provided.

– Windows

– Microsoft Windows is not supported.

• Management - To manage Kudu with Cloudera Manager, Cloudera Manager 5.10.0 or later and CDH 5.10.0 or
later are required.

Note: Kudu is not supported in Cloudera Manager's single-user mode.

• Storage - If solid state storage is available, storing KuduWALs on such high-performancemedia might significantly
improve latency when Kudu is configured for its highest durability levels.

Install Kudu Using Cloudera Manager
You can install Kudu on a Cloudera Manager deployment using either parcels or packages.

Apache Kudu User Guide | 41

Installing and Upgrading Apache Kudu

http://kudu.apache.org/docs/quickstart.html
https://www.cloudera.com/documentation/enterprise/latest/topics/install_singleuser_reqts.html


Install Kudu Using Parcels

Starting with Kudu 1.3.0 / CDH 5.11.0, the Kudu CSD is included in Cloudera Manager. Manual installation of the Kudu
CSD is not required. Use the following steps to install Kudu using parcels.

1. In Cloudera Manager, go to Hosts > Parcels. Find KUDU in the list, and click Download.
2. When the download is complete, select your cluster from the Locations selector, and click Distribute. If you only

have one cluster, it is selected automatically.
3. When distribution is complete, clickActivate to activate the parcel. Restart the cluster when prompted. This might

take several minutes.
4. Install the Kudu service on your cluster. Go to the cluster where you want to install Kudu. Click Actions > Add a

Service. Select Kudu from the list, and click Continue.
5. Select a host for the master role and one or more hosts for the tablet server roles. A host can act as both a master

and a tablet server, but this might cause performance problems on a large cluster. The Kudu master process is
not resource-intensive and can be collocated with other similar processes such as the HDFS NameNode or YARN
ResourceManager. After selecting hosts, click Continue.

6. Configure the storage locations for Kudu data and write-ahead log (WAL) files on masters and tablet servers.
Cloudera Manager will create the directories.

• You can use the same directory to store data and WALs.
• You cannot store WALs in a subdirectory of the data directory.
• If any host is both a master and tablet server, configure different directories for master and tablet server.

For instance, /data/kudu/master and /data/kudu/tserver.
• If you have chosen a filesystem that does not support hole punching, the Kudu service will fail to start. In this

case only, exit the wizard by clicking the Cloudera logo at the top left, and enable the file block manager. This
is not appropriate for production. See Enabling the File Block Manager on page 42.

7. If your filesystem supports hole punching, do not exit the wizard. Click Continue. Kudu masters and tablet servers
are started. Otherwise, go to the Kudu service, and click Actions > Start.

8. Verify the Installation on page 46.
9. To manage roles, go to the Kudu service and use the Actionsmenu to stop, start, restart, or otherwise manage

the service.

Enabling the File Block Manager

If your filesystem supports hole punching, do not use the file blocker manager. The file blocker manager does not
perform well at scale and must only be used for small-scale development and testing.

If your filesystem does not support hole punching, but you want to experiment with Kudu, you must enable the file
block manager. If you do not enable the file block manager, Kudu will not start.

1. If you are still in the Cloudera configuration wizard, exit the configuration wizard by clicking the Cloudera logo at
the top of the Cloudera Manager interface.

2. Go to the Kudu service.
3. Go to Configuration and search for the Kudu Service Advanced Configuration Snippet (Safety Valve) for gflagfile

configuration option.
4. Add the following line to it, and save your changes:

--block_manager=file

Install Kudu Using Packages

Table 1: Kudu Repository and Package Links

Individual PackagesRepository PackageOperating System

RHEL 6RHEL 6 or RHEL 7RHEL

42 | Apache Kudu User Guide

Installing and Upgrading Apache Kudu

http://archive.cloudera.com/kudu/redhat/6/x86_64/kudu/
http://archive.cloudera.com/kudu/redhat/6/x86_64/kudu/cloudera-kudu.repo
http://archive.cloudera.com/kudu/redhat/7/x86_64/kudu/cloudera-kudu.repo


Individual PackagesRepository PackageOperating System

Trusty, XenialTrusty, XenialUbuntu

SLES 12SLES 12SLES

JessieJessieDebian

1. Cloudera recommends installing the Kudu repositories for your operating system. Use the links in Table 1: Kudu
Repository and Package Links on page 42 to download the appropriate repository installer. Save the repository
installer to /etc/yum.repos.d/ for RHEL, /etc/apt/sources.list.d/ for Ubuntu/Debian, or
/etc/zypp/repos.d for SLES.

2. Add the Cloudera Public GPG repository key for each operating system in the cluster. This key enables you to verify
that you are downloading genuine packages.

CommandOperating System

sudo rpm --import 
https://archive.cloudera.com/kudu/redhat/6/x86_64/kudu/RPM-GPG-KEY-cloudera

RHEL/CentOS 6

sudo rpm --import 
https://archive.cloudera.com/kudu/redhat/7/x86_64/kudu/RPM-GPG-KEY-cloudera

RHEL/CentOS 7

sudo rpm --import 
https://archive.cloudera.com/kudu/sles/12/x86_64/kudu/RPM-GPG-KEY-cloudera

SLES

Jessie

wget 
https://archive.cloudera.com/kudu/debian/jessie/amd64/kudu/archive.key

Debian

 -O archive.key
sudo apt-key add archive.key

Xenial

wget 
https://archive.cloudera.com/kudu/ubuntu/xenial/amd64/kudu/archive.key

Ubuntu

 -O archive.key
sudo apt-key add archive.key

Trusty

wget 
https://archive.cloudera.com/kudu/ubuntu/trusty/amd64/kudu/archive.key
 -O archive.key
sudo apt-key add archive.key

3. Install the Kudu packages.

• If you use Cloudera Manager, you only need to install the kudu package:

Apache Kudu User Guide | 43

Installing and Upgrading Apache Kudu

http://archive.cloudera.com/kudu/ubuntu/trusty/amd64/kudu/
http://archive.cloudera.com/kudu/ubuntu/xenial/amd64/kudu/pool/contrib/k/kudu/
http://archive.cloudera.com/kudu/ubuntu/trusty/amd64/kudu/cloudera.list
http://archive.cloudera.com/kudu/ubuntu/xenial/amd64/kudu/cloudera.list
http://archive.cloudera.com/kudu/sles/12/x86_64/kudu/0/RPMS/x86_64/
http://archive.cloudera.com/kudu/sles/12/x86_64/kudu/cloudera-kudu.repo
http://archive.cloudera.com/kudu/debian/jessie/amd64/kudu/pool/contrib/k/kudu/
http://archive.cloudera.com/kudu/debian/jessie/amd64/kudu/cloudera.list


Install CommandsOperating System

sudo yum install kuduRHEL/CentOS

sudo apt-get install kuduUbuntu/Debian

sudo zypper install kuduSLES

• If you need the C++ client development libraries or the Kudu SDK, install kudu-client and
kudu-client-devel packages for RHEL, or libkuduclient0 and libkuduclient-dev packages for
Ubuntu.

• Donot install the kudu-master and kudu-tserver packages. They provide operating system startup scripts
for using Kudu without Cloudera Manager.

4. Install the Kudu service on your cluster. Go to the cluster where you want to install Kudu. Click Actions > Add a
Service. Select Kudu from the list, and click Continue.

5. Select a host for the master role and one or more hosts for the tablet server roles. A host can act as both a master
and a tablet server, but this might cause performance problems on a large cluster. The Kudu master process is
not resource-intensive and can be collocated with other similar processes such as the HDFS NameNode or YARN
ResourceManager. After selecting hosts, click Continue.

6. Configure the storage locations for Kudu data and write-ahead log (WAL) files on masters and tablet servers.
Cloudera Manager will create the directories.

• You can use the same directory to store data and WALs.
• You cannot store WALs in a subdirectory of the data directory.
• If any host is both a master and tablet server, configure different directories for master and tablet server.

For instance, /data/kudu/master and /data/kudu/tserver.
• If you have chosen a filesystem that does not support hole punching, the Kudu service will fail to start. In this

case only, exit the wizard by clicking the Cloudera logo at the top left, and enable the file block manager. This
is not appropriate for production. See Enabling the File Block Manager on page 42.

7. If your filesystem supports hole punching, do not exit the wizard. Click Continue. Kudu masters and tablet servers
are started. Otherwise, go to the Kudu service, and click Actions > Start.

8. Verify the Installation on page 46.
9. To manage roles, go to the Kudu service and use the Actionsmenu to stop, start, restart, or otherwise manage

the service.

Install Kudu Using the Command Line

Important: If you use Cloudera Manager, do not use these command-line instructions.

Follow these steps on each node in your Kudu cluster.

1. Cloudera recommends installing the Kudu repositories for your operating system. Use the links in the following
table to download the appropriate repository installer. Save the repository installer to /etc/yum.repos.d/ for
RHEL, /etc/apt/sources.list.d/ for Ubuntu/Debian, or /etc/zypp/repos.d for SLES.

Table 2: Kudu Repository and Package Links

Individual PackagesRepository PackageOperating System

RHEL 6RHEL 6 or RHEL 7RHEL

44 | Apache Kudu User Guide

Installing and Upgrading Apache Kudu

http://archive.cloudera.com/kudu/redhat/6/x86_64/kudu/
http://archive.cloudera.com/kudu/redhat/6/x86_64/kudu/cloudera-kudu.repo
http://archive.cloudera.com/kudu/redhat/7/x86_64/kudu/cloudera-kudu.repo


Individual PackagesRepository PackageOperating System

Trusty, XenialTrusty, XenialUbuntu

SLES 12SLES 12SLES

JessieJessieDebian

2. Add the Cloudera Public GPG repository key for each operating system in the cluster. This key enables you to verify
that you are downloading genuine packages.

CommandOperating System

sudo rpm --import 
https://archive.cloudera.com/kudu/redhat/6/x86_64/kudu/RPM-GPG-KEY-cloudera

RHEL/CentOS 6

sudo rpm --import 
https://archive.cloudera.com/kudu/redhat/7/x86_64/kudu/RPM-GPG-KEY-cloudera

RHEL/CentOS 7

sudo rpm --import 
https://archive.cloudera.com/kudu/sles/12/x86_64/kudu/RPM-GPG-KEY-cloudera

SLES

Jessie

wget 
https://archive.cloudera.com/kudu/debian/jessie/amd64/kudu/archive.key

Debian

 -O archive.key
sudo apt-key add archive.key

Xenial

wget 
https://archive.cloudera.com/kudu/ubuntu/xenial/amd64/kudu/archive.key

Ubuntu

 -O archive.key
sudo apt-key add archive.key

Trusty

wget 
https://archive.cloudera.com/kudu/ubuntu/trusty/amd64/kudu/archive.key
 -O archive.key
sudo apt-key add archive.key

3. Install thekudu package, using the appropriate commands for your operating system. Also install thekudu-master
and kudu-tserver packages. They provide operating system start-up scripts for the Kudu master and tablet
servers.

Apache Kudu User Guide | 45

Installing and Upgrading Apache Kudu

http://archive.cloudera.com/kudu/ubuntu/trusty/amd64/kudu/
http://archive.cloudera.com/kudu/ubuntu/xenial/amd64/kudu/pool/contrib/k/kudu/
http://archive.cloudera.com/kudu/ubuntu/trusty/amd64/kudu/cloudera.list
http://archive.cloudera.com/kudu/ubuntu/xenial/amd64/kudu/cloudera.list
http://archive.cloudera.com/kudu/sles/12/x86_64/kudu/0/RPMS/x86_64/
http://archive.cloudera.com/kudu/sles/12/x86_64/kudu/cloudera-kudu.repo
http://archive.cloudera.com/kudu/debian/jessie/amd64/kudu/pool/contrib/k/kudu/
http://archive.cloudera.com/kudu/debian/jessie/amd64/kudu/cloudera.list


Install CommandsOperating System

sudo yum install kudu                         # Base Kudu 
files

RHEL/CentOS

sudo yum install kudu-master                  # Kudu master 
init.d service script and default configuration
sudo yum install kudu-tserver                 # Kudu tablet 
server init.d service script and default configuration
sudo yum install kudu-client0                 # Kudu C++ 
client shared library
sudo yum install kudu-client-devel            # Kudu C++ 
client SDK

sudo apt-get install kudu                     # Base Kudu 
files

Ubuntu/Debian

sudo apt-get install kudu-master              # Service 
scripts for managing kudu-master
sudo apt-get install kudu-tserver             # Service 
scripts for managing kudu-tserver
sudo apt-get install libkuduclient0           # Kudu C++ 
client shared library
sudo apt-get install libkuduclient-dev        # Kudu C++ 
client SDK

sudo zypper install kudu                      # Base Kudu 
files

SLES

sudo zypper install kudu-master               # Kudu master 
init.d service script and default configuration
sudo zypper install kudu-tserver              # Kudu tablet 
server init.d service script and default configuration
sudo zypper install kudu-client0              # Kudu C++ 
client shared library
sudo zypper install kudu-client-devel         # Kudu C++ 
client SDK

4. The packages create a kudu-conf entry in the operating system's alternatives database, and they ship the built-in
conf.dist alternative. To adjust your configuration, you can either edit the files in /etc/kudu/conf/ directly,
or create a new alternative using the operating system utilities. If you create a new alternative, make sure the
alternative is the directory pointed to by the /etc/kudu/conf/ symbolic link, and create custom configuration
files there. Some parts of the configuration are configured in /etc/default/kudu-master and
/etc/default/kudu-tserver files as well. You must include or duplicate these configuration options if you
create custom configuration files.

Review the configuration, including the default WAL and data directory locations, and adjust them according to
your requirements.

5. Configure the Kudu services to start automatically when the server starts, by adding them to the default runlevel.

sudo chkconfig kudu-master on            # RHEL / CentOS 
sudo chkconfig kudu-tserver on           # RHEL / CentOS 

sudo update-rc.d kudu-master defaults    # Ubuntu / Debian 
sudo update-rc.d kudu-tserver defaults   # Ubuntu / Debian

For instructions on how to perform common administrative tasks in Kudu, see Apache Kudu Administration on
page 51.

6. Verify the Installation on page 46.

Verify the Installation
1. Verify that the Kudu master and tablet servers are running using one of the following methods:

46 | Apache Kudu User Guide

Installing and Upgrading Apache Kudu



Examine the output of the ps command on servers to verify that the kudu-master and kudu-tserver
processes are running.

•

• Access the master or tablet server web UI by going to http://<_host_name_>:8051/ for masters, or
http://<_host_name_>:8050/ for tablet servers.

2. If Kudu isn’t running, look at the log files in /var/log/kudu, and if there’s a file ending with .FATAL, that means
Kudu did not start.

• If the error is related to a failed hole punch test or the file block manager, it might be a problem with your
operating system.

• If the error is related to clock synchronization, it is most likely a problem with the Network Time Protocol.

Upgrade Kudu using Cloudera Manager

Warning: If you are upgrading from Kudu 1.2.0 / CDH 5.10.x, you must upgrade both Kudu and CDH
parcels (or packages) at the same time. If you upgrade Kudu but do not upgrade CDH, new Kudu
features such as Security will not be available. Note that even though you might be able to see the
updated configuration options for Kudu security in Cloudera Manager, configuring them will have no
effect.

To use Cloudera Manager to upgrade Kudu using parcels or packages, use the following instructions. If you do not use
Cloudera Manager, see Upgrade Kudu Using the Command Line on page 48.

Before upgrading Kudu, read the Release Notes relevant to the version you are upgrading to.

Upgrade Kudu Using Parcels

1. Log in to Cloudera Manager.
2. Go to Hosts. Click Parcels.
3. Click Check For New Parcels.
4. Find the new version of KUDU in the list of parcels. Download, distribute, and activate it on your cluster.

Upgrade Kudu Using Packages

1. If you use a repository, re-download the repository list file to ensure that you have the latest information. See
Table 1: Kudu Repository and Package Links on page 42.

2. Stop the Kudu service in Cloudera Manager. Go to the Kudu service and select Actions > Stop.
3. Depending on your operating system, issue the following set of commands on each Kudu host:

Upgrade CommandsOperating System

sudo yum -y clean all
sudo yum -y upgrade kudu

RHEL/CentOS

sudo apt-get update
sudo apt-get install kudu

Ubuntu/Debian

sudo zypper clean --all
sudo zypper update kudu

SLES

4. Start the Kudu service in Cloudera Manager. Go to the Kudu service and select Actions > Start.

Apache Kudu User Guide | 47

Installing and Upgrading Apache Kudu

https://kudu.apache.org/docs/troubleshooting.html#ntp


Upgrade Kudu Using the Command Line

Warning: If you are upgrading from Kudu 1.2.0 / CDH 5.10.x, you must upgrade both Kudu and CDH
parcels (or packages) at the same time. If you upgrade Kudu but do not upgrade CDH, new Kudu
features such as Security will not be available. Note that even though you might be able to see the
updated configuration options for Kudu security in Cloudera Manager, configuring them will have no
effect.

If you use Cloudera Manager, do not use the following command-line instructions. See Upgrade Kudu using Cloudera
Manager on page 47.

Before upgrading Kudu, read the Release Notes relevant to the version you are upgrading to. Note that rolling upgrades
are not supported. Shut down all Kudu services before you begin upgrading the software.

1. If you use a repository, re-download the repository list file to ensure that you have the latest information. See
Table 1: Kudu Repository and Package Links on page 42.

2. Stop the Kudu master and tablet servers using the following commands:

sudo service kudu-master stop 
sudo service kudu-tserver stop

3. Depending on your operating system, issue the following set of commands on each Kudu host:

Upgrade CommandsOperating System

sudo yum -y clean all
sudo yum -y upgrade kudu

RHEL/CentOS

sudo apt-get update
sudo apt-get install kudu

Ubuntu/Debian

sudo zypper clean --all
sudo zypper update kudu

SLES

4. Start the Kudu master and tablet servers using the following commands:

$ sudo service kudu-master start
$ sudo service kudu-tserver start

Next Steps
Read about Using Apache Impala (incubating) with Kudu on page 65.

For more information about using Kudu, go to the Kudu project page, where you can find official documentation, links
to the Github repository and examples, and other resources.

For a reading list and other helpful links, refer to More Resources for Apache Kudu on page 124.

48 | Apache Kudu User Guide

Installing and Upgrading Apache Kudu

http://kudu.apache.org/


Apache Kudu Configuration

To configure the behavior of each Kudu process, you can pass command-line flags when you start it, or read those
options from configuration files by passing them using one or more --flagfile=<file> options. You can even
include the --flagfile optionwithin your configuration file to include other files. Learnmore about gflags by reading
its documentation.

You can place options for masters and tablet servers in the same configuration file, and each will ignore options that
do not apply.

Flags can be prefixedwith either one or two - characters. This documentation standardizes on two: --example_flag.

Only the most common configuration options are documented in this topic. For a more exhaustive list of configuration
options, see the Kudu Configuration Reference. To see all configuration flags for a given executable, run it with the
--help option.

Experimental Flags

Some configuration flags are marked 'unsafe' and 'experimental'. Such flags are disabled by default. You can access
these flags by enabling the additional flags,--unlock_unsafe_flags and--unlock_experimental_flags. Note
that these flagsmight be removed ormodifiedwithout a deprecation period or any prior notice in future Kudu releases.
Cloudera does not support using unsafe and experimental flags. As a rule of thumb, Cloudera will not support any
configuration flags not explicitly documented in the Kudu Configuration Reference Guide.

Configuring the Kudu Master
To see all available configuration options for the kudu-master executable, run it with the --help option:

$ kudu-master --help

Table 3: Supported Configuration Flags for Kudu Masters

DescriptionDefaultValid OptionsFlag

Comma-separated list of all
the RPC addresses for

localhoststring--master_addresses

Master
consensus-configuration. If
not specified, assumes a
standalone Master.

Comma-separated list of
directories where the

string--fs_data_dirs

Master will place its data
blocks.

The directory where the
Master will place its

string--fs_wal_dir

write-ahead logs. Can be the
same as one of the
directories listed in
--fs_data_dirs, but not
a sub-directory of a data
directory.

Apache Kudu User Guide | 49

Apache Kudu Configuration

https://gflags.github.io/gflags/
http://kudu.apache.org/docs/configuration_reference.html
http://kudu.apache.org/docs/configuration_reference.html


DescriptionDefaultValid OptionsFlag

The directory to store
Master log files.

/tmpstring--log_dir

For the complete list of flags for masters, see the Kudu Master Configuration Reference.

Configuring Tablet Servers
To see all available configuration options for the kudu-tserver executable, run it with the --help option:

$ kudu-tserver --help

Table 4: Supported Configuration Flags for Kudu Tablet Servers

DescriptionDefaultValid OptionsFlag

Comma-separated list of
directorieswhere the Tablet

string--fs_data_dirs

Server will place its data
blocks.

The directory where the
Tablet Server will place its

string--fs_wal_dir

write-ahead logs. Can be the
same as one of the
directories listed in
--fs_data_dirs, but not
a sub-directory of a data
directory.

The directory to store Tablet
Server log files

/tmpstring--log_dir

Commaseparatedaddresses
of the masters that the

127.0.0.1:7051string--tserver_master_addrs

tablet server should connect
to. The masters do not read
this flag.

Maximum amount of
memory allocated to the

512integer--block_cache_capacity_mb

Kudu Tablet Server’s block
cache.

Maximum amount of
memory a Tablet Server can

4294967296integer--memory_limit_hard_bytes

consume before it starts
rejecting all incomingwrites.

For the complete list of flags for tablet servers, see the Kudu Tablet Server Configuration Reference.

50 | Apache Kudu User Guide

Apache Kudu Configuration

http://kudu.apache.org/docs/configuration_reference.html#kudu-master_stable
http://kudu.apache.org/docs/configuration_reference.html#kudu-tserver_stable


Apache Kudu Administration

This topic describes how to perform common administrative tasks and workflows with Apache Kudu.

Starting and Stopping Kudu Processes
Start Kudu services using the following commands:

sudo service kudu-master start
sudo service kudu-tserver start

To stop Kudu services, use the following commands:

sudo service kudu-master stop
sudo service kudu-tserver stop

Configure the Kudu services to start automatically when the server starts, by adding them to the default runlevel.

sudo chkconfig kudu-master on            # RHEL / CentOS 
sudo chkconfig kudu-tserver on           # RHEL / CentOS 

sudo update-rc.d kudu-master defaults    # Ubuntu 
sudo update-rc.d kudu-tserver defaults   # Ubuntu

Kudu Web Interfaces
Kudu tablet servers and masters expose useful operational information on a built-in web interface.

Kudu Master Web Interface

Kudu master processes serve their web interface on port 8051. The interface exposes several pages with information
about the state of the cluster.

• A list of tablet servers, their host names, and the time of their last heartbeat.

• A list of tables, including schema and tablet location information for each.

• SQL code which you can paste into Impala Shell to add an existing table to Impala’s list of known data sources.

Kudu Tablet Server Web Interface

Each tablet server serves a web interface on port 8050. The interface exposes information about each tablet hosted
on the server, its current state, and debugging information about maintenance background operations.

Common Web Interface Pages

Both Kudu masters and tablet servers expose the following information via their web interfaces:

• HTTP access to server logs.

• An /rpcz endpoint which lists currently running RPCs via JSON.

• Details about the memory usage of different components of the process.

• The current set of configuration flags.

• Currently running threads and their resource consumption.

Apache Kudu User Guide | 51

Apache Kudu Administration



• A JSON endpoint exposing metrics about the server.

• The version number of the daemon deployed on the cluster.

These interfaces are linked from the landing page of each daemon’s web UI.

Kudu Metrics
Kudu daemons expose a large number of metrics. Some metrics are associated with an entire server process, whereas
others are associated with a particular tablet replica.

Listing available metrics

The full set of available metrics for a Kudu server can be dumped using a special command line flag:

$ kudu-tserver --dump_metrics_json
$ kudu-master --dump_metrics_json

This will output a large JSON document. Each metric indicates its name, label, description, units, and type. Because
the output is JSON-formatted, this information can easily be parsed and fed into other tooling which collects metrics
from Kudu servers.

If you are using Cloudera Manager, see Cloudera Manager Metrics for Kudu on page 99 for the complete list of metrics
collected by Cloudera Manager for a Kudu service.

Collecting metrics via HTTP

Metrics can be collected from a server process via its HTTP interface by visiting /metrics. The output of this page is
JSON for easy parsing by monitoring services. This endpoint accepts several GET parameters in its query string:

• /metrics?metrics=<substring1>,<substring2>,… - Limits the returned metrics to those which contain
at least one of the provided substrings. The substrings also match entity names, so this may be used to collect
metrics for a specific tablet.

• /metrics?include_schema=1 - Includesmetrics schema information such as unit, description, and label in the
JSON output. This information is typically omitted to save space.

• /metrics?compact=1 - Eliminates unnecessary whitespace from the resulting JSON, which can decrease
bandwidth when fetching this page from a remote host.

• /metrics?include_raw_histograms=1 - Include the raw buckets and values for histogrammetrics, enabling
accurate aggregation of percentile metrics over time and across hosts.

For example:

$ curl -s 'http://example-ts:8050/metrics?include_schema=1&metrics=connections_accepted'

[
    {
        "type": "server",
        "id": "kudu.tabletserver",
        "attributes": {},
        "metrics": [
            {
                "name": "rpc_connections_accepted",
                "label": "RPC Connections Accepted",
                "type": "counter",
                "unit": "connections",
                "description": "Number of incoming TCP connections made to the RPC 
server",
                "value": 92
            }

52 | Apache Kudu User Guide

Apache Kudu Administration



        ]
    }
]

$ curl -s 'http://example-ts:8050/metrics?metrics=log_append_latency'

[
    {
        "type": "tablet",
        "id": "c0ebf9fef1b847e2a83c7bd35c2056b1",
        "attributes": {
            "table_name": "lineitem",
            "partition": "hash buckets: (55), range: [(<start>), (<end>))",
            "table_id": ""
        },
        "metrics": [
            {
                "name": "log_append_latency",
                "total_count": 7498,
                "min": 4,
                "mean": 69.3649,
                "percentile_75": 29,
                "percentile_95": 38,
                "percentile_99": 45,
                "percentile_99_9": 95,
                "percentile_99_99": 167,
                "max": 367244,
                "total_sum": 520098
            }
        ]
    }
]

Collecting metrics to a log

Kudu can be configured to periodically dumpall of itsmetrics to a local log file using the--metrics_log_interval_ms
flag. Set this flag to the interval at which metrics should be written to a log file.

The metrics log will be written to the same directory as the other Kudu log files, and with the same naming format.
After anymetrics log file reaches 64MBuncompressed, the logwill be rolled and the previous filewill be gzip-compressed.

The log file generated has three space-separated fields:

• The first field is the word metrics.
• The second field is the current timestamp in microseconds since the Unix epoch.
• The third is the current value of all metrics on the server, using a compact JSON encoding. The encoding is the

same as the metrics fetched via HTTP described above.

Important:

Although metrics logging automatically rolls and compresses previous log files, it does not remove
old ones. Sincemetrics logging can use significant amounts of disk space, consider setting up a system
utility to monitor space in the log directory and archive or delete old segments.

Common Kudu workflows
The following sections describe some common workflows for Kudu users:

Apache Kudu User Guide | 53

Apache Kudu Administration



Migrating to Multiple Kudu Masters

For high availability and to avoid a single point of failure, Kudu clusters should be created with multiple masters. Many
Kudu clusters were created with just a single master, either for simplicity or because Kudu multi-master support was
still experimental at the time. This workflow demonstrates how to migrate to a multi-master configuration.

Important:

• This workflow is unsafe for adding newmasters to an existing multi-master configuration. Do not
use it for that purpose.

• This workflow presumes you are familiar with Kudu configuration management, with or without
Cloudera Manager.

• All of the command line steps below should be executed as the Kudu UNIX user, typically kudu.

Prepare for the migration

1. Establish a maintenance window (one hour should be sufficient). During this time the Kudu cluster will be
unavailable.

2. Decide howmanymasters to use. The number of masters should be odd. Three or five nodemaster configurations
are recommended; they can tolerate one or two failures respectively.

3. Perform the following preparatory steps for the existing master:

• Identify and record the directory where the master’s data lives. If you are using Kudu system packages, the
default value is /var/lib/kudu/master, but it may be customized using the fs_wal_dir and
fs_data_dirs configuration parameters. If you’ve set fs_data_dirs to some directories other than the
value of fs_wal_dir, it should be explicitly included in every command (in the following procedure) where
fs_wal_dir is also included.

• Identify and record the port themaster is using for RPCs. The default port value is 7051, but it may have been
customized using the rpc_bind_addresses configuration parameter.

• Identify the master’s UUID. It can be fetched using the following command:

$ kudu fs dump uuid --fs_wal_dir=<master_data_dir> 2>/dev/null

master_data_dir

The location of the existing master’s previously recorded data directory.

For example:

$ kudu fs dump uuid --fs_wal_dir=/var/lib/kudu/master 2>/dev/null
4aab798a69e94fab8d77069edff28ce0

• (Optional) Configure a DNS alias for the master. The alias could be a DNS cname (if the machine already has
an A record in DNS), an A record (if the machine is only known by its IP address), or an alias in /etc/hosts.
The alias should be an abstract representation of the master (e.g. master-1).

Important:

Without DNS aliases it is not possible to recover from permanent master failures, and as
such it is highly recommended.

4. Perform the following preparatory steps for each new master:

54 | Apache Kudu User Guide

Apache Kudu Administration



Choose an unused machine in the cluster. The master generates very little load so it can be collocated with
other data services or load-generating processes, though not with another Kudu master from the same
configuration.

•

• Ensure Kudu is installed on the machine, either using system packages (in which case the kudu and
kudu-master packages should be installed), or some other means.

• Choose and record the directory where the master’s data will live.

• Choose and record the port the master should use for RPCs.

• (Optional) Configure a DNS alias for the master (e.g. master-2, master-3, etc).

Perform the migration

1. Stop all the Kudu processes in the entire cluster.
2. Format the data directory on each new master machine, and record the generated UUID. Use the following

commands:

$ kudu fs format --fs_wal_dir=<master_data_dir>
$ kudu fs dump uuid --fs_wal_dir=<master_data_dir> 2>/dev/null

master_data_dir

The new master’s previously recorded data directory.

For example:

$ kudu fs format --fs_wal_dir=/var/lib/kudu/master
$ kudu fs dump uuid --fs_wal_dir=/var/lib/kudu/master 2>/dev/null
f5624e05f40649b79a757629a69d061e

3. If you are using Cloudera Manager, add the new Kudu master roles now, but do not start them.

• If using DNS aliases, override the empty value of the Master Address parameter for each role (including
the existing master role) with that master’s alias.

• Add the port number (separated by a colon) if using a non-default RPC port value.

4. Rewrite the master’s Raft configuration with the following command, executed on the existing master:

$ kudu local_replica cmeta rewrite_raft_config --fs_wal_dir=<master_data_dir> <tablet_id>
 <all_masters>

master_data_dir

The existing master’s previously recorded data directory

tablet_id

This must be set to the string, 00000000000000000000000000000000.

all_masters

A space-separated list of masters, both new and existing. Each entry in the list must be a string of the form
<uuid>:<hostname>:<port>.

uuid

The master’s previously recorded UUID.

hostname

The master’s previously recorded hostname or alias.

Apache Kudu User Guide | 55

Apache Kudu Administration



port

The master’s previously recorded RPC port number.

For example:

$ kudu local_replica cmeta rewrite_raft_config --fs_wal_dir=/var/lib/kudu/master 
00000000000000000000000000000000 4aab798a69e94fab8d77069edff28ce0:master-1:7051 
f5624e05f40649b79a757629a69d061e:master-2:7051 
988d8ac6530f426cbe180be5ba52033d:master-3:7051

5. Modify the value of the master_addresses configuration parameter for both existing master and newmasters.
The new value must be a comma-separated list of all of the masters. Each entry is a string of the form,
<hostname>:<port>.

hostname

The master's previously recorded hostname or alias.

port

The master's previously recorded RPC port number.

6. Start the existing master.
7. Copy the master data to each new master with the following command, executed on each new master machine:

$ kudu local_replica copy_from_remote --fs_wal_dir=<master_data_dir> <tablet_id> 
<existing_master>

master_data_dir

The new master's previously recorded data directory.

tablet_id

Must be set to the string, 00000000000000000000000000000000.

existing_master

RPC address of the existing master. It must be a string of the form <hostname>:<port>.

hostname

The existing master's previously recorded hostname or alias.

port

The existing master's previously recorded RPC port number.

Example

$ kudu local_replica copy_from_remote --fs_wal_dir=/var/lib/kudu/master 
00000000000000000000000000000000 master-1:7051

8. Start all the new masters.

Important: If you are using Cloudera Manager, skip the next step.

9. Modify the value of the tserver_master_addrs configuration parameter for each tablet server. The new value
must be a comma-separated list of masters where each entry is a string of the form <hostname>:<port>

hostname

The master's previously recorded hostname or alias

56 | Apache Kudu User Guide

Apache Kudu Administration



port

The master's previously recorded RPC port number

10. Start all the tablet servers.

To verify that all masters are working properly, consider performing the following sanity checks:

• Using a browser, visit each master’s web UI and navigate to the /masters page. All the masters should now be
listed there with one master in the LEADER role and the others in the FOLLOWER role. The contents of /masters
on each master should be the same.

• Run a Kudu system check (ksck) on the cluster using the kudu command line tool. Formore details, seeMonitoring
Cluster Health with ksck on page 59.

Recovering from a dead Kudu Master in a Multi-Master Deployment

Kudu multi-master deployments function normally in the event of a master loss. However, it is important to replace
the dead master; otherwise a second failure may lead to a loss of availability, depending on the number of available
masters. This workflow describes how to replace the dead master.

Due to KUDU-1620, it is not possible to perform this workflow without also restarting the live masters. As such, the
workflow requires a maintenance window, albeit a brief one as masters generally restart quickly.

Important:

• Kudu does not yet support Raft configuration changes for masters. As such, it is only possible to
replace a master if the deployment was created with DNS aliases. See the previous multi-master
migration workflow for more details.

• The workflow presupposes at least basic familiarity with Kudu configuration management. If
using Cloudera Manager, the workflow also presupposes familiarity with it.

• All of the command line steps below should be executed as the Kudu UNIX user, typically kudu.

Prepare for the recovery

1. Ensure that the dead master is well and truly dead. Take whatever steps needed to prevent it from accidentally
restarting; this can be quite dangerous for the cluster post-recovery.

2. Choose one of the remaining live masters to serve as a basis for recovery. The rest of this workflow will refer to
this master as the "reference" master.

3. Choose an unused machine in the cluster where the new master will live. The master generates very little load so
it can be colocated with other data services or load-generating processes, though not with another Kudu master
from the same configuration. The rest of this workflow will refer to this master as the "replacement" master.

4. Perform the following preparatory steps for the replacement master:

• Ensure Kudu is installed on themachine, either via systempackages (inwhich case thekudu andkudu-master
packages should be installed), or via some other means.

• Choose and record the directory where the master’s data will live.

5. Perform the following preparatory steps for each live master:

• Identify and record the directory where the master’s data lives. If using Kudu system packages, the default
value is /var/lib/kudu/master, but itmay be customized via thefs_wal_dir andfs_data_dirs configuration
parameter. Please note if you’ve set fs_data_dirs to some directories other than the value of fs_wal_dir, it
should be explicitly included in every command below where fs_wal_dir is also included.

Apache Kudu User Guide | 57

Apache Kudu Administration

https://issues.apache.org/jira/browse/KUDU-1620


• Identify and record the master’s UUID. It can be fetched using the following command:

$ kudu fs dump uuid --fs_wal_dir=<master_data_dir> 2>/dev/null

master_data_dir

live master’s previously recorded data directory

Example

$ kudu fs dump uuid --fs_wal_dir=/var/lib/kudu/master 2>/dev/null
80a82c4b8a9f4c819bab744927ad765c

6. Perform the following preparatory steps for the reference master:

• Identify and record the directory where the master’s data lives. If using Kudu system packages, the default
value is /var/lib/kudu/master, but it may be customized using the fs_wal_dir and fs_data_dirs
configuration parameter. If you have set fs_data_dirs to some directories other than the value of
fs_wal_dir, it should be explicitly included in every command below where fs_wal_dir is also included.

• Identify and record the UUIDs of every master in the cluster, using the following command:

$ kudu local_replica cmeta print_replica_uuids --fs_wal_dir=<master_data_dir> <tablet_id>
 2>/dev/null

master_data_dir

The reference master’s previously recorded data directory.

tablet_id

Must be set to the string, 00000000000000000000000000000000.

Example

$ kudu local_replica cmeta print_replica_uuids --fs_wal_dir=/var/lib/kudu/master 
00000000000000000000000000000000 2>/dev/null
80a82c4b8a9f4c819bab744927ad765c 2a73eeee5d47413981d9a1c637cce170 
1c3f3094256347528d02ec107466aef3

7. Using the two previously-recorded lists of UUIDs (one for all live masters and one for all masters), determine and
record (by process of elimination) the UUID of the dead master.

Perform the recovery

1. Format the data directory on the replacement master machine using the previously recorded UUID of the dead
master. Use the following command sequence:

$ kudu fs format --fs_wal_dir=<master_data_dir> --uuid=<uuid>

master_data_dir

The replacement master’s previously recorded data directory.

uuid

The dead master’s previously recorded UUID.

For example:

$ kudu fs format --fs_wal_dir=/var/lib/kudu/master --uuid=80a82c4b8a9f4c819bab744927ad765c

58 | Apache Kudu User Guide

Apache Kudu Administration



2. Copy the master data to the replacement master with the following command:

$ kudu local_replica copy_from_remote --fs_wal_dir=<master_data_dir> <tablet_id> 
<reference_master>

master_data_dir

The replacement master’s previously recorded data directory.

tablet_id

Must be set to the string, 00000000000000000000000000000000.

reference_master

The RPC address of the reference master. It must be a string of the form <hostname>:<port>.

hostname

The reference master’s previously recorded hostname or alias.

port

The reference master’s previously recorded RPC port number.

For example:

$ kudu local_replica copy_from_remote --fs_wal_dir=/var/lib/kudu/master 
00000000000000000000000000000000 master-2:7051

3. If you are using Cloudera Manager, add the replacement Kudu master role now, but do not start it.

• Override the empty value of theMaster Addressparameter for the new rolewith the replacementmaster’s
alias.

• If you are using a non-default RPC port, add the port number (separated by a colon) as well.

4. Reconfigure the DNS alias for the dead master to point to the replacement master.
5. Start the replacement master.
6. Restart the existing live masters. This results in a brief availability outage, but it should last only as long as it takes

for the masters to come back up.

To verify that all masters are working properly, consider performing the following sanity checks:

• Using a browser, visit each master’s web UI and navigate to the /masters page. All the masters should now be
listed there with one master in the LEADER role and the others in the FOLLOWER role. The contents of /masters
on each master should be the same.

• Run a Kudu system check (ksck) on the cluster using the kudu command line tool. Formore details, seeMonitoring
Cluster Health with ksck on page 59.

Monitoring Cluster Health with ksck

The kudu CLI includes a tool called ksck which can be used for monitoring cluster health and data integrity. ksck will
identify issues such as under-replicated tablets, unreachable tablet servers, or tablets without a leader.

ksck can be run from the command line, and requires you to specify the complete list of Kudu master addresses:

kudu cluster ksck master-01.example.com,master-02.example.com,master-03.example.com

To see the full list of the options available with ksck, use the --help flag.

Apache Kudu User Guide | 59

Apache Kudu Administration



If the cluster is healthy, ksck will print a success message, and return a zero (success) exit status.

Connected to the Master
Fetched info from all 1 Tablet Servers
Table IntegrationTestBigLinkedList is HEALTHY (1 tablet(s) checked)

The metadata for 1 table(s) is HEALTHY
OK

If the cluster is unhealthy, for instance if a tablet server process has stopped, ksck will report the issue(s) and return
a non-zero exit status:

Connected to the Master
WARNING: Unable to connect to Tablet Server 8a0b66a756014def82760a09946d1fce
(tserver-01.example.com:7050): Network error: could not send Ping RPC to server: Client
 connection negotiation failed: client connection to 192.168.0.2:7050: connect: Connection
 refused (error 61)
WARNING: Fetched info from 0 Tablet Servers, 1 weren't reachable
Tablet ce3c2d27010d4253949a989b9d9bf43c of table 'IntegrationTestBigLinkedList'
is unavailable: 1 replica(s) not RUNNING
  8a0b66a756014def82760a09946d1fce (tserver-01.example.com:7050): TS unavailable [LEADER]

  Table IntegrationTestBigLinkedList has 1 unavailable tablet(s)

  WARNING: 1 out of 1 table(s) are not in a healthy state
  ==================
  Errors:
  ==================
  error fetching info from tablet servers: Network error: Not all Tablet Servers are 
reachable
  table consistency check error: Corruption: 1 table(s) are bad

  FAILED
  Runtime error: ksck discovered errors

To verify data integrity, the optional --checksum-scan flag can be set, whichwill ensure that the cluster has consistent
data by scanning each tablet replica and comparing results. The --tables and --tablets flags can be used to limit
the scope of the checksum scan to specific tables or tablets, respectively.

For example, use the following command to check the integrity of data in the IntegrationTestBigLinkedList
table:

kudu cluster ksck --checksum-scan --tables IntegrationTestBigLinkedList 
master-01.example.com,master-02.example.com,master-03.example.com

Recovering from Disk Failure

Kudu tablet servers are not resistant to disk failure. When a disk containing a data directory or the write-ahead log
(WAL) dies, the entire tablet server must be rebuilt. Kudu will automatically re-replicate tablets on other servers after
a tablet server fails, but manual intervention is needed in order to restore the failed tablet server to a running state.

The first step to restoring a tablet server after a disk failure is to replace the failed disk, or remove the failed disk from
the data-directory and/or WAL configuration. Next, the existing data directories and WAL directory must be removed.
For example, if the tablet server is configured with --fs_wal_dir=/data/0/kudu-tserver-wal and
--fs_data_dirs=/data/1/kudu-tserver,/data/2/kudu-tserver, the following commands will remove the
existing data directories and WAL directory:

rm -rf /data/0/kudu-tserver-wal /data/1/kudu-tserver /data/2/kudu-tserver

After theWAL and data directories are removed, the tablet server process can be started. When Kudu is installed using
system packages, service is typically used as follows:

sudo service kudu-tserver start

Once the tablet server is running again, new tablet replicas will be created on it as necessary.

60 | Apache Kudu User Guide

Apache Kudu Administration



Developing Applications With Apache Kudu

Apache Kudu provides C++ and Java client APIs, as well as reference examples to illustrate their use. A Python API is
included, but it is currently considered experimental, unstable, and is subject to change at any time.

Warning: Use of server-side or private interfaces is not supported, and interfaces which are not part
of public APIs have no stability guarantees.

Viewing the API Documentation

C++ API Documentation

The documentation for the C++ client APIs is included in the header files in /usr/include/kudu/ if you installed
Kudu using packages or subdirectories of src/kudu/client/ if you built Kudu from source. If you installed Kudu
using parcels, no headers are included in your installation. and you will need to build Kudu from source in order to
have access to the headers and shared libraries.

The following command is a naive approach to finding relevant header files. Use of any APIs other than the client APIs
is unsupported.

$ find /usr/include/kudu -type f -name *.h

Java API Documentation

View the Java API documentation online. Alternatively, after building the Java client, Java API documentation is available
in java/kudu-client/target/apidocs/index.html.

Building the Java Client
Requirements

• JDK 7
• Apache Maven 3.x
• protoc 2.6 or newer installed in your path, or built from the thirdparty/ directory. Run the following commands

to build protoc from the third-party dependencies:

thirdparty/download-thirdparty.sh
thirdparty/build-thirdparty.sh protobuf

To build the Java client, clone the Kudu Git repository, change to the java directory, and issue the following command:

$ mvn install -DskipTests

For more information about building the Java API, as well as Eclipse integration, see java/README.md.

Kudu Example Applications
Several example applications are provided in the kudu-examples Github repository. Each example includes a README
that shows how to compile and run it. These examples illustrate correct usage of the Kudu APIs, as well as how to set
up a virtual machine to run Kudu. The following list includes a few of the examples that are available today.

Apache Kudu User Guide | 61

Developing Applications With Apache Kudu

http://kudu.apache.org/apidocs/index.html
https://github.com/cloudera/kudu-examples


java-example

A simple Java application which connects to a Kudu instance, creates a table, writes data to it, then drops the table.

java/collectl

A simple Java application which listens on a TCP socket for time series data corresponding to the Collectl wire
protocol. The commonly-available collectl tool can be used to send example data to the server.

java/insert-loadgen

A Java application that generates random insert load.

python/dstat-kudu

An example program that shows how to use the Kudu Python API to load data into a new / existing Kudu table
generated by an external program, dstat in this case.

python/graphite-kudu

An experimental plugin for using graphite-web with Kudu as a backend.

demo-vm-setup

Scripts to download and run a VirtualBox virtual machine with Kudu already installed. For more information see
the Kudu Quickstart documentation.

These examples should serve as helpful starting points for your own Kudu applications and integrations.

Maven Artifacts
The following Maven <dependency> element is valid for the Apache Kudu GA release:

<dependency>
  <groupId>org.apache.kudu</groupId>
  <artifactId>kudu-client</artifactId>
  <version>1.1.0</version>
</dependency>

Convenience binary artifacts for the Java client and various Java integrations (e.g. Spark, Flume) are also now available
via the ASF Maven repository and the Central Maven repository.

Kudu Python Client
The Kudu Python client provides a Python friendly interface to the C++ client API. The sample below demonstrates the
use of part of the Python client.

import kudu
from kudu.client import Partitioning
from datetime import datetime

# Connect to Kudu master server
client = kudu.connect(host='kudu.master', port=7051)

# Define a schema for a new table
builder = kudu.schema_builder()
builder.add_column('key').type(kudu.int64).nullable(False).primary_key()
builder.add_column('ts_val', type_=kudu.unixtime_micros, nullable=False, 
compression='lz4')
schema = builder.build()

# Define partitioning schema
partitioning = Partitioning().add_hash_partitions(column_names=['key'], num_buckets=3)

# Create new table
client.create_table('python-example', schema, partitioning)

# Open a table

62 | Apache Kudu User Guide

Developing Applications With Apache Kudu

http://kudu.apache.org/docs/quickstart.html
http://repository.apache.org/
https://mvnrepository.com/artifact/org.apache.kudu


table = client.table('python-example')

# Create a new session so that we can apply write operations
session = client.new_session()

# Insert a row
op = table.new_insert({'key': 1, 'ts_val': datetime.utcnow()})
session.apply(op)

# Upsert a row
op = table.new_upsert({'key': 2, 'ts_val': "2016-01-01T00:00:00.000000"})
session.apply(op)

# Updating a row
op = table.new_update({'key': 1, 'ts_val': ("2017-01-01", "%Y-%m-%d")})
session.apply(op)

# Delete a row
op = table.new_delete({'key': 2})
session.apply(op)

# Flush write operations, if failures occur, capture print them.
try:
    session.flush()
except kudu.KuduBadStatus as e:
    print(session.get_pending_errors())

# Create a scanner and add a predicate
scanner = table.scanner()
scanner.add_predicate(table['ts_val'] == datetime(2017, 1, 1))

# Open Scanner and read all tuples
# Note: This doesn't scale for large scans
result = scanner.open().read_all_tuples()

Example Apache Impala Commands With Kudu
See Using Apache Impala (incubating) with Kudu on page 65 for guidance on installing and using Impala with Kudu,
including several impala-shell examples.

Kudu Integration with Spark
Kudu integrates with Spark through the Data Source API as of version 1.0.0. Include the kudu-spark dependency
using the --packages option:

Spark 1.x - Use the kudu-spark_2.10 artifact if you are using Spark 1.x with Scala 2.10:

spark-shell --packages org.apache.kudu:kudu-spark_2.10:1.1.0

Spark 2.x - Use the kudu-spark2_2.11 artifact if you are using Spark 2.x with Scala 2.11:

spark2-shell --packages org.apache.kudu:kudu-spark2_2.11:1.3.1

Then import kudu-spark and create a dataframe as demonstrated in the following sample code. In the following
example, replace <kudu.master> with the actual hostname of the host running a Kudu master service, and
<kudu_table> with the name of a pre-existing table in Kudu.

import org.apache.kudu.spark.kudu._

// Read a table from Kudu 
val df = spark.sqlContext.read.options(Map("kudu.master" -> 
"<kudu.master>:7051","kudu.table" -> "<kudu_table>")).kudu

// Query <kudu_table> using the Spark API...

Apache Kudu User Guide | 63

Developing Applications With Apache Kudu



df.select("id").filter("id" >= 5).show()

// ...or register a temporary table and use SQL
df.registerTempTable("<kudu_table>")
val filteredDF = sqlContext.sql("select id from <kudu_table> where id >= 5").show()

// Use KuduContext to create, delete, or write to Kudu tables
val kuduContext = new KuduContext("<kudu.master>:7051")

// Create a new Kudu table from a dataframe schema
// NB: No rows from the dataframe are inserted into the table
kuduContext.createTable("test_table", df.schema, Seq("key"), new 
CreateTableOptions().setNumReplicas(1))

// Insert data
kuduContext.insertRows(df, "test_table")

// Delete data
kuduContext.deleteRows(filteredDF, "test_table")

// Upsert data
kuduContext.upsertRows(df, "test_table")

// Update data
val alteredDF = df.select("id", $"count" + 1)
kuduContext.updateRows(filteredRows, "test_table"

// Data can also be inserted into the Kudu table using the data source, though the 
methods on KuduContext are preferred
// NB: The default is to upsert rows; to perform standard inserts instead, set operation
 = insert in the options map
// NB: Only mode Append is supported
df.write.options(Map("kudu.master"-> "<kudu.master>:7051", "kudu.table"-> 
"test_table")).mode("append").kudu

// Check for the existence of a Kudu table
kuduContext.tableExists("another_table")

// Delete a Kudu table
kuduContext.deleteTable("unwanted_table")

Spark Integration Known Issues and Limitations

• Kudu tables with a name containing upper case or non-ASCII characters must be assigned an alternate namewhen
registered as a temporary table.

• Kudu tables with a column name containing upper case or non-ASCII characters must not be used with SparkSQL.
Columns can be renamed in Kudu to work around this issue.

• <> andORpredicates are not pushed to Kudu, and insteadwill be evaluated by the Spark task. OnlyLIKE predicates
with a suffix wildcard are pushed to Kudu. Thismeans LIKE "FOO%"will be pushed, but LIKE "FOO%BAR"won't.

• Kudu does not support all the types supported by Spark SQL. For example, Date, Decimal, and complex types
are not supported on Kudu.

• Kudu tables can only be registered as temporary tables in SparkSQL.

• Kudu tables cannot be queried using HiveContext.

Integration with MapReduce, YARN, and Other Frameworks
Kudu was designed to integrate with MapReduce, YARN, Spark, and other frameworks in the Hadoop ecosystem. See
RowCounter.java and ImportCsv.java for examples which you can model your own integrations on.

64 | Apache Kudu User Guide

Developing Applications With Apache Kudu

https://github.com/cloudera/kudu/blob/master/java/kudu-client-tools/src/main/java/org/apache/kudu/mapreduce/tools/RowCounter.java
https://github.com/cloudera/kudu/blob/master/java/kudu-client-tools/src/main/java/org/apache/kudu/mapreduce/tools/ImportCsv.java


Using Apache Impala (incubating) with Kudu

Apache Kudu has tight integrationwith Apache Impala (incubating), allowing you to use Impala to insert, query, update,
and delete data from Kudu tablets using Impala's SQL syntax, as an alternative to using the Kudu APIs to build a custom
Kudu application. In addition, you can use JDBC or ODBC to connect existing or new applicationswritten in any language,
framework, or business intelligence tool to your Kudu data, using Impala as the broker.

Prerequisites

• To use Impala to query Kudu data as described in this topic, you will require Cloudera Manager 5.10.x and CDH
5.10.x or later.

• The syntax described in this topic is specific to Impala 2.8 (ships with CDH 5.10) and above, and will not work on
previous versions. If you are using an earlier version of Impala (including the IMPALA_KUDU releases previously
available), upgrade to Impala 2.8.

Note that this topic does not describe Impala installation or upgrade procedures. Refer to the Impala documentation
to make sure you are able to run queries against Impala tables on HDFS before proceeding.

• Lower versions of CDH and Cloudera Manager used an experimental fork of Impala which is referred to as
IMPALA_KUDU. If you have previously installed the IMPALA_KUDU service, make sure you remove it from your
cluster before you proceed. Install Kudu 1.2.x (or later) using either Cloudera Manager or the command-line.

Impala Database Containment Model
Every Impala table is contained within a namespace called a database. The default database is called default, and
youmay create and drop additional databases as desired. To create the database, use a CREATE DATABASE statement.
To use the database for further Impala operations such as CREATE TABLE, use the USE statement. For example, to
create a table in a database called impala_kudu, use the following statements:

CREATE DATABASE impala_kudu;
USE impala_kudu;
CREATE TABLE my_first_table (
...

The my_first_table table is created within the impala_kudu database. To refer to this database in the future,
without using a specific USE statement, you can refer to the table using <database>:<table> syntax. For example,
to specify the my_first_table table in database impala_kudu, as opposed to any other table with the same name
in another database, refer to the table as impala_kudu:my_first_table. This also applies to INSERT, UPDATE,
DELETE, and DROP statements.

Warning: Currently, Kudu does not encode the Impala database into the table name in any way. This
means that even though you can create Kudu tables within Impala databases, the actual Kudu tables
need to be unique within Kudu. For example, if you create database_1:my_kudu_table and
database_2:my_kudu_table, youwill have a naming collisionwithin Kudu, even though this would
not cause a problem in Impala.

Internal and External Impala Tables
When creating a new Kudu table using Impala, you can create the table as an internal table or an external table.

Apache Kudu User Guide | 65

Using Apache Impala (incubating) with Kudu

http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html


Internal

An internal table (created by CREATE TABLE) is managed by Impala, and can be dropped by Impala. When you
create a new table using Impala, it is generally a internal table. When such a table is created in Impala, the
corresponding Kudu table will be named my_database::table_name.

External

An external table (created by CREATE EXTERNAL TABLE) is not managed by Impala, and dropping such a table
does not drop the table from its source location (here, Kudu). Instead, it only removes themapping between Impala
and Kudu. This is the mode used in the syntax provided by Kudu for mapping an existing table to Impala.

See the Impala documentation for more information about internal and external tables.

Using Impala To Query Kudu Tables
Neither Kudu nor Impala need special configuration in order for you to use the Impala Shell or the Impala API to insert,
update, delete, or query Kudu data using Impala. However, you do need to create a mapping between the Impala and
Kudu tables. Kudu provides the Impala query to map to an existing Kudu table in the web UI.

• Make sure you are using the impala-shell binary provided by the default CDH Impala binary. The following
example shows how you can verify this using the alternatives command on a RHEL 6 host. Do not copy and
paste the alternatives --set command directly, because the file names are likely to differ.

$ sudo alternatives --display impala-shell

impala-shell - status is auto.
 link currently points to 
/opt/cloudera/parcels/CDH-5.10.0-1.cdh5.10.0.p0.25/bin/impala-shell
/opt/cloudera/parcels/CDH-5.10.0-1.cdh5.10.0.p0.25/bin/impala-shell - priority 10
Current `best' version is 
/opt/cloudera/parcels/CDH-5.10.0-1.cdh5.10.0.p0.25/bin/impala-shell.

• Although not necessary, it is recommended that you configure Impala with the locations of the Kudu Masters
using the --kudu_master_hosts=<master1>[:port] flag. If this flag is not set, you will need to manually
provide this configuration each time you create a table by specifying the kudu_master_addresses property
inside a TBLPROPERTIES clause. If you are using Cloudera Manager, no such configuration is needed. The Impala
service will automatically recognize the Kudu Master hosts.

The rest of this guide assumes that this configuration has been set.

• Start Impala Shell using the impala-shell command. By default, impala-shell attempts to connect to the
Impala daemon on localhost on port 21000. To connect to a different host, use the -i <host:port> option.

To automatically connect to a specific Impala database, use the -d <database> option. For instance, if all your
Kudu tables are in Impala in the database impala_kudu, use -d impala_kudu to use this database.

• To quit the Impala Shell, use the following command: quit;

Querying an Existing Kudu Table from Impala

Tables created through the Kudu API or other integrations such as Apache Spark are not automatically visible in Impala.
To query them, you must first create an external table within Impala to map the Kudu table into an Impala database:

CREATE EXTERNAL TABLE my_mapping_table
STORED AS KUDU
TBLPROPERTIES (
  'kudu.table_name' = 'my_kudu_table'
);

66 | Apache Kudu User Guide

Using Apache Impala (incubating) with Kudu

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_tables.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_kudu_service.html#impala_dependency


Creating a New Kudu Table From Impala

Creating a new table in Kudu from Impala is similar to mapping an existing Kudu table to an Impala table, except that
you need to specify the schema and partitioning information yourself. Use the following example as a guideline. Impala
first creates the table, then creates the mapping.

In the CREATE TABLE statement, the columns that comprise the primary key must be listed first. Additionally, primary
key columns are implicitly considered NOT NULL.

When creating a new table in Kudu, youmust define a partition schema to pre-split your table. The best partition
schema to use depends upon the structure of your data and your data access patterns. The goal is tomaximize parallelism
and use all your tablet servers evenly. For more information on partition schemas, see Partitioning Tables on page 67.

The following CREATE TABLE example distributes the table into 16 partitions by hashing the id column, for simplicity.

CREATE TABLE my_first_table
(
  id BIGINT,
  name STRING,
  PRIMARY KEY(id)
)
PARTITION BY HASH PARTITIONS 16
STORED AS KUDU;

CREATE TABLE AS SELECT

You can create a table by querying any other table or tables in Impala, using a CREATE TABLE ... AS SELECT
statement. The following example imports all rows from an existing table, old_table, into a new Kudu table,
new_table. The columns in new_table will have the same names and types as the columns in old_table, but you
will need to additionally specify the primary key and partitioning schema.

CREATE TABLE new_table
PRIMARY KEY (ts, name)
PARTITION BY HASH(name) PARTITIONS 8
STORED AS KUDU
AS SELECT ts, name, value FROM old_table;

You can refine the SELECT statement to only match the rows and columns you want to be inserted into the new table.
You can also rename the columns by using syntax like SELECT name as new_col_name.

Partitioning Tables

Tables are partitioned into tablets according to a partition schema on the primary key columns. Each tablet is served
by at least one tablet server. Ideally, a table should be split into tablets that are distributed across a number of tablet
servers to maximize parallel operations. The details of the partitioning schema you use will depend entirely on the
type of data you store and how you access it.

Kudu currently has no mechanism for splitting or merging tablets after the table has been created. Until this feature
has been implemented, you must provide a partition schema for your table when you create it. When designing your
tables, consider using primary keys that will allow you to partition your table into tablets which grow at similar rates

You can partition your table using Impala's PARTITION BY clause, which supports distribution by RANGE or HASH. The
partition scheme can contain zero or more HASH definitions, followed by an optional RANGE definition. The RANGE
definition can refer to one or more primary key columns. Examples of basic and advanced partitioning are shown
below.

Monotonically Increasing Values - If you partition by range on a column whose values are monotonically increasing,
the last tablet will grow much larger than the others. Additionally, all data being inserted will be written to a single
tablet at a time, limiting the scalability of data ingest. In that case, consider distributing by HASH instead of, or in
addition to, RANGE.

Apache Kudu User Guide | 67

Using Apache Impala (incubating) with Kudu



Note: Impala keywords, such as group, are enclosed by back-tick characters when they are used as
identifiers, rather than as keywords.

Basic Partitioning

PARTITION BY RANGE

You can specify range partitions for one or more primary key columns. Range partitioning in Kudu allows splitting a
table based based on specific values or ranges of values of the chosen partition keys. This allows you to balance
parallelism in writes with scan efficiency.

For instance, if you have a table that has the columns state, name, and purchase_count, and you partition the table
by state, it will create 50 tablets, one for each US state.

CREATE TABLE customers (
  state STRING,
  name STRING,
  purchase_count int,
  PRIMARY KEY (state, name)
)
PARTITION BY RANGE (state)
(
  PARTITION VALUE = 'al',
  PARTITION VALUE = 'ak',
  PARTITION VALUE = 'ar',
  ...
  ...
  PARTITION VALUE = 'wv',
  PARTITION VALUE = 'wy'
)
STORED AS KUDU;

PARTITION BY HASH

Instead of distributing by an explicit range, or in combination with range distribution, you can distribute into a specific
number of partitions by hash. You specify the primary key columns you want to partition by, and the number of
partitions you want to use. Rows are distributed by hashing the specified key columns. Assuming that the values being
hashed do not themselves exhibit significant skew, this will serve to distribute the data evenly across all partitions.

You can specify multiple definitions, and you can specify definitions which use compound primary keys. However, one
column cannot be mentioned in multiple hash definitions. Consider two columns, a and b:

• HASH(a), HASH(b) -- will succeed
• HASH(a,b) -- will succeed
• HASH(a), HASH(a,b) -- will fail

Note: PARTITION BY HASH with no column specified is a shortcut to create the desired number of
partitions by hashing all primary key columns.

Hash partitioning is a reasonable approach if primary key values are evenly distributed in their domain and no data
skew is apparent, such as timestamps or serial IDs.

The following example creates 16 tablets by hashing the id column. A maximum of 16 tablets can be written to in
parallel. In this example, a query for a range of sku values is likely to need to read from all 16 tablets, so this may not
be the optimum schema for this table. See Advanced Partitioning on page 69 for an extended example.

CREATE TABLE cust_behavior (
  id BIGINT,
  sku STRING,
  salary STRING,
  edu_level INT,
  usergender STRING,

68 | Apache Kudu User Guide

Using Apache Impala (incubating) with Kudu



  `group` STRING,
  city STRING,
  postcode STRING,
  last_purchase_price FLOAT,
  last_purchase_date BIGINT,
  category STRING,
  rating INT,
  fulfilled_date BIGINT,
  PRIMARY KEY (id, sku)
)
PARTITION BY HASH PARTITIONS 16
STORED AS KUDU;

Advanced Partitioning

You can combine HASH and RANGE partitioning to create more complex partition schemas. You can also specify zero
or more HASH definitions, followed by zero or one RANGE definitions. Each schema definition can encompass one or
more columns. While enumerating every possible distribution schema is out of the scope of this topic, the following
examples illustrate some of the possibilities.

PARTITION BY HASH and RANGE

Consider the basic PARTITION BY HASH example above. If you often query for a range of sku values, you can optimize
the example by combining hash partitioning with range partitioning.

The following example still creates 16 tablets, by first hashing the id column into 4 partitions, and then applying range
partitioning to split each partition into four tablets, based upon the value of the sku string. At least four tablets (and
possibly up to 16) can be written to in parallel, and when you query for a contiguous range of sku values, there's a
good chance you only need to read a quarter of the tablets to fulfill the query.

By default, the entire primary key (id, sku) will be hashed when you use PARTITION BY HASH. To hash on only
part of the primary key, and use a range partition on the rest, use the syntax demonstrated below.

CREATE TABLE cust_behavior (
  id BIGINT,
  sku STRING,
  salary STRING,
  edu_level INT,
  usergender STRING,
  `group` STRING,
  city STRING,
  postcode STRING,
  last_purchase_price FLOAT,
  last_purchase_date BIGINT,
  category STRING,
  rating INT,
  fulfilled_date BIGINT,
  PRIMARY KEY (id, sku)
)
PARTITION BY HASH (id) PARTITIONS 4,
RANGE (sku)
(
  PARTITION VALUES < 'g',
  PARTITION 'g' <= VALUES < 'o',
  PARTITION 'o' <= VALUES < 'u',
  PARTITION 'u' <= VALUES
)
STORED AS KUDU;

Multiple PARTITION BY HASH Definitions

Once again expanding on the example above, let's assume that the pattern of incoming queries will be unpredictable,
but you still want to ensure that writes are spread across a large number of tablets. You can achieve maximum
distribution across the entire primary key by hashing on both primary key columns.

CREATE TABLE cust_behavior (
  id BIGINT,

Apache Kudu User Guide | 69

Using Apache Impala (incubating) with Kudu



  sku STRING,
  salary STRING,
  edu_level INT,
  usergender STRING,
  `group` STRING,
  city STRING,
  postcode STRING,
  last_purchase_price FLOAT,
  last_purchase_date BIGINT,
  category STRING,
  rating INT,
  fulfilled_date BIGINT,
  PRIMARY KEY (id, sku)
)
PARTITION BY HASH (id) PARTITIONS 4,
             HASH (sku) PARTITIONS 4
STORED AS KUDU;

The example creates 16 partitions. You could also use HASH (id, sku) PARTITIONS 16. However, a scan for sku
values would almost always impact all 16 partitions, rather than possibly being limited to 4.

Non-Covering Range Partitions

Kudu 1.x (and higher) supports the use of non-covering range partitions, which can be used to address the following
scenarios:

• In the case of time-series data or other schemas which need to account for constantly-increasing primary keys,
tablets serving old data will be relatively fixed in size, while tablets receiving new data will grow without bounds.

• In cases where you want to partition data based on its category, such as sales region or product type, without
non-covering range partitions you must know all of the partitions ahead of time or manually recreate your table
if partitions need to be added or removed, such as the introduction or elimination of a product type.

Note: Non-covering range partitions have some caveats. Be sure to read the
link:/docs/schema_design.html [Schema Design guide].

The following example creates a tablet per year (5 tablets total), for storing log data. The table only accepts data from
2012 to 2016. Keys outside of these ranges will be rejected.

CREATE TABLE sales_by_year (
  year INT, sale_id INT, amount INT,
  PRIMARY KEY (sale_id, year)
)
PARTITION BY RANGE (year) (
  PARTITION VALUE = 2012,
  PARTITION VALUE = 2013,
  PARTITION VALUE = 2014,
  PARTITION VALUE = 2015,
  PARTITION VALUE = 2016
)
STORED AS KUDU;

When records start coming in for 2017, they will be rejected. At that point, the 2017 range should be added as follows:

ALTER TABLE sales_by_year ADD RANGE PARTITION VALUE = 2017;

In use cases where a rolling window of data retention is required, range partitions may also be dropped. For example,
if data from 2012 should no longer be retained, it may be deleted in bulk:

ALTER TABLE sales_by_year DROP RANGE PARTITION VALUE = 2012;

Note that just like dropping a table, this irrecoverably deletes all data stored in the dropped partition.

70 | Apache Kudu User Guide

Using Apache Impala (incubating) with Kudu



Partitioning Guidelines

• For large tables, such as fact tables, aim for as many tablets as you have cores in the cluster.
• For small tables, such as dimension tables, aim for a large enough number of tablets that each tablet is at least 1

GB in size.

In general, be mindful the number of tablets limits the parallelism of reads, in the current implementation. Increasing
the number of tablets significantly beyond the number of cores is likely to have diminishing returns.

Optimizing Performance for Evaluating SQL Predicates

If the WHERE clause of your query includes comparisons with the operators =, <=, <, >, >=, BETWEEN, or IN, Kudu
evaluates the condition directly and only returns the relevant results. This provides optimum performance, because
Kudu only returns the relevant results to Impala.

For predicates such as !=, LIKE, or any other predicate type supported by Impala, Kudu does not evaluate the predicates
directly. Instead, it returns all results to Impala and relies on Impala to evaluate the remaining predicates and filter
the results accordingly. This may cause differences in performance, depending on the delta of the result set before
and after evaluating the WHERE clause. In some cases, creating and periodically updating materialized views may be
the right solution to work around these inefficiencies.

Inserting a Row

The syntax for inserting one or more rows using Impala is shown below.

INSERT INTO my_first_table VALUES (99, "sarah");
INSERT INTO my_first_table VALUES (1, "john"), (2, "jane"), (3, "jim");

The primary key must not be null.

Inserting In Bulk

When inserting in bulk, there are at least three common choices. Each may have advantages and disadvantages,
depending on your data and circumstances.

Multiple Single INSERT statements

This approach has the advantage of being easy to understand and implement. This approach is likely to be inefficient
because Impala has a high query start-up cost compared to Kudu's insertion performance. This will lead to relatively
high latency and poor throughput.

Single INSERT statement with multiple VALUES subclauses

If you include more than 1024 VALUES statements, Impala batches them into groups of 1024 (or the value of
batch_size) before sending the requests to Kudu. This approach may perform slightly better than multiple
sequential INSERT statements by amortizing the query start-up penalties on the Impala side. To set the batch size
for the current Impala Shell session, use the following syntax:

set batch_size=10000;

Note: Increasing the Impala batch size causes Impala to use more memory. You should verify the
impact on your cluster and tune accordingly.

Batch Insert

The approach that usually performs best, from the standpoint of both Impala and Kudu, is usually to import the
data using a SELECT FROM subclause in Impala.

1. If your data is not already in Impala, one strategy is to import it from a text file, such as a TSV or CSV file.
2. Create the Kudu table, being mindful that the columns designated as primary keys cannot have null values.

Apache Kudu User Guide | 71

Using Apache Impala (incubating) with Kudu

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_txtfile.html


3. Insert values into the Kudu table by querying the table containing the original data, as in the following example:

INSERT INTO my_kudu_table
SELECT * FROM legacy_data_import_table;

Ingest using the C++ or Java API

In many cases, the appropriate ingest path is to use the C++ or Java API to insert directly into Kudu tables. Unlike
other Impala tables, data inserted into Kudu tables using the API becomes available for query in Impala without
the need for any INVALIDATE METADATA statements or other statements needed for other Impala storage types.

INSERT and Primary Key Uniqueness Violations

In many relational databases, if you try to insert a row that has already been inserted, the insertion will fail because
the primary key will be duplicated (see Failures During INSERT, UPDATE, UPSERT, and DELETE Operations on page 74).
Impala, however, does not fail the query. Instead, it will generate a warning and continue to execute the remainder
of the insert statement.

If you meant to replace existing rows from the table, use the UPSERT statement instead.

INSERT INTO my_first_table VALUES (99, "sarah");
UPSERT INTO my_first_table VALUES (99, "zoe");

The current value of the row is now zoe.

Updating a Row

The syntax for updating one or more rows using Impala is shown below.

UPDATE my_first_table SET name="bob" where id = 3;

You cannot change or null the primary key value.

Important: The UPDATE statement only works in Impala when the underlying data source is Kudu.

Updating In Bulk

You can update in bulk using the same approaches outlined in Inserting In Bulk on page 71.

Upserting a Row

The UPSERT command acts as a combination of the INSERT and UPDATE statements. For each row processed by the
UPSERT statement:

• If another row already exists with the same set of primary key values, the other columns are updated to match
the values from the row being 'UPSERTed'.

• If there is no rowwith the same set of primary key values, the row is created, the same as if the INSERT statement
was used.

UPSERT Example

The following example demonstrates how the UPSERT statement works. We start by creating two tables, foo1 and
foo2.

CREATE TABLE foo1 (
 id INT PRIMARY KEY,
 col1 STRING, 
 col2 STRING
) 

72 | Apache Kudu User Guide

Using Apache Impala (incubating) with Kudu



PARTITION BY HASH(id) PARTITIONS 3 
STORED AS KUDU;

CREATE TABLE foo2 (
 id INT PRIMARY KEY,
 col1 STRING, 
 col2 STRING
) 
PARTITION BY HASH(id) PARTITIONS 3 
STORED AS KUDU;

Populate foo1 and foo2 using the following INSERT statements. For foo2, we leave column col2 with NULL values
to be upserted later:

INSERT INTO foo1 VALUES (1, "hi", "alice");

INSERT INTO foo2 select id, col1, NULL from foo1;

The contents of foo2 will be:

SELECT * FROM foo2;
...
+----+------+------+
| id | col1 | col2 |
+----+------+------+
| 1  | hi   | NULL |
+----+------+------+
Fetched 1 row(s) in 0.15s

Now use the UPSERT command to now replace the NULL values in foo2 with the actual values from foo1.

UPSERT INTO foo2 (id, col2) select id, col2 from foo1;

SELECT * FROM foo2;
...
+----+------+-------+
| id | col1 | col2  |
+----+------+-------+
| 1  | hi   | alice |
+----+------+-------+
Fetched 1 row(s) in 0.15s

Deleting a Row

You can delete Kudu rows in near real time using Impala.

DELETE FROM my_first_table WHERE id < 3;         

You can even use more complex joins when deleting rows. For example, Impala uses a comma in the FROM sub-clause
to specify a join query.

DELETE c FROM my_second_table c, stock_symbols s WHERE c.name = s.symbol;

Important: The DELETE statement only works in Impala when the underlying data source is Kudu.

Deleting In Bulk

You can delete in bulk using the same approaches outlined in Inserting In Bulk on page 71.

Apache Kudu User Guide | 73

Using Apache Impala (incubating) with Kudu



Failures During INSERT, UPDATE, UPSERT, and DELETE Operations

INSERT, UPDATE, and DELETE statements cannot be considered transactional as a whole. If one of these operations
fails part of the way through, the keys may have already been created (in the case of INSERT) or the records may have
already been modified or removed by another process (in the case of UPDATE or DELETE). You should design your
application with this in mind.

Altering Table Properties

You can change Impala's metadata relating to a given Kudu table by altering the table's properties. These properties
include the table name, the list of Kudu master addresses, and whether the table is managed by Impala (internal) or
externally. You cannot modify a table's split rows after table creation.

Important: Altering table properties only changes Impala's metadata about the table, not the
underlying table itself. These statements do not modify any Kudu data.

Rename an Impala Mapping Table

ALTER TABLE my_table RENAME TO my_new_table;

Renaming a table using theALTER TABLE ... RENAME statement only renames the Impalamapping table, regardless
of whether the table is an internal or external table. This avoids disruption to other applications that may be accessing
the underlying Kudu table.

Rename the underlying Kudu table for an internal table
If a table is an internal table, the underlying Kudu tablemay be renamed by changing the kudu.table_name property:

ALTER TABLE my_internal_table
SET TBLPROPERTIES('kudu.table_name' = 'new_name')

Remapping an external table to a different Kudu table
If another application has renamed a Kudu table under Impala, it is possible to re-map an external table to point to a
different Kudu table name.

ALTER TABLE my_external_table_
SET TBLPROPERTIES('kudu.table_name' = 'some_other_kudu_table')

Change the Kudu Master Addresses

ALTER TABLE my_table SET TBLPROPERTIES('kudu.master_addresses' = 
'kudu-original-master.example.com:7051,kudu-new-master.example.com:7051');

Change an Internally-Managed Table to External

ALTER TABLE my_table SET TBLPROPERTIES('EXTERNAL' = 'TRUE');

Dropping a Kudu Table using Impala

If the table was created as an internal table in Impala, using CREATE TABLE, the standard DROP TABLE syntax drops
the underlying Kudu table and all its data. If the table was created as an external table, using CREATE EXTERNAL
TABLE, the mapping between Impala and Kudu is dropped, but the Kudu table is left intact, with all its data. To change
an external table to internal, or vice versa, see Altering Table Properties on page 74.

DROP TABLE my_first_table;

74 | Apache Kudu User Guide

Using Apache Impala (incubating) with Kudu



Security Considerations
Kudu 1.3 (and higher) includes security features that allowKudu clusters to be hardened against access fromunauthorized
users. Kudu uses strong authentication with Kerberos, while communication between Kudu clients and servers can
now be encrypted with TLS. Kudu also allows you to use HTTPS encryption to connect to the web UI. These features
should work seamlessly in Impala as long as Impala’s user is given permission to access Kudu.

For instructions on how to configure a secure Kudu cluster, see Apache Kudu Security on page 76.

Sentry Authorization works as follows:

• Only the ALL privilege can be granted on Kudu tables. This means SELECT or INSERT grants are not supported.
• Column-level permissions are not supported.
• Only users with ALL privileges on SERVER may create external Kudu tables.

Known Issues and Limitations
• When creating a Kudu table, the CREATE TABLE statement must include the primary key columns before other

columns, in primary key order.

• Impala cannot update values in primary key columns.

• Impala cannot create Kudu tables with TIMESTAMP, DECIMAL, VARCHAR, or nested-typed columns.

• Kudu tables with a name containing upper case or non-ASCII characters must be assigned an alternate namewhen
used as an external table in Impala.

• Kudu tables with a column name containing upper case or non-ASCII characters may not be used as an external
table in Impala. Non-primary key columns may be renamed in Kudu to work around this issue.

• Kudu tables containing UNIXTIME_MICROS-typed columns may not be used as an external table in Impala.

• NULL, NOT NULL, !=, and LIKE predicates are not pushed to Kudu, and instead will be evaluated by the Impala
scan node. This may decrease performance relative to other types of predicates.

• Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of theway through, its partial
effects will not be rolled back.

• The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or use large tables.

Impala Keywords Not Supported for Creating Kudu Tables

• PARTITIONED

• LOCATION

• ROWFORMAT

Next Steps
The examples above have only explored a fraction of what you can do with Impala Shell.

• Learn about the Impala project.
• Read the Impala documentation.
• View the Impala SQL Reference.
• For in-depth information on how to configure and use Impala to query Kudu data, see Integrating Impala with

Kudu.
• Read about Impala internals or learn how to contribute to Impala on the Impala Wiki.

Apache Kudu User Guide | 75

Using Apache Impala (incubating) with Kudu

http://impala.io/
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_langref.html
https://www.cloudera.com/documentation/enterprise/latest/topics/impala_kudu.html
https://www.cloudera.com/documentation/enterprise/latest/topics/impala_kudu.html
https://github.com/cloudera/Impala/wiki


Apache Kudu Security

Kudu 1.3 includes security features that allow Kudu clusters to be hardened against access from unauthorized users.
Kudu uses strong authentication with Kerberos, while communication between Kudu clients and servers can now be
encrypted with TLS. Kudu also allows you to use HTTPS encryption to connect to the web UI.

The rest of this topic describes the security capabilities of Apache Kudu and how to configure a secure Kudu cluster.
Currently, there are a few known limitations in Kudu security that might impact your cluster. For the list, see Security
Limitations on page 39.

Kudu Authentication with Kerberos
Kudu can be configured to enforce secure authentication among servers, and between clients and servers. Authentication
prevents untrusted actors from gaining access to Kudu, and securely identifies connecting users or services for
authorization checks. Authentication in Kudu is designed to interoperate with other secure Hadoop components by
utilizing Kerberos.

Configure authentication on Kudu servers using the --rpc-authentication flag, which can be set to one of the
following options:

• required - Kudu will reject connections from clients and servers who lack authentication credentials.
• optional - Kudu will attempt to use strong authentication, but will allow unauthenticated connections.
• disabled - Kudu will only allow unauthenticated connections.

By default, the flag is set to optional. To secure your cluster, set --rpc-authentication to required.

Internal Private Key Infrastructure (PKI)

Kudu uses an internal PKI to issue X.509 certificates to servers in the cluster. Connections between peers who have
both obtained certificates will use TLS for authentication. In such cases, neither peer needs to contact the Kerberos
KDC.

X.509 certificates are only used for internal communication among Kudu servers, and between Kudu clients and servers.
These certificates are never presented in a public facing protocol. By using internally-issued certificates, Kudu offers
strong authentication which scales to huge clusters, and allows TLS encryption to be used without requiring you to
manually deploy certificates on every node.

Authentication Tokens

After authenticating to a secure cluster, the Kudu client will automatically request an authentication token from the
Kudumaster. An authentication token encapsulates the identity of the authenticated user and carries the Kudumaster's
RSA signature so that its authenticity can be verified. This token will be used to authenticate subsequent connections.
By default, authentication tokens are only valid for seven days, so that even if a token were compromised, it cannot
be used indefinitely. For the most part, authentication tokens should be completely transparent to users. By using
authentication tokens, Kudu is able to take advantage of strong authentication, without paying the scalability cost of
communicating with a central authority for every connection.

Whenusedwith distributed compute frameworks such as Apache Spark, authentication tokens can simplify configuration
and improve security. For example, the Kudu Spark connectorwill automatically retrieve an authentication token during
the planning stage, and distribute the token to tasks. This allows Spark to work against a secure Kudu cluster where
only the planner node has Kerberos credentials.

Scalability

Kudu authentication is designed to scale to thousands of nodes, which means it must avoid unnecessary coordination
with a central authentication authority (such as the Kerberos KDC) for each connection. Instead, Kudu servers and
clients use Kerberos to establish initial trust with the Kudu master, and then use alternate credentials for subsequent

76 | Apache Kudu User Guide

Apache Kudu Security



connections. As described previously, the Kudu master issues internal X.509 certificates to tablet servers on startup,
and temporary authentication tokens to clients on first contact.

Encryption
Kudu allows you to use TLS to encrypt all communications among servers, and between clients and servers. Configure
TLS encryption on Kudu servers using the --rpc-encryption flag, which can be set to one of the following options:

• required - Kudu will reject unencrypted connections.
• optional - Kudu will attempt to use encryption, but will allow unencrypted connections.
• disabled - Kudu will not use encryption.

By default, the flag is set to optional. To secure your cluster, set --rpc-encryption to required.

Note: Kudu will automatically turn off encryption on local loopback connections, since traffic from
these connections is never exposed externally. This allows locality-aware compute frameworks, such
as Spark and Impala, to avoid encryption overhead, while still ensuring data confidentiality.

Coarse-grained Authorization
Kudu supports coarse-grained authorization checks for client requests based on the client's authenticated Kerberos
principal (user or service). Access levels are granted based on whitelist-style Access Control Lists (ACLs), one for each
level. Each ACL specifies a comma-separated list of users, or may be set to '*' to indicate that all authenticated users
have access rights at the specified level.

The two levels of access which can be configured are:

• Superuser - Principals authorized as a superuser can perform certain administrative functions such as using the
kudu command line tool to diagnose and repair cluster issues.

• User - Principals authorized as a user are able to access and modify all data in the Kudu cluster. This includes the
ability to create, drop, and alter tables, as well as read, insert, update, and delete data. The default value for the
User ACL is '*', which allows all users access to the cluster. However, if authentication is enabled, this will restrict
access to only those users who are able to successfully authenticate using Kerberos. Unauthenticated users on
the same network as the Kudu servers will be unable to access the cluster.

Note: Internally, Kudu has a third access level for the daemons themselves called Service. This is used
to ensure that users cannot connect to the cluster and pose as tablet servers.

Web UI Encryption
The Kudu web UI can be configured to use secure HTTPS encryption by providing each server with TLS certificates. Use
the--webserver-certificate-file and--webserver-private-key-file properties to specify the certificate
and private key to be used for communication.

Alternatively, you can choose to completely disable the web UI by setting --webserver-enabled flag to false on
the Kudu servers.

Web UI Redaction
To prevent sensitive data from being included in the web UI, all row data is redacted. Table metadata, such as table
names, column names, and partitioning information is not redacted. Alternatively, you can choose to completely disable
the web UI by setting the --webserver-enabled flag to false on the Kudu servers.

Apache Kudu User Guide | 77

Apache Kudu Security



Note: Disabling the web UI will also disable REST endpoints such as /metrics. Monitoring systems
rely on these endpoints to gather metrics data.

Log Redaction
To prevent sensitive data from being included in Kudu server logs, all row data will be redacted. You can turn off log
redaction using the --redact flag.

Configuring a Secure Kudu Cluster using Cloudera Manager

Warning: If you are upgrading from Kudu 1.2.0 / CDH 5.10.x, you must upgrade both Kudu and CDH
parcels (or packages) at the same time. If you upgrade Kudu but do not upgrade CDH, new Kudu
features such as Security will not be available. Note that even though you might be able to see the
updated configuration options for Kudu security in Cloudera Manager, configuring them will have no
effect.

Use the following set of instructions to secure a Kudu cluster using Cloudera Manager:

Enabling Kerberos Authentication and RPC Encryption

Important: The following instructions assume you already have a secure Cloudera Manager cluster
with Kerberos authentication enabled. If this is not the case, first secure your cluster using the steps
described at Enabling Kerberos Authentication Using the Cloudera Manager Wizard.

To enable Kerberos authentication for Kudu:

1. Go to the Kudu service.
2. Click the Configuration tab.
3. Select Category > Security.
4. In the Search field, type Kerberos to show the relevant properties.
5. Edit the following properties according to your cluster configuration:

Usage NotesField

Set to the default principal,kudu. Currently, Kudu does not support configuring
a custom service principal for Kudu processes.

Kerberos Principal

Select this checkbox to enable authentication and RPC encryption between
all Kudu clients and servers, as well as between individual servers. Only enable
this property after you have configured Kerberos.

Enable Secure Authentication
And Encryption

6. Click Save Changes.
7. You will see an error message that tells you the Kudu keytab is missing. To generate the keytab, go to the top

navigation bar and click Administration > Security.
8. Go to the Kerberos Credentials tab. On this page you will see a list of the existing Kerberos principals for services

running on the cluster.
9. Click Generate Missing Credentials. Once the Generate Missing Credentials command has finished running, you

will see the Kudu principal added to the list.

Configuring Coarse-grained Authorization with ACLs

1. Go to the Kudu service.

78 | Apache Kudu User Guide

Apache Kudu Security

https://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_intro_kerb.html


2. Click the Configuration tab.
3. Select Category > Security.
4. In the Search field, type ACL to show the relevant properties.
5. Edit the following properties according to your cluster configuration:

Usage NotesField

Add a comma-separated list of superusers who can access the cluster. By
default, this property is left blank.

'*' indicates that all authenticated users will be given superuser access.

Superuser Access Control List

Add a comma-separated list of users who can access the cluster. By default,
this property is set to '*'.

The default value of '*' allows all users access to the cluster. However, if
authentication is enabled, this will restrict access to only those users who are

User Access Control List

able to successfully authenticate using Kerberos. Unauthenticated users on
the same network as the Kudu servers will be unable to access the cluster.

Add the impala user to this list to allow Impala to query data in Kudu. You
might choose to add any other relevant usernames if you want to give access
to Spark Streaming jobs.

6. Click Save Changes.

Configuring HTTPS Encryption for the Kudu Master and Tablet Server Web UIs

Use the following steps to enable HTTPS for encrypted connections to the Kudu master and tablet server web UIs.

1. Go to the Kudu service.
2. Click the Configuration tab.
3. Select Category > Security.
4. In the Search field, type TLS/SSL to show the relevant properties.
5. Edit the following properties according to your cluster configuration:

Usage NotesField

Set to the path containing the Kudu master host's private key (PEM-format).
This is used to enable TLS/SSL encryption (over HTTPS) for browser-based
connections to the Kudu master web UI.

Master TLS/SSL Server Private
Key File (PEM Format)

Set to the path containing the Kudu tablet server host's private key
(PEM-format). This is used to enable TLS/SSL encryption (over HTTPS) for
browser-based connections to Kudu tablet server web UIs.

Tablet Server TLS/SSL Server
Private Key File (PEM Format)

Set to the path containing the signed certificate (PEM-format) for the Kudu
master host's private key (set in Master TLS/SSL Server Private Key File). The

Master TLS/SSL Server Certificate
File (PEM Format)

certificate file can be created by concatenating all the appropriate root and
intermediate certificates required to verify trust.

Set to the path containing the signed certificate (PEM-format) for the Kudu
tablet server host's private key (set in Tablet Server TLS/SSL Server Private

Tablet Server TLS/SSL Server
Certificate File (PEM Format)

Key File). The certificate file can be created by concatenating all the
appropriate root and intermediate certificates required to verify trust.

Enables HTTPS encryption on the Kudu master web UI.Enable TLS/SSL forMaster Server

Enables HTTPS encryption on the Kudu tablet server Web UIs.Enable TLS/SSL for Tablet Server

Apache Kudu User Guide | 79

Apache Kudu Security



6. Click Save Changes.

Configuring a Secure Kudu Cluster using the Command Line

Important: Follow these command-line instructions on systems that do not use Cloudera Manager.
If you are using Cloudera Manager, see Configuring a Secure Kudu Cluster using Cloudera Manager
on page 78.

The following configuration parameters should be set on all servers (master and tablet servers) to ensure that a Kudu
cluster is secure:

# Connection Security
#--------------------
--rpc-authentication=required
--rpc-encryption=required
--keytab-file=<path-to-kerberos-keytab>

# Web UI Security
#--------------------
--webserver-certificate-file=<path-to-cert-pem>
--webserver-private-key-file=<path-to-key-pem>
# optional
--webserver-private-key-password-cmd=<password-cmd>

# If you prefer to disable the web UI entirely:
--webserver-enabled=false

# Coarse-grained authorization
#--------------------------------

# This example ACL setup allows the 'impala' user as well as the
# 'etl_service_account' principal access to all data in the
# Kudu cluster. The 'hadoopadmin' user is allowed to use administrative
# tooling. Note that by granting access to 'impala', other users
# may access data in Kudu via the Impala service subject to its own
# authorization rules.
--user-acl=impala,etl_service_account
--admin-acl=hadoopadmin

More information about these flags can be found in the configuration reference documentation.

80 | Apache Kudu User Guide

Apache Kudu Security

http://kudu.apache.org/docs/configuration_reference.html


Apache Kudu Schema Design

Kudu tables have a structured data model similar to tables in a traditional relational database. With Kudu, schema
design is critical for achieving the best performance and operational stability. Every workload is unique, and there is
no single schema design that is best for every table. This topic outlines effective schema design philosophies for Kudu,
and how they differ from approaches used for traditional relational database schemas.

There are three main concerns when creating Kudu tables: column design, primary key design, and partitioning.

The Perfect Schema
The perfect schema would accomplish the following:

• Data would be distributed such that reads and writes are spread evenly across tablet servers. This can be achieved
by effective partitioning.

• Tablets would grow at an even, predictable rate, and load across tablets would remain steady over time. This can
be achieved by effective partitioning.

• Scans would read the minimum amount of data necessary to fulfill a query. This is impacted mostly by primary
key design, but partitioning also plays a role via partition pruning.

The perfect schema depends on the characteristics of your data, what you need to do with it, and the topology of your
cluster. Schema design is the single most important thing within your control to maximize the performance of your
Kudu cluster.

Column Design
A Kudu table consists of one or more columns, each with a defined type. Columns that are not part of the primary key
may be nullable. Supported column types include:

• boolean

• 8-bit signed integer

• 16-bit signed integer

• 32-bit signed integer

• 64-bit signed integer

• unixtime_micros (64-bit microseconds since the Unix epoch)

• single-precision (32-bit) IEEE-754 floating-point number

• double-precision (64-bit) IEEE-754 floating-point number

• UTF-8 encoded string (up to 64KB uncompressed)

• binary (up to 64KB uncompressed)

Kudu takes advantage of strongly-typed columns and a columnar on-disk storage format to provide efficient encoding
and serialization. To make the most of these features, columns should be specified as the appropriate type, rather
than simulating a 'schemaless' table using string or binary columns for data which could otherwise be structured. In
addition to encoding, Kudu allows compression to be specified on a per-column basis.

Apache Kudu User Guide | 81

Apache Kudu Schema Design



Column Encoding

Depending on the type of the column, Kudu columns can be created with the following encoding types.

Plain Encoding

Data is stored in its natural format. For example, int32 values are stored as fixed-size 32-bit little-endian integers.

Bitshuffle Encoding

A block of values is rearranged to store themost significant bit of every value, followed by the secondmost significant
bit of every value, and so on. Finally, the result is LZ4 compressed. Bitshuffle encoding is a good choice for columns
that havemany repeated values, or values that change by small amounts when sorted by primary key. The bitshuffle
project has a good overview of performance and use cases.

Run Length Encoding

Runs (consecutive repeated values) are compressed in a column by storing only the value and the count. Run length
encoding is effective for columns with many consecutive repeated values when sorted by primary key.

Dictionary Encoding

A dictionary of unique values is built, and each column value is encoded as its corresponding index in the dictionary.
Dictionary encoding is effective for columns with low cardinality. If the column values of a given row set are unable
to be compressed because the number of unique values is too high, Kuduwill transparently fall back to plain encoding
for that row set. This is evaluated during flush.

Prefix Encoding

Common prefixes are compressed in consecutive column values. Prefix encoding can be effective for values that
share common prefixes, or the first column of the primary key, since rows are sorted by primary key within tablets.

Each column in a Kudu table can be created with an encoding, based on the type of the column. Starting with Kudu
1.3, default encodings are specific to each column type.

DefaultEncodingColumn Type

bitshuffleplain, bitshuffle, run lengthint8, int16, int32

bitshuffleplain, bitshuffle, run lengthint64, unixtime_micros

bitshuffleplain, bitshufflefloat, double

run lengthplain, run lengthbool

dictionaryplain, prefix, dictionarystring, binary

Column Compression

Kudu allows per-column compression using the LZ4, Snappy, or zlib compression codecs. By default, columns are
stored uncompressed. Consider using compression if reducing storage space is more important than raw scan
performance.

Every data set will compress differently, but in general LZ4 is the most efficient codec, while zlib will compress to
the smallest data sizes. Bitshuffle-encoded columns are automatically compressed using LZ4, so it is not recommended
to apply additional compression on top of this encoding.

Primary Key Design
Every Kudu table must declare a primary key index comprised of one or more columns. Primary key columns must be
non-nullable, and may not be a boolean or floating-point type. Once set during table creation, the set of columns in
the primary keymay not be altered. Like an RDBMSprimary key, the Kudu primary key enforces a uniqueness constraint;
attempting to insert a row with the same primary key values as an existing row will result in a duplicate key error.

82 | Apache Kudu User Guide

Apache Kudu Schema Design



Unlike an RDBMS, Kudu does not provide an auto-incrementing column feature, so the applicationmust always provide
the full primary key during insert. Row delete and update operations must also specify the full primary key of the row
to be changed; Kudu does not natively support range deletes or updates. The primary key values of a column may not
be updated after the row is inserted; however, the row may be deleted and re-inserted with the updated value.

Primary Key Index

As with many traditional relational databases, Kudu’s primary key is a clustered index. All rows within a tablet are kept
in primary key sorted order. Kudu scanswhich specify equality or range constraints on the primary keywill automatically
skip rows which can not satisfy the predicate. This allows individual rows to be efficiently found by specifying equality
constraints on the primary key columns.

Partitioning
In order to provide scalability, Kudu tables are partitioned into units called tablets, and distributed across many tablet
servers. A row always belongs to a single tablet. Themethod of assigning rows to tablets is determined by the partitioning
of the table, which is set during table creation.

Choosing a partitioning strategy requires understanding the data model and the expected workload of a table. For
write-heavy workloads, it is important to design the partitioning such that writes are spread across tablets in order to
avoid overloading a single tablet. For workloads involving many short scans, where the overhead of contacting remote
servers dominates, performance can be improved if all of the data for the scan is located on the same tablet.
Understanding these fundamental trade-offs is central to designing an effective partition schema.

Important: Kudu does not provide a default partitioning strategy when creating tables. It is
recommended that new tables which are expected to have heavy read and write workloads have at
least as many tablets as tablet servers.

Kudu provides two types of partitioning: range partitioning and hash partitioning. Tables may also have multilevel
partitioning, which combines range and hash partitioning, or multiple instances of hash partitioning.

Range Partitioning

Range partitioning distributes rows using a totally-ordered range partition key. Each partition is assigned a contiguous
segment of the range partition keyspace. The key must be comprised of a subset of the primary key columns. If the
range partition columns match the primary key columns, then the range partition key of a row will equal its primary
key. In range partitioned tables without hash partitioning, each range partition will correspond to exactly one tablet.

The initial set of range partitions is specified during table creation as a set of partition bounds and split rows. For each
bound, a range partitionwill be created in the table. Each split will divide a range partition in two. If no partition bounds
are specified, then the table will default to a single partition covering the entire key space (unbounded below and
above). Range partitions must always be non-overlapping, and split rows must fall within a range partition.

Adding and Removing Range Partitions

Kudu allows range partitions to be dynamically added and removed from a table at runtime, without affecting the
availability of other partitions. Removing a partition will delete the tablets belonging to the partition, as well as the
data contained in them. Subsequent inserts into the dropped partition will fail. New partitions can be added, but they
must not overlap with any existing range partitions. Kudu allows dropping and adding any number of range partitions
in a single transactional alter table operation.

Dynamically adding and dropping range partitions is particularly useful for time series use cases. As time goes on, range
partitions can be added to cover upcoming time ranges. For example, a table storing an event log could add amonth-wide
partition just before the start of eachmonth in order to hold the upcoming events. Old range partitions can be dropped
in order to efficiently remove historical data, as necessary.

Apache Kudu User Guide | 83

Apache Kudu Schema Design



Hash Partitioning

Hash partitioning distributes rows by hash value into one of many buckets. In single-level hash partitioned tables, each
bucket will correspond to exactly one tablet. The number of buckets is set during table creation. Typically the primary
key columns are used as the columns to hash, but as with range partitioning, any subset of the primary key columns
can be used.

Hash partitioning is an effective strategy when ordered access to the table is not needed. Hash partitioning is effective
for spreading writes randomly among tablets, which helps mitigate hot-spotting and uneven tablet sizes.

Multilevel Partitioning

Kudu allows a table to combine multiple levels of partitioning on a single table. Zero or more hash partition levels can
be combined with an optional range partition level. The only additional constraint on multilevel partitioning beyond
the constraints of the individual partition types, is that multiple levels of hash partitions must not hash the same
columns.

When used correctly, multilevel partitioning can retain the benefits of the individual partitioning types, while reducing
the downsides of each. The total number of tablets in a multilevel partitioned table is the product of the number of
partitions in each level.

Partition Pruning

Kudu scans will automatically skip scanning entire partitions when it can be determined that the partition can be
entirely filtered by the scan predicates. To prune hash partitions, the scan must include equality predicates on every
hashed column. To prune range partitions, the scan must include equality or range predicates on the range partitioned
columns. Scans on multilevel partitioned tables can take advantage of partition pruning on any of the levels
independently.

Partitioning Examples

To illustrate the factors and tradeoffs associated with designing a partitioning strategy for a table, we will walk through
some different partitioning scenarios. Consider the following table schema for storing machine metrics data (using
SQL syntax and date-formatted timestamps for clarity):

CREATE TABLE metrics (
    host STRING NOT NULL,
    metric STRING NOT NULL,
    time INT64 NOT NULL,
    value DOUBLE NOT NULL,
    PRIMARY KEY (host, metric, time),
);

Range Partitioning

A natural way to partition the metrics table is to range partition on the time column. Let’s assume that we want to
have a partition per year, and the table will hold data for 2014, 2015, and 2016. There are at least two ways that the
table could be partitioned: with unbounded range partitions, or with bounded range partitions.

84 | Apache Kudu User Guide

Apache Kudu Schema Design



The image above shows the two ways the metrics table can be range partitioned on the time column. In the first
example (in blue), the default range partition bounds are used, with splits at 2015-01-01 and 2016-01-01. This
results in three tablets: the first containing values before 2015, the second containing values in the year 2015, and the
third containing values after 2016. The second example (in green) uses a range partition bound of [(2014-01-01),
(2017-01-01)], and splits at 2015-01-01 and 2016-01-01. The second example could have equivalently been
expressed through rangepartitionboundsof[(2014-01-01), (2015-01-01)],[(2015-01-01), (2016-01-01)],
and [(2016-01-01), (2017-01-01)], with no splits. The first example has unbounded lower and upper range
partitions, while the second example includes bounds.

Each of the range partition examples above allows time-bounded scans to prune partitions falling outside of the scan’s
time bound. This can greatly improve performance when there are many partitions. When writing, both examples
suffer from potential hot-spotting issues. Because metrics tend to always be written at the current time, most writes
will go into a single range partition.

The second example is more flexible, because it allows range partitions for future years to be added to the table. In
the first example, all writes for times after 2016-01-01will fall into the last partition, so the partition may eventually
become too large for a single tablet server to handle.

Hash Partitioning

Another way of partitioning the metrics table is to hash partition on the host and metric columns.

In the example above, the metrics table is hash partitioned on the host and metric columns into four buckets.
Unlike the range partitioning example earlier, this partitioning strategy will spread writes over all tablets in the table
evenly, which helps overall write throughput. Scans over a specific host and metric can take advantage of partition
pruning by specifying equality predicates, reducing the number of scanned tablets to one. One issue to be careful of
with a pure hash partitioning strategy, is that tablets could grow indefinitely as more and more data is inserted into
the table. Eventually tablets will become too big for an individual tablet server to hold.

Hash and Range Partitioning

The previous examples showed how the metrics table could be range partitioned on the time column, or hash
partitioned on the host and metric columns. These strategies have associated strength and weaknesses:

Apache Kudu User Guide | 85

Apache Kudu Schema Design



Table 5: Partitioning Strategies

Tablet GrowthReadsWritesStrategy

�- new tablets can be added
for future time periods

�- time-bounded scans can
be pruned

�- all writes go to latest
partition

range(time)

�- tablets could grow too
large

�- scans on specific hosts and
metrics can be pruned

�- writes are spread evenly
among tablets

hash(host, metric)

Hash partitioning is good at maximizing write throughput, while range partitioning avoids issues of unbounded tablet
growth. Both strategies can take advantage of partition pruning to optimize scans in different scenarios. Usingmultilevel
partitioning, it is possible to combine the two strategies in order to gain the benefits of both, while minimizing the
drawbacks of each.

In the example above, range partitioning on the time column is combined with hash partitioning on the host and
metric columns. This strategy can be thought of as having two dimensions of partitioning: one for the hash level and
one for the range level. Writes into this table at the current time will be parallelized up to the number of hash buckets,
in this case 4. Reads can take advantage of time bound and specific host and metric predicates to prune partitions.
New range partitions can be added, which results in creating 4 additional tablets (as if a new column were added to
the diagram).

Hash and Hash Partitioning

Kudu can support any number of hash partitioning levels in the same table, as long as the levels have no hashed columns
in common.

86 | Apache Kudu User Guide

Apache Kudu Schema Design



In the example above, the table is hash partitioned on host into 4 buckets, and hash partitioned on metric into 3
buckets, resulting in 12 tablets. Although writes will tend to be spread among all tablets when using this strategy, it is
slightly more prone to hot-spotting than when hash partitioning over multiple independent columns, since all values
for an individual host or metric will always belong to a single tablet. Scans can take advantage of equality predicates
on the host and metric columns separately to prune partitions.

Multiple levels of hash partitioning can also be combinedwith range partitioning, which logically adds another dimension
of partitioning.

Schema Alterations
You can alter a table’s schema in the following ways:

• Rename the table

• Rename, add, or drop non-primary key columns

• Add and drop range partitions

Multiple alteration steps can be combined in a single transactional operation.

Schema Design Limitations
Kudu currently has some known limitations that may factor into schema design. For a complete list, see Apache Kudu
Schema Design and Usage Limitations on page 36.

Apache Kudu User Guide | 87

Apache Kudu Schema Design



Apache Kudu Transaction Semantics

This is a brief introduction to Kudu’s transaction and consistency semantics. Kudu's core philosophy is to provide
transactions with simple, strong semantics, without sacrificing performance or the ability to tune to different
requirements. Kudu’s transactional semantics and architecture are inspired by state-of-the-art systems such as Spanner
and Calvin. For an in-depth technical exposition of what is mentioned here, see the technical report.

Kudu currently allows the following operations:

• Scans are read operations that can traverse multiple tablets and read information with some consistency or
correctness guarantees. Scans can also perform time-travel reads. That is, you can set a scan timestamp from the
past and get back results that reflect the state of the storage engine at that point in time.

Write operations are sets of rows to be inserted, updated, or deleted in the storage engine, in a single tablet with
multiple replicas. Write operations do not have separate "read sets", that is, they do not scan existing data before
performing the write. Each write is only concerned with the previous state of the rows that are about to change.
Writes are not "committed" explicitly by the user. Instead, they are committed automatically by the system, after
completion.

While Kudu is designed to eventually be fully ACID (Atomic, Consistent, Isolated, Durable), multi-tablet transactions
have not yet been implemented. As such, the following discussion focuses on single-tablet write operations, and only
briefly touches multi-tablet reads.

Single Tablet Write Operations
Kudu employs Multiversion Concurrency Control (MVCC) and the Raft consensus algorithm. Each write operation in
Kudu must go through the following order of operations:

1. The tablet's leader acquires all locks for the rows that it will change.
2. The leader assigns the write a timestamp before the write is submitted for replication. This timestamp will be the

write’s tag in MVCC.
3. After a majority of replicas have acknowledged the write, the rows are changed.
4. After the changes are complete, they are made visible to concurrent writes and reads, atomically.

All replicas of a tablet observe the same process. Therefore, if a write operation is assigned timestamp n, and changes
row x, a second write operation at timestampm > n is guaranteed to see the new value of x.

This strict ordering of lock acquisition and timestamp assignment is enforced to be consistent across all replicas of a
tablet through consensus. Therefore, write operations are ordered with regard to clock-assigned timestamps, relative
to other writes in the same tablet. In other words, writes have strict-serializable semantics.

In case of multi-row write operations, while they are Isolated and Durable in an ACID sense, they are not yet fully
Atomic. The failure of a single write in a batch operation will not roll back the entire operation, but produce per-row
errors.

Writing to Multiple Tablets
Kudu does not support transactions that span multiple tablets. However, consistent snapshot reads are possible (with
caveats, as explained below). Writes from a Kudu client are optionally buffered in memory until they are flushed and
sent to the tablet server. When a client’s session is flushed, the rows for each tablet are batched together, and sent
to the tablet server which hosts the leader replica of the tablet. Since there are no inter-tablet transactions, each of
these batches represents a single, independent write operation with its own timestamp. However, the client API
provides the option to impose some constraints on the assigned timestamps and on how writes to different tablets
are observed by clients.

88 | Apache Kudu User Guide

Apache Kudu Transaction Semantics

https://research.google.com/archive/spanner.html
http://dl.acm.org/citation.cfm?doid=2213836.2213838
http://users.ece.utexas.edu/%7Egarg/pdslab/david/hybrid-time-tech-report-01.pdf


Kudu was designed to be externally consistent, that is, preserving consistency even when operations span multiple
tablets and even multiple data centers. In practice this means that if a write operation changes item x at tablet A, and
a following write operation changes item y at tablet B, you might want to enforce that if the change to y is observed,
the change to xmust also be observed. There are many examples where this can be important. For example, if Kudu
is storing clickstreams for further analysis, and two clicks follow each other but are stored in different tablets, subsequent
clicks should be assigned subsequent timestamps so that the causal relationship between them is captured.

• CLIENT_PROPAGATED Consistency

Kudu’s default external consistency mode is called CLIENT_PROPAGATED. This mode causes writes from a single
client to be automatically externally consistent. In the clickstream scenario above, if the two clicks are submitted
by different client instances, the application must manually propagate timestamps from one client to the other
for the causal relationship to be captured. Timestamps between clients a and b can be propagated as follows:

Java Client

Call AsyncKuduClient#getLastPropagatedTimestamp() on client a, propagate the timestamp to client b,
and call AsyncKuduClient#setLastPropagatedTimestamp() on client b.

C++ Client

Call KuduClient::GetLatestObservedTimestamp() on client a, propagate the timestamp to client b, and
call KuduClient::SetLatestObservedTimestamp() on client b.

• COMMIT_WAIT Consistency

Kudu also has an experimental implementation of an external consistency model (used in Google’s Spanner),
called COMMIT_WAIT. COMMIT_WAITworks by tightly synchronizing the clocks on all machines in the cluster. Then,
when a write occurs, timestamps are assigned and the results of the write are not made visible until enough time
has passed so that no other machine in the cluster could possibly assign a lower timestamp to a following write.

When using this mode, the latency of writes is tightly tied to the accuracy of clocks on all the cluster hosts, and
using this mode with loose clock synchronization causes writes to either take a long time to complete, or even
time out.

The COMMIT_WAIT consistency mode may be selected as follows:

Java Client

Call KuduSession#setExternalConsistencyMode(ExternalConsistencyMode.COMMIT_WAIT)

C++ Client

Call KuduSession::SetExternalConsistencyMode(COMMIT_WAIT)

Warning:

COMMIT_WAIT consistency is an experimental feature. It may return incorrect results, exhibit
performance issues, or negatively impact cluster stability. Its use in production environments is
discouraged.

Read Operations (Scans)
Scans are read operations performed by clients that may span one or more rows across one or more tablets. When a
server receives a scan request, it takes a snapshot of the MVCC state and then proceeds in one of two ways depending
on the read mode selected by the user. The mode may be selected as follows:

Java Client

Call KuduScannerBuilder#setReadMode(…)

Apache Kudu User Guide | 89

Apache Kudu Transaction Semantics



C++ Client

Call KuduScanner::SetReadMode()

The following modes are available in both clients:

READ_LATEST

This is the default readmode. The server takes a snapshot of theMVCC state and proceedswith the read immediately.
Reads in this mode only yield 'Read Committed' isolation.

READ_AT_SNAPSHOT

In this read mode, scans are consistent and repeatable. A timestamp for the snapshot is selected either by the
server, or set explicitly by theuser throughKuduScanner::SetSnapshotMicros(). Explicitly setting the timestamp
is recommended.

The server waits until this timestamp is 'safe'; that is, until all write operations that have a lower timestamp have
completed and are visible). This delay, coupled with an external consistency method, will eventually allow Kudu to
have full strict-serializable semantics for reads andwrites. However, this is still a work in progress and some
anomalies are still possible. Only scans in this mode can be fault-tolerant.

Selecting between read modes requires balancing the trade-offs and making a choice that fits your workload. For
instance, a reporting application that needs to scan the entire database might need to perform careful accounting
operations, so that scan may need to be fault-tolerant, but probably doesn’t require a to-the-microsecond up-to-date
view of the database. In that case, youmight choose READ_AT_SNAPSHOT and select a timestamp that is a few seconds
in the past when the scan starts. On the other hand, a machine learning workload that is not ingesting the whole data
set and is already statistical in nature might not require the scan to be repeatable, so you might choose READ_LATEST
instead.

Known Issues and Limitations
There are several gaps and corner cases that currently prevent Kudu frombeing strictly-serializable in certain situations.

Reads (Scans)

Support for COMMIT_WAIT is experimental and requires careful tuning of the time-synchronization protocol, such as
NTP (Network Time Protocol). Its use in production environments is discouraged.

Recommendation

If external consistency is a requirement and you decide to use COMMIT_WAIT, the time-synchronization protocol
needs to be tuned carefully. Each transaction will wait 2x the maximum clock error at the time of execution, which
is usually in the 100 msec. to 1 sec. range with the default settings, maybe more. Thus, transactions would take at
least 200 msec. to 2 sec. to complete when using the default settings and may even time out.

• A local server should be used as a time server.We’ve performed experiments using the default NTP time source
available in a Google Compute Engine data center and were able to obtain a reasonable tight max error bound,
usually varying between 12-17 milliseconds.

• The following parameters should be adjusted in /etc/ntp.conf to tighten the maximum error:

– server my_server.org iburst minpoll 1 maxpoll 8

– tinker dispersion 500

– tinker allan 0

Writes

• On a leader change, READ_AT_SNAPSHOT scans at a snapshot whose timestamp is beyond the last write, may
yield non-repeatable reads (see KUDU-1188).

90 | Apache Kudu User Guide

Apache Kudu Transaction Semantics

https://issues.apache.org/jira/browse/KUDU-1188


Recommendation

If repeatable snapshot reads are a requirement, use READ_AT_SNAPSHOTwith a timestamp that is slightly in the
past (between 2-5 seconds, ideally). This will circumvent the anomaly described above. Even when the anomaly
has been addressed, back-dating the timestamp will always make scans faster, since they are unlikely to block.

• Impala scans are currently performed as READ_LATEST and have no consistency guarantees.

• In AUTO_BACKGROUND_FLUSHmode, or when using "async" flushingmechanisms, writes applied to a single client
session may get reordered due to the concurrency of flushing the data to the server. This is particularly noticeable
if a single row is quickly updated with different values in succession. This phenomenon affects all client API
implementations. Workarounds are described in the respective API documentation for FlushMode or
AsyncKuduSession. See KUDU-1767.

Apache Kudu User Guide | 91

Apache Kudu Transaction Semantics

https://issues.apache.org/jira/browse/KUDU-1767


Apache Kudu Background Maintenance Tasks

Kudu relies on running background tasks for many important maintenance activities. These tasks include flushing data
from memory to disk, compacting data to improve performance, freeing up disk space, and more.

Maintenance Manager

Themaintenancemanager schedules and runs background tasks. At any given point in time, themaintenancemanager
is prioritizing the next task based on improvements needed at that moment, such as relieving memory pressure,
improving read performance, or freeing up disk space. The number of worker threads dedicated to running background
tasks can be controlled by setting --maintenance_manager_num_threads.

Flushing Data to Disk

Flushing data from memory to disk relieves memory pressure and can improve read performance by switching from
a write-optimized, row-oriented in-memory format in the MemRowSet, to a read-optimized, column-oriented format
on disk.

Background tasks that flush data include FlushMRSOp and FlushDeltaMemStoresOp. The metrics associated with
these operations have the prefix flush_mrs and flush_dms, respectively.

Compacting On-disk Data

Kudu constantly performs several compaction tasks in order to maintain consistent read and write performance over
time.

• A merging compaction, which combines multiple DiskRowSets together into a single DiskRowSet, is run by
CompactRowSetsOp.

• Kudu also runs two types of delta store compaction operations: MinorDeltaCompactionOp and
MajorDeltaCompactionOp.

For more information on what these compaction operations do, see the Kudu Tablet design document.

The metrics associated with these tasks have the prefix compact_rs, delta_minor_compact_rs, and
delta_major_compact_rs, respectively.

Write-ahead Log Garbage Collection

Kudu maintains a write-ahead log (WAL) per tablet that is split into discrete fixed-size segments. A tablet periodically
rolls the WAL to a new log segment when the active segment reaches a size threshold (configured by the
--log_segment_size_mb property). In order to save disk space and decrease startup time, a background task called
LogGCOp attempts to garbage-collect (GC) old WAL segments by deleting them from disk once it is determined that
they are no longer needed by the local node for durability.

The metrics associated with this background task have the prefix log_gc.

Tablet History Garbage Collection and the Ancient History Mark

Kudu uses a multiversion concurrency control (MVCC) mechanism to ensure that snapshot scans can proceed isolated
from new changes to a table. Therefore, periodically, old historical data should be garbage-collected (removed) to free
up disk space. While Kudu never removes rows or data that are visible in the latest version of the data, Kudu does
remove records of old changes that are no longer visible.

The specific threshold in time (in the past) beyond which historical MVCC data becomes inaccessible and is free to be
deleted is called the ancient history mark (AHM). The AHM can be configured by setting the
--tablet_history_max_age_sec property.

There are two background tasks that remove historical MVCC data older than the AHM:

92 | Apache Kudu User Guide

Apache Kudu Background Maintenance Tasks

https://github.com/apache/kudu/blob/master/docs/design-docs/tablet.md


• The one that runs the merging compaction, called CompactRowSetsOp (see above).
• A separate background task deletes old undo delta blocks, called UndoDeltaBlockGCOp. Running

UndoDeltaBlockGCOp reduces disk space usage in all workloads, but particularly in those with a higher volume
of updates or upserts. The metrics associated with this background task have the prefix undo_delta_block.

Apache Kudu User Guide | 93

Apache Kudu Background Maintenance Tasks



Troubleshooting Apache Kudu

This guide covers basic Apache Kudu troubleshooting information. Formore details, see the official Kudu documentation
for troubleshooting.

Issues Starting or Restarting the Master or Tablet Server

Error during hole punch test

Kudu requires hole punching capabilities in order to be efficient. Support for hole punching depends on your operating
system kernel version and local filesystem. On Linux, hole punching is the use of the fallocate() system call with
the FALLOC_FL_PUNCH_HOLE option set.

• RHEL or CentOS 6.4 or later, patched to kernel version of 2.6.32-358 or later. Unpatched RHEL or CentOS 6.4 does
not include a kernel with support for hole punching.

• Ubuntu 14.04 includes version 3.13 of the Linux kernel, which supports hole punching.
• Newer versions of the EXT4 or XFS filesystems support hole punching, but EXT3 does not. Older versions of XFS

that do not support hole punching return a EOPNOTSUPP (operation not supported) error. Older versions of either
EXT4 or XFS that do not support hole punching cause Kudu to emit an error message such as the following and to
fail to start:

Error during hole punch test. The log block manager requires a
filesystem with hole punching support such as ext4 or xfs. On el6,
kernel version 2.6.32-358 or newer is required. To run without hole
punching (at the cost of some efficiency and scalability), reconfigure
Kudu with --block_manager=file. Refer to the Kudu documentation for more
details. Raw error message follows.

• Without hole punching support, the log block manager will never delete blocks and progressively occupy even
more space on disk, which makes it unsafe to use.

• If you can’t use hole punching in your environment, you can still try Kudu. Enable the file block manager instead
of the log block manager by adding the --block_manager=file flag to the commands you use to start the
master and tablet servers. Note that the file block manager does not scale as well as the log block manager, and
should only be used for small-scale deployments.

Clock Synchronization Issues

The clock on each Kudu master and tablet server daemon must be synchronized using Network Time Protocol (NTP).
If NTP is not installed or is not running, you may see errors such as the following:

I0929 10:00:26.570979 21371 master_main.cc:52] Initializing master server...
F0929 10:00:26.571107 21371 master_main.cc:53] Check failed: _s.ok() Bad status: Service
 unavailable: Clock is not synchronized:
  Error reading clock. Clock considered unsynchronized. Errno: Invalid argument

let_server_main.cc:48] Initializing tablet server...
F0929 10:00:26.572041 21370 tablet_server_main.cc:49] Check failed: _s.ok() Bad status:
 Service unavailable: Clock is not synchronized:
  Error reading clock. Clock considered unsynchronized. Errno: Success

To resolve such errors, make sure that NTP is installed on each master and tablet server, and that all NTP processes
synchronize to the same time source.

• To install NTP, use the command appropriate for your operating system:

94 | Apache Kudu User Guide

Troubleshooting Apache Kudu

http://kudu.apache.org/docs/troubleshooting.html
http://kudu.apache.org/docs/troubleshooting.html


CommandOS

sudo apt-get install ntpDebian/Ubuntu

sudo yum install ntpRHEL/CentOS

• If NTP is installed but the clock is reported as unsynchronized, Kudu will not start, and will emit a message such
as:

F0924 20:24:36.336809 14550 hybrid_clock.cc:191 Couldn't get the current time: Clock 
unsynchronized. Status: Service unavailable: Error reading clock. Clock considered 
unsynchronized.

You can monitor clock synchronization status by running the ntptime command. The relevant value is what is
reported for maximum error. Note that NTP requires a network connection and may take a few minutes to
synchronize the clock. In some cases a spotty network connectionmaymakeNTP report the clock as unsynchronized.
A common, though temporary, workaround for this is to restart NTP with one of the following commands.

CommandOS

sudo service ntp restartDebian/Ubuntu

sudo /etc/init.d/ntpd restartRHEL/CentOS

• In addition to the clocks being synchronized, the maximum clock error (not to bemistaken with the estimated
error) must be set to a value relevant to your deployment. The default value is 10 seconds, but it can be configured
using the --max_clock_sync_error_usec flag.

If NTP is installed and synchronized, but the maximum clock error is too high, you will see a message such as:

Sep 17, 8:13:09.873 PM FATAL hybrid_clock.cc:196 Couldn't get the current time: Clock 
synchronized, but error: 11130000, is past the maximum allowable error: 10000000

or

Sep 17, 8:32:31.135 PM FATAL tablet_server_main.cc:38 Check failed: _s.ok() Bad status:
 Service unavailable: Cannot initialize clock: Cannot initialize HybridClock. Clock 
synchronized but error was too high (11711000 us).

If NTP reports the clock as synchronized, but the maximum error is consistently too high, you can increase the
threshold to a higher value by setting the max_clock_sync_error_usec flag. For example, to increase the
maximum error to 20 seconds, set the flag as follows: --max_clock_sync_error_usec=20000000.

Breakpad Minidumps for Kudu
Kudu uses the Google Breakpad library to generate a minidump whenever Kudu experiences a crash. A minidump file
contains important debugging information about the process that crashed, including shared libraries loaded and their
versions, a list of threads running at the time of the crash, the state of the processor registers and a copy of the stack
memory for each thread, and CPU and operating system version information. These minidumps are typically only a
few MB in size and are generated even if core dump generation is disabled. Currently, generating minidumps is only
possible on Linux deployments.

By default, Kudu stores itsminidumps in a subdirectory of the configured glog directory called minidumps. This location
can be customized by setting the --minidump_path flag. Kudu will retain only a certain number of minidumps before
deleting the older ones, in an effort to avoid filling up the diskwithminidump files. Themaximumnumber ofminidumps
that will be retained can be controlled by setting the --max_minidumps gflag.

Apache Kudu User Guide | 95

Troubleshooting Apache Kudu

https://chromium.googlesource.com/breakpad/breakpad/


Minidumps contain information specific to the binary that created them and are therefore not useful without access
to the exact binary that crashed, or a very similar binary.

Kudu developers can access the minidump tools in their development environment because they are installed as part
of the Kudu thirdparty build. They can be found in the Kudu development environment under uninstrumented/bin.
For example, thirdparty/installed/uninstrumented/bin/minidump-2-core.

If minidumps are enabled, it is possible to force Kudu to create a minidump without killing the process. To do that,
send a USR1 signal to the kudu-tserver or kudu-master process. For example:

sudo pkill -USR1 kudu-tserver

Viewing the minidump stack trace with GDB

Although a minidump contains no heap information, it does contain thread and stack information. You can convert a
minidump to a core file to view it with GDB.

To convert the minidump (.dmp file) to a core file:

minidump-2-core -o 02cb4a97-ee37-6454-73a9d9cb-590c7dde.core \
02cb4a97-ee37-6454-73a9d9cb-590c7dde.dmp

To view the core file with GDB (on a parcel deployment):

gdb /opt/cloudera/parcels/KUDU/lib/kudu/sbin-release/kudu-master \
-s /opt/cloudera/parcels/KUDU/lib/debug/usr/lib/kudu/sbin-release/kudu-master.debug \
02cb4a97-ee37-6454-73a9d9cb-590c7dde.core

For more information, see Getting started with Breakpad and Chrome developer tips for minidump file debugging.

Troubleshooting Performance Issues

Kudu Tracing

The Kudu master and tablet server daemons include built-in support for tracing based on the open source Chromium
Tracing framework. You can use tracing to diagnose latency issues or other problems on Kudu servers.

Accessing the Tracing Web Interface

The tracing interface is part of the embedded web server in each of the Kudu daemons, and can be accessed using a
web browser. Note that while the interface has been known to work in recent versions of Google Chrome, other
browsers may not work as expected.

URLDaemon

<tablet-server-1.example.com>:8050/tracing.htmlTablet Server

<master-1.example.com>:8051/tracing.htmlMaster

Saving Traces

After you have collected traces, you can save these traces as JSON files by clicking Save. To load and analyze a saved
JSON file, click Load and choose the file.

96 | Apache Kudu User Guide

Troubleshooting Apache Kudu

https://chromium.googlesource.com/breakpad/breakpad/%2B/master/docs/getting_started_with_breakpad.md
https://chromium.googlesource.com/chromium/src/%2B/master/docs/linux_minidump_to_core.md
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool


RPC Timeout Traces

If client applications are experiencing RPC timeouts, the Kudu tablet server WARNING level logs should contain a log
entry which includes an RPC-level trace. For example:

W0922 00:56:52.313848 10858 inbound_call.cc:193] Call 
kudu.consensus.ConsensusService.UpdateConsensus
from 192.168.1.102:43499 (request call id 3555909) took 1464ms (client timeout 1000).
W0922 00:56:52.314888 10858 inbound_call.cc:197] Trace:
0922 00:56:50.849505 (+     0us) service_pool.cc:97] Inserting onto call queue
0922 00:56:50.849527 (+    22us) service_pool.cc:158] Handling call
0922 00:56:50.849574 (+    47us) raft_consensus.cc:1008] Updating replica for 2 ops
0922 00:56:50.849628 (+    54us) raft_consensus.cc:1050] Early marking committed up to
 term: 8 index: 880241
0922 00:56:50.849968 (+   340us) raft_consensus.cc:1056] Triggering prepare for 2 ops
0922 00:56:50.850119 (+   151us) log.cc:420] Serialized 1555 byte log entry
0922 00:56:50.850213 (+    94us) raft_consensus.cc:1131] Marking committed up to term:
 8 index: 880241
0922 00:56:50.850218 (+     5us) raft_consensus.cc:1148] Updating last received op as 
term: 8 index: 880243
0922 00:56:50.850219 (+     1us) raft_consensus.cc:1195] Filling consensus response to
 leader.
0922 00:56:50.850221 (+     2us) raft_consensus.cc:1169] Waiting on the replicates to 
finish logging
0922 00:56:52.313763 (+1463542us) raft_consensus.cc:1182] finished
0922 00:56:52.313764 (+     1us) raft_consensus.cc:1190] UpdateReplicas() finished
0922 00:56:52.313788 (+    24us) inbound_call.cc:114] Queueing success response

These traces can indicate which part of the request was slow. Make sure you include them when filing bug reports
related to RPC latency outliers.

Kernel Stack Watchdog Traces

Each Kudu server process has a background thread called the Stack Watchdog, which monitors other threads in the
server in case they are blocked for longer-than-expected periods of time. These traces can indicate operating system
issues or bottle-necked storage.

When the watchdog thread identifies a case of thread blockage, it logs an entry in the WARNING log as follows:

W0921 23:51:54.306350 10912 kernel_stack_watchdog.cc:111] Thread 10937 stuck at 
/data/kudu/consensus/log.cc:505 for 537ms:
Kernel stack:
[<ffffffffa00b209d>] do_get_write_access+0x29d/0x520 [jbd2]
[<ffffffffa00b2471>] jbd2_journal_get_write_access+0x31/0x50 [jbd2]
[<ffffffffa00fe6d8>] __ext4_journal_get_write_access+0x38/0x80 [ext4]
[<ffffffffa00d9b23>] ext4_reserve_inode_write+0x73/0xa0 [ext4]
[<ffffffffa00d9b9c>] ext4_mark_inode_dirty+0x4c/0x1d0 [ext4]
[<ffffffffa00d9e90>] ext4_dirty_inode+0x40/0x60 [ext4]
[<ffffffff811ac48b>] __mark_inode_dirty+0x3b/0x160
[<ffffffff8119c742>] file_update_time+0xf2/0x170
[<ffffffff8111c1e0>] __generic_file_aio_write+0x230/0x490
[<ffffffff8111c4c8>] generic_file_aio_write+0x88/0x100
[<ffffffffa00d3fb1>] ext4_file_write+0x61/0x1e0 [ext4]
[<ffffffff81180f5b>] do_sync_readv_writev+0xfb/0x140
[<ffffffff81181ee6>] do_readv_writev+0xd6/0x1f0
[<ffffffff81182046>] vfs_writev+0x46/0x60
[<ffffffff81182102>] sys_pwritev+0xa2/0xc0
[<ffffffff8100b072>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff

User stack:
    @       0x3a1ace10c4  (unknown)
    @          0x1262103  (unknown)
    @          0x12622d4  (unknown)
    @          0x12603df  (unknown)
    @           0x8e7bfb  (unknown)
    @           0x8f478b  (unknown)
    @           0x8f55db  (unknown)
    @          0x12a7b6f  (unknown)
    @       0x3a1b007851  (unknown)

Apache Kudu User Guide | 97

Troubleshooting Apache Kudu



    @       0x3a1ace894d  (unknown)
    @              (nil)  (unknown)

These traces can be useful for diagnosing root-cause latency issues in Kudu especiallywhen they are caused by underlying
systems such as disk controllers or file systems.

98 | Apache Kudu User Guide

Troubleshooting Apache Kudu



Cloudera Manager Metrics for Kudu

The following topics list the metrics collected by Cloudera Manager when a Kudu service is managed by Cloudera
Manager. For more information about metrics in Cloudera Manager, see Cloudera Manager Metrics and Metric
Aggregation.

Kudu Metrics
In addition to these base metrics, many aggregate metrics are available. If an entity type has parents defined, you can
formulate all possible aggregate metrics using the formula base_metric_across_parents.

In addition, metrics for aggregate totals can be formed by adding the prefix total_ to the front of the metric name.

Use the type-ahead feature in the Cloudera Manager chart browser to find the exact aggregate metric name, in case
the plural form does not end in "s".

For example, the following metric names may be valid for Kudu:

• alerts_rate_across_clusters

• total_alerts_rate_across_clusters

Some metrics, such as alerts_rate, apply to nearly every metric context. Others only apply to a certain service or
role.

CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5clusterevents per
second

The number of alerts.alerts_rate

CDH 4, CDH 5clusterevents per
second

The number of critical events.events_critical_rate

CDH 4, CDH 5clusterevents per
second

Thenumber of important events.events_important_rate

CDH 4, CDH 5clusterevents per
second

The number of informational
events.

events_informational_rate

CDH 4, CDH 5clusterseconds per
second

Percentage of Time with Bad
Health

health_bad_rate

CDH 4, CDH 5clusterseconds per
second

Percentage of Time with
Concerning Health

health_concerning_rate

CDH 4, CDH 5clusterseconds per
second

Percentage of Time with
Disabled Health

health_disabled_rate

CDH 4, CDH 5clusterseconds per
second

Percentage of Time with Good
Health

health_good_rate

CDH 4, CDH 5clusterseconds per
second

Percentage of Time with
Unknown Health

health_unknown_rate

Kudu Replica Metrics
In addition to these base metrics, many aggregate metrics are available. If an entity type has parents defined, you can
formulate all possible aggregate metrics using the formula base_metric_across_parents.

In addition, metrics for aggregate totals can be formed by adding the prefix total_ to the front of the metric name.

Apache Kudu User Guide | 99

Cloudera Manager Metrics for Kudu

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_metrics.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_metric_aggregation.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_metric_aggregation.html


Use the type-ahead feature in the Cloudera Manager chart browser to find the exact aggregate metric name, in case
the plural form does not end in "s".

For example, the following metric names may be valid for Kudu Replica:

• kudu_all_transactions_inflight_across_clusters

• total_kudu_all_transactions_inflight_across_clusters

Some metrics, such as alerts_rate, apply to nearly every metric context. Others only apply to a certain service or
role.

For more information about metrics, see Cloudera Manager Metrics and Metric Aggregation.

CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

transactionsNumberof transactions currently
in-flight, including any type.

kudu_all_transactions_inflight

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

transactionsNumber of alter schema
transactions currently in-flight

kudu_alter_schema_transactions_inflight

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Tracks the number of bloom
filter lookups performed by each
operation. A single operation

kudu_bloom_lookups_per_op_rate

kudu_table,
may perform several bloom filter kudu_tablet,

racklookups if the tablet is not fully
compacted. High frequency of
high values may indicate that
compaction is falling behind. This
is the total number of recorded
samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.probes
per second

Tracks the number of bloom
filter lookups performed by each
operation. A single operation

kudu_bloom_lookups_per_op_sum_rate

kudu_table,
may perform several bloom filter kudu_tablet,

racklookups if the tablet is not fully
compacted. High frequency of
high values may indicate that
compaction is falling behind. This
is the total sum of recorded
samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.probes
per second

Number of times a bloom filter
was consulted

kudu_bloom_lookups_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

bytes per
second

Amount of data that has been
flushed to disk by this tablet.

kudu_bytes_flushed_rate

kudu_table,
kudu_tablet,
rack

100 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_metrics.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_metric_aggregation.html


CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Time spent waiting for
COMMIT_WAIT external
consistencywrites for this tablet.

kudu_commit_wait_duration_rate

kudu_table,
This is the total number of
recorded samples.

kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.microseconds
per second

Time spent waiting for
COMMIT_WAIT external
consistencywrites for this tablet.

kudu_commit_wait_duration_sum_rate

kudu_table,
This is the total sum of recorded
samples.

kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Time spent compactingRowSets.
This is the total number of
recorded samples.

kudu_compact_rs_duration_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.milliseconds
per second

Time spent compactingRowSets.
This is the total sum of recorded
samples.

kudu_compact_rs_duration_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

operationsNumber of RowSet compactions
currently running.

kudu_compact_rs_running

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Tracks the number of delta file
lookups performed by each
operation. A single operation

kudu_delta_file_lookups_per_op_rate

kudu_table,
may perform several delta file kudu_tablet,

racklookups if the tablet is not fully
compacted. High frequency of
high values may indicate that
compaction is falling behind. This
is the total number of recorded
samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.probes
per second

Tracks the number of delta file
lookups performed by each
operation. A single operation

kudu_delta_file_lookups_per_op_sum_rate

kudu_table,
may perform several delta file kudu_tablet,

racklookups if the tablet is not fully
compacted. High frequency of
high values may indicate that
compaction is falling behind. This
is the total sum of recorded
samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.probes
per second

Number of times a delta file was
consulted

kudu_delta_file_lookups_rate

kudu_table,
kudu_tablet,
rack

Apache Kudu User Guide | 101

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Seconds spent major delta
compacting. This is the total
number of recorded samples.

kudu_delta_major_compact_rs_duration_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

seconds per
second

Seconds spent major delta
compacting. This is the total sum
of recorded samples.

kudu_delta_major_compact_rs_duration_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

operationsNumber of delta major
compactions currently running.

kudu_delta_major_compact_rs_running

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Time spent minor delta
compacting. This is the total
number of recorded samples.

kudu_delta_minor_compact_rs_duration_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.milliseconds
per second

Time spent minor delta
compacting. This is the total sum
of recorded samples.

kudu_delta_minor_compact_rs_duration_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

operationsNumber of delta minor
compactions currently running.

kudu_delta_minor_compact_rs_running

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Time spent flushing
DeltaMemStores. This is the total
number of recorded samples.

kudu_flush_dms_duration_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.milliseconds
per second

Time spent flushing
DeltaMemStores. This is the total
sum of recorded samples.

kudu_flush_dms_duration_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

operationsNumber of delta memstore
flushes currently running.

kudu_flush_dms_running

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Time spent flushing
MemRowSets. This is the total
number of recorded samples.

kudu_flush_mrs_duration_rate

kudu_table,

102 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.milliseconds
per second

Time spent flushing
MemRowSets. This is the total
sum of recorded samples.

kudu_flush_mrs_duration_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

operationsNumber of MemRowSet flushes
currently running.

kudu_flush_mrs_running

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

requests per
second

Numberof RPC requests rejected
due to memory pressure while
FOLLOWER.

kudu_follower_memory_pressure_rejections_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

operationsNumber of operations in the
peer's queue ack'd by aminority
of peers.

kudu_in_progress_ops

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.rows
per second

Number of inserts which failed
because the key already existed

kudu_insertions_failed_dup_key_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Tracks the number of key file
lookups performed by each
operation. A single operation

kudu_key_file_lookups_per_op_rate

kudu_table,
may perform several key file kudu_tablet,

racklookups if the tablet is not fully
compacted and if bloom filters
are not effectively culling
lookups. This is the total number
of recorded samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.probes
per second

Tracks the number of key file
lookups performed by each
operation. A single operation

kudu_key_file_lookups_per_op_sum_rate

kudu_table,
may perform several key file kudu_tablet,

racklookups if the tablet is not fully
compacted and if bloom filters
are not effectively culling
lookups. This is the total sum of
recorded samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.probes
per second

Number of times a key cfile was
consulted

kudu_key_file_lookups_rate

kudu_table,
kudu_tablet,
rack

Apache Kudu User Guide | 103

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

requests per
second

Numberof RPC requests rejected
due to memory pressure while
LEADER.

kudu_leader_memory_pressure_rejections_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Microseconds spent on
appending to the log segment
file. This is the total number of
recorded samples.

kudu_log_append_latency_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.microseconds
per second

Microseconds spent on
appending to the log segment
file. This is the total sum of
recorded samples.

kudu_log_append_latency_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

bytes per
second

Number of bytes logged since
service start

kudu_log_bytes_logged_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

operationsNumber of operations in the log
cache.

kudu_log_cache_num_ops

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

bytesAmount of memory in use for
caching the local log.

kudu_log_cache_size

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Number of log entry batches in
a group commit group. This is
the total number of recorded
samples.

kudu_log_entry_batches_per_group_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

requests per
second

Number of log entry batches in
a group commit group. This is
the total sum of recorded
samples.

kudu_log_entry_batches_per_group_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Time spent garbage collecting
the logs. This is the total number
of recorded samples.

kudu_log_gc_duration_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.milliseconds
per second

Time spent garbage collecting
the logs. This is the total sum of
recorded samples.

kudu_log_gc_duration_sum_rate

kudu_table,

104 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

operationsNumber of log GC operations
currently running.

kudu_log_gc_running

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Microseconds spent on
committing an entire group. This
is the total number of recorded
samples.

kudu_log_group_commit_latency_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.microseconds
per second

Microseconds spent on
committing an entire group. This
is the total sum of recorded
samples.

kudu_log_group_commit_latency_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

bytes per
second

Data read from the WAL since
tablet start

kudu_log_reader_bytes_read_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

entries per
second

Number of entries read from the
WAL since tablet start

kudu_log_reader_entries_read_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Microseconds spent reading log
entry batches. This is the total
number of recorded samples.

kudu_log_reader_read_batch_latency_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

bytes per
second

Microseconds spent reading log
entry batches. This is the total
sum of recorded samples.

kudu_log_reader_read_batch_latency_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Microseconds spent on rolling
over to a new log segment file.
This is the total number of
recorded samples.

kudu_log_roll_latency_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.microseconds
per second

Microseconds spent on rolling
over to a new log segment file.
This is the total sum of recorded
samples.

kudu_log_roll_latency_sum_rate

kudu_table,
kudu_tablet,
rack

Apache Kudu User Guide | 105

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Microseconds spent on
synchronizing the log segment
file. This is the total number of
recorded samples.

kudu_log_sync_latency_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.microseconds
per second

Microseconds spent on
synchronizing the log segment
file. This is the total sum of
recorded samples.

kudu_log_sync_latency_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

operationsNumber of operations in the
leader queue ack'd by amajority

kudu_majority_done_ops

kudu_table,but not all peers. This metric is
always zero for followers. kudu_tablet,

rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

bytesSize of this tablet's memrowsetkudu_memrowset_size

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.probes
per second

Number of times a MemRowSet
was consulted.

kudu_mrs_lookups_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

bytesSize of this tablet on disk.kudu_on_disk_size

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Number of operationswaiting to
be prepared within this tablet.
High queue lengths indicate that

kudu_op_prepare_queue_length_rate

kudu_table,
the server is unable to process kudu_tablet,

rackoperations as fast as they are
being written to theWAL. This is
the total number of recorded
samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

tasks per
second

Number of operationswaiting to
be prepared within this tablet.
High queue lengths indicate that

kudu_op_prepare_queue_length_sum_rate

kudu_table,
the server is unable to process kudu_tablet,

rackoperations as fast as they are
being written to theWAL. This is
the total sum of recorded
samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Time that operations spent
waiting in the prepare queue
before being processed. High

kudu_op_prepare_queue_time_rate

kudu_table,
queue times indicate that the

106 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

server is unable to process
operations as fast as they are

kudu_tablet,
rack

being written to theWAL. This is
the total number of recorded
samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.microseconds
per second

Time that operations spent
waiting in the prepare queue
before being processed. High

kudu_op_prepare_queue_time_sum_rate

kudu_table,
queue times indicate that the kudu_tablet,

rackserver is unable to process
operations as fast as they are
being written to theWAL. This is
the total sum of recorded
samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Time that operations spent being
prepared in the tablet. High
values may indicate that the

kudu_op_prepare_run_time_rate

kudu_table,
server is under-provisioned or kudu_tablet,

rackthat operations are experiencing
high contention with one
another for locks. This is the
total number of recorded
samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.microseconds
per second

Time that operations spent being
prepared in the tablet. High
values may indicate that the

kudu_op_prepare_run_time_sum_rate

kudu_table,
server is under-provisioned or kudu_tablet,

rackthat operations are experiencing
high contention with one
another for locks. This is the
total sum of recorded samples.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.unitsCurrent Term of the Raft
Consensus algorithm. This

kudu_raft_term

kudu_table,number increments each time a
leader election is started. kudu_tablet,

rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.rows
per second

Number of row delete
operations performed on this
tablet since service start

kudu_rows_deleted_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.rows
per second

Number of rows inserted into
this tablet since service start

kudu_rows_inserted_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.rows
per second

Number of row update
operations performed on this
tablet since service start

kudu_rows_updated_rate

kudu_table,
kudu_tablet,
rack

Apache Kudu User Guide | 107

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.rows
per second

Number of rows upserted into
this tablet since service start

kudu_rows_upserted_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

bytes per
second

Number of bytes returned by
scanners to clients. This count is
measured after predicates are

kudu_scanner_bytes_returned_rate

kudu_table,
applied and the data is decoded kudu_tablet,

rackfor consumption by clients, and
thus is not a reflection of the
amount of work being done by
scanners.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

bytes per
second

Number of bytes read by scan
requests. This is measured as a
raw count prior to application of

kudu_scanner_bytes_scanned_from_disk_rate

kudu_table,
predicates, deleted data,or kudu_tablet,

rackMVCC-based filtering. Thus, this
is a better measure of actual IO
that has been caused by scan
operations compared to the
Scanner Bytes Returned metric.
Note that this only counts data
that has been flushed to disk,
and does not include data read
from in-memory stores.
However, itincludes both cache
misses and cache hits.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.cells
per second

Number of table cells returned
by scanners to clients. This count
is measured after predicates are

kudu_scanner_cells_returned_rate

kudu_table,
applied, and thus is not a kudu_tablet,

rackreflection of the amount of work
being done by scanners.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.cells
per second

Number of table cells processed
by scan requests. This is
measured as a raw count prior

kudu_scanner_cells_scanned_from_disk_rate

kudu_table,
to application of predicates, kudu_tablet,

rackdeleted data,or MVCC-based
filtering. Thus, this is a better
measure of actual table cells that
have been processed by scan
operations compared to the
Scanner Cells Returned metric.
Note that this only counts data
that has been flushed to disk,
and does not include data read
from in-memory stores.
However, itincludes both cache
misses and cache hits.

108 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.rows
per second

Number of rows returned by
scanners to clients. This count is
measured after predicates are

kudu_scanner_rows_returned_rate

kudu_table,
applied, and thus is not a kudu_tablet,

rackreflection of the amount of work
being done by scanners.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.rows
per second

Number of rows processed by
scan requests. This is measured
as a raw count prior to

kudu_scanner_rows_scanned_rate

kudu_table,
application of predicates, kudu_tablet,

rackdeleted data,or MVCC-based
filtering. Thus, this is a better
measure of actual table rows
that have been processed by
scan operations compared to the
Scanner Rows Returned metric.

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.scanners
per second

Number of scanners which have
been started on this tablet

kudu_scans_started_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Time spent waiting for in-flight
writes to complete for
READ_AT_SNAPSHOT scans. This

kudu_snapshot_read_inflight_wait_duration_rate

kudu_table,
is the total number of recorded
samples.

kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.microseconds
per second

Time spent waiting for in-flight
writes to complete for
READ_AT_SNAPSHOT scans. This

kudu_snapshot_read_inflight_wait_duration_sum_rate

kudu_table,
is the total sum of recorded
samples.

kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

transactions
per second

Number of transactions rejected
because the tablet's transaction
memory limit was reached.

kudu_transaction_memory_pressure_rejections_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Duration of writes to this tablet
with external consistency set to
CLIENT_PROPAGATED. This is the

kudu_write_op_duration_client_propagated_consistency_rate

kudu_table,
total number of recorded
samples.

kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.microseconds
per second

Duration of writes to this tablet
with external consistency set to
CLIENT_PROPAGATED. This is the
total sum of recorded samples.

kudu_write_op_duration_client_propagated_consistency_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

samples per
second

Duration of writes to this tablet
with external consistency set to
COMMIT_WAIT. This is the total
number of recorded samples.

kudu_write_op_duration_commit_wait_consistency_rate

kudu_table,

Apache Kudu User Guide | 109

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

message.units.microseconds
per second

Duration of writes to this tablet
with external consistency set to
COMMIT_WAIT. This is the total
sum of recorded samples.

kudu_write_op_duration_commit_wait_consistency_sum_rate

kudu_table,
kudu_tablet,
rack

CDH 4, CDH 5cluster, kudu,
kudu-kudu_tserver,

transactionsNumber of write transactions
currently in-flight

kudu_write_transactions_inflight

kudu_table,
kudu_tablet,
rack

Tablet Server Metrics
In addition to these base metrics, many aggregate metrics are available. If an entity type has parents defined, you can
formulate all possible aggregate metrics using the formula base_metric_across_parents.

In addition, metrics for aggregate totals can be formed by adding the prefix total_ to the front of the metric name.

Use the type-ahead feature in the Cloudera Manager chart browser to find the exact aggregate metric name, in case
the plural form does not end in "s".

For example, the following metric names may be valid for Tablet Server:

• alerts_rate_across_accumulos

• total_alerts_rate_across_accumulos

Some metrics, such as alerts_rate, apply to nearly every metric context. Others only apply to a certain service or
role.

CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5accumulo,
cluster, rack

events per
second

The number of alerts.alerts_rate

CDH 4, CDH 5accumulo,
cluster, rack

seconds per
second

CPU usage of the role's cgroupcgroup_cpu_system_rate

CDH 4, CDH 5accumulo,
cluster, rack

seconds per
second

User Space CPU usage of the
role's cgroup

cgroup_cpu_user_rate

CDH 4, CDH 5accumulo,
cluster, rack

bytesPage cache usage of the role's
cgroup

cgroup_mem_page_cache

CDH 4, CDH 5accumulo,
cluster, rack

bytesResident memory of the role's
cgroup

cgroup_mem_rss

CDH 4, CDH 5accumulo,
cluster, rack

bytesSwap usage of the role's cgroupcgroup_mem_swap

CDH 4, CDH 5accumulo,
cluster, rack

bytes per
second

Bytes read from all disks by the
role's cgroup

cgroup_read_bytes_rate

CDH 4, CDH 5accumulo,
cluster, rack

ios per secondNumber of read I/O operations
from all disks by the role's
cgroup

cgroup_read_ios_rate

110 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5accumulo,
cluster, rack

bytes per
second

Bytes written to all disks by the
role's cgroup

cgroup_write_bytes_rate

CDH 4, CDH 5accumulo,
cluster, rack

ios per secondNumber of write I/O operations
to all disks by the role's cgroup

cgroup_write_ios_rate

CDH 4, CDH 5accumulo,
cluster, rack

seconds per
second

Total System CPUcpu_system_rate

CDH 4, CDH 5accumulo,
cluster, rack

seconds per
second

Total CPU user timecpu_user_rate

CDH 4, CDH 5accumulo,
cluster, rack

events per
second

The number of critical events.events_critical_rate

CDH 4, CDH 5accumulo,
cluster, rack

events per
second

Thenumber of important events.events_important_rate

CDH 4, CDH 5accumulo,
cluster, rack

events per
second

The number of informational
events.

events_informational_rate

CDH 4, CDH 5accumulo,
cluster, rack

file descriptorsMaximum number of file
descriptors

fd_max

CDH 4, CDH 5accumulo,
cluster, rack

file descriptorsOpen file descriptors.fd_open

CDH 4, CDH 5accumulo,
cluster, rack

seconds per
second

Percentage of Time with Bad
Health

health_bad_rate

CDH 4, CDH 5accumulo,
cluster, rack

seconds per
second

Percentage of Time with
Concerning Health

health_concerning_rate

CDH 4, CDH 5accumulo,
cluster, rack

seconds per
second

Percentage of Time with
Disabled Health

health_disabled_rate

CDH 4, CDH 5accumulo,
cluster, rack

seconds per
second

Percentage of Time with Good
Health

health_good_rate

CDH 4, CDH 5accumulo,
cluster, rack

seconds per
second

Percentage of Time with
Unknown Health

health_unknown_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.scannersNumber of scanners that are
currently active

kudu_active_scanners

CDH 4, CDH 5cluster, kudu,
rack

blocks per
second

Number of blocks evicted from
the cache

kudu_block_cache_evictions_rate

CDH 4, CDH 5cluster, kudu,
rack

blocks per
second

Number of lookups that were
expecting a block that found
one.Use this number instead of

kudu_block_cache_hits_caching_rate

cache_hits when trying to
determine how efficient the
cache is

CDH 4, CDH 5cluster, kudu,
rack

blocks per
second

Number of lookups that found a
block

kudu_block_cache_hits_rate

CDH 4, CDH 5cluster, kudu,
rack

blocks per
second

Number of blocks inserted in the
cache

kudu_block_cache_inserts_rate

CDH 4, CDH 5cluster, kudu,
rack

blocks per
second

Number of blocks looked up
from the cache

kudu_block_cache_lookups_rate

Apache Kudu User Guide | 111

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
rack

blocks per
second

Number of lookups that were
expecting a block that didn't
yield one.Use this number

kudu_block_cache_misses_caching_rate

instead of cache_misses when
trying to determine howefficient
the cache is

CDH 4, CDH 5cluster, kudu,
rack

blocks per
second

Number of lookups that didn't
yield a block

kudu_block_cache_misses_rate

CDH 4, CDH 5cluster, kudu,
rack

bytesMemory consumed by the block
cache

kudu_block_cache_usage

CDH 4, CDH 5cluster, kudu,
rack

blocksNumber of data blocks currently
open for reading

kudu_block_manager_blocks_open_reading

CDH 4, CDH 5cluster, kudu,
rack

blocksNumber of data blocks currently
open for writing

kudu_block_manager_blocks_open_writing

CDH 4, CDH 5cluster, kudu,
rack

bytes per
second

Number of bytes of block data
read since service start

kudu_block_manager_total_bytes_read_rate

CDH 4, CDH 5cluster, kudu,
rack

bytes per
second

Number of bytes of block data
written since service start

kudu_block_manager_total_bytes_written_rate

CDH 4, CDH 5cluster, kudu,
rack

blocks per
second

Number of data blocks opened
for reading since service start

kudu_block_manager_total_readable_blocks_rate

CDH 4, CDH 5cluster, kudu,
rack

blocks per
second

Number of data blocks opened
for writing since service start

kudu_block_manager_total_writable_blocks_rate

CDH 4, CDH 5cluster, kudu,
rack

hits per secondNumber of codegen cache hits
since start

kudu_code_cache_hits_rate

CDH 4, CDH 5cluster, kudu,
rack

queries per
second

Number of codegen cache
queries (hits +misses) since start

kudu_code_cache_queries_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.milliseconds
per second

Total system CPU time of the
process

kudu_cpu_stime_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.milliseconds
per second

Total user CPU time of the
process

kudu_cpu_utime_rate

CDH 4, CDH 5cluster, kudu,
rack

bytesNumber of bytes used by the
application. Thiswill not typically
match thememory use reported

kudu_generic_current_allocated_bytes

by the OS, because it does not
include TCMalloc overhead or
memory fragmentation.

CDH 4, CDH 5cluster, kudu,
rack

bytesBytes of system memory
reserved by TCMalloc.

kudu_generic_heap_size

CDH 4, CDH 5cluster, kudu,
rack

messages per
second

Number of ERROR-level log
messages emitted by the
application.

kudu_glog_error_messages_rate

CDH 4, CDH 5cluster, kudu,
rack

messages per
second

Number of INFO-level log
messages emitted by the
application.

kudu_glog_info_messages_rate

112 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
rack

messages per
second

Number of WARNING-level log
messages emitted by the
application.

kudu_glog_warning_messages_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.consensus.ConsensusService.ChangeConfig()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_changeconfig_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.consensus.ConsensusService.ChangeConfig()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_changeconfig_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.consensus.ConsensusService.GetConsensusState()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_getconsensusstate_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.consensus.ConsensusService.GetConsensusState()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_getconsensusstate_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.consensus.ConsensusService.GetLastOpId()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_getlastopid_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.consensus.ConsensusService.GetLastOpId()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_getlastopid_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.consensus.ConsensusService.GetNodeInstance()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_getnodeinstance_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.consensus.ConsensusService.GetNodeInstance()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_getnodeinstance_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.consensus.ConsensusService.LeaderStepDown()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_leaderstepdown_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.consensus.ConsensusService.LeaderStepDown()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_leaderstepdown_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.consensus.ConsensusService.RequestConsensusVote()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_requestconsensusvote_rate

Apache Kudu User Guide | 113

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.consensus.ConsensusService.RequestConsensusVote()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_requestconsensusvote_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.consensus.ConsensusService.RunLeaderElection()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_runleaderelection_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.consensus.ConsensusService.RunLeaderElection()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_runleaderelection_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.consensus.ConsensusService.StartRemoteBootstrap()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_startremotebootstrap_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.consensus.ConsensusService.StartRemoteBootstrap()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_startremotebootstrap_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.consensus.ConsensusService.UpdateConsensus()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_updateconsensus_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.consensus.ConsensusService.UpdateConsensus()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_consensus_consensusservice_updateconsensus_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.AlterTable()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_altertable_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.AlterTable()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_altertable_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.CreateTable()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_createtable_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.CreateTable()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_createtable_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.DeleteTable()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_deletetable_rate

114 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.DeleteTable()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_deletetable_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.GetMasterRegistration()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_getmasterregistration_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.GetMasterRegistration()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_getmasterregistration_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.GetTableLocations()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_gettablelocations_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.GetTableLocations()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_gettablelocations_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.GetTableSchema()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_gettableschema_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.GetTableSchema()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_gettableschema_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.GetTabletLocations()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_gettabletlocations_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.GetTabletLocations()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_gettabletlocations_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.IsAlterTableDone()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_isaltertabledone_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.IsAlterTableDone()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_isaltertabledone_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.IsCreateTableDone()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_iscreatetabledone_rate

Apache Kudu User Guide | 115

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.IsCreateTableDone()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_iscreatetabledone_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.ListMasters()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_listmasters_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.ListMasters()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_listmasters_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.ListTables()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_listtables_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.ListTables()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_listtables_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.ListTabletServers()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_listtabletservers_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.ListTabletServers()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_listtabletservers_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.Ping()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_ping_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.Ping()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_ping_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.master.MasterService.TSHeartbeat()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_master_masterservice_tsheartbeat_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.master.MasterService.TSHeartbeat()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_master_masterservice_tsheartbeat_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.server.GenericService.FlushCoverage()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_server_genericservice_flushcoverage_rate

116 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.server.GenericService.FlushCoverage()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_server_genericservice_flushcoverage_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.server.GenericService.GetStatus()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_server_genericservice_getstatus_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.server.GenericService.GetStatus()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_server_genericservice_getstatus_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.server.GenericService.ServerClock()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_server_genericservice_serverclock_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.server.GenericService.ServerClock()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_server_genericservice_serverclock_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.server.GenericService.SetFlag()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_server_genericservice_setflag_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.server.GenericService.SetFlag()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_server_genericservice_setflag_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.server.GenericService.SetServerWallClockForTests()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_server_genericservice_setserverwallclockfortests_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.server.GenericService.SetServerWallClockForTests()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_server_genericservice_setserverwallclockfortests_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.RemoteBootstrapService.BeginRemoteBootstrapSession()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_remotebootstrapservice_beginremotebootstrapsession_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.RemoteBootstrapService.BeginRemoteBootstrapSession()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_remotebootstrapservice_beginremotebootstrapsession_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.RemoteBootstrapService.CheckSessionActive()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_remotebootstrapservice_checksessionactive_rate

Apache Kudu User Guide | 117

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.RemoteBootstrapService.CheckSessionActive()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_remotebootstrapservice_checksessionactive_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.RemoteBootstrapService.EndRemoteBootstrapSession()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_remotebootstrapservice_endremotebootstrapsession_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.RemoteBootstrapService.EndRemoteBootstrapSession()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_remotebootstrapservice_endremotebootstrapsession_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.RemoteBootstrapService.FetchData()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_remotebootstrapservice_fetchdata_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.RemoteBootstrapService.FetchData()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_remotebootstrapservice_fetchdata_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.TabletServerAdminService.AlterSchema()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserveradminservice_alterschema_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.TabletServerAdminService.AlterSchema()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserveradminservice_alterschema_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.TabletServerAdminService.CreateTablet()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserveradminservice_createtablet_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.TabletServerAdminService.CreateTablet()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserveradminservice_createtablet_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.TabletServerAdminService.DeleteTablet()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserveradminservice_deletetablet_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.TabletServerAdminService.DeleteTablet()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserveradminservice_deletetablet_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.TabletServerService.Checksum()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_checksum_rate

118 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.TabletServerService.Checksum()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_checksum_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.TabletServerService.ListTablets()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_listtablets_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.TabletServerService.ListTablets()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_listtablets_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.TabletServerService.Ping()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_ping_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.TabletServerService.Ping()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_ping_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.TabletServerService.Scan()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_scan_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.TabletServerService.Scan()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_scan_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.TabletServerService.ScannerKeepAlive()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_scannerkeepalive_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.TabletServerService.ScannerKeepAlive()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_scannerkeepalive_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Microseconds spent handling
kudu.tserver.TabletServerService.Write()
RPC requests. This is the total
number of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_write_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Microseconds spent handling
kudu.tserver.TabletServerService.Write()
RPC requests. This is the total
sum of recorded samples.

kudu_handler_latency_kudu_tserver_tabletserverservice_write_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microsecondsServer clock maximum error.kudu_hybrid_clock_error

CDH 4, CDH 5cluster, kudu,
rack

message.units.microsecondsHybrid clock timestamp.kudu_hybrid_clock_timestamp

Apache Kudu User Guide | 119

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
rack

message.units.context_switches
per second

Total involuntary context
switches

kudu_involuntary_context_switches_rate

CDH 4, CDH 5cluster, kudu,
rack

blocksNumber of data blocks currently
under management

kudu_log_block_manager_blocks_under_management

CDH 4, CDH 5cluster, kudu,
rack

bytesNumber of bytes of data blocks
currently under management

kudu_log_block_manager_bytes_under_management

CDH 4, CDH 5cluster, kudu,
rack

message.units.log_block_containers
per second

Number of log block containerskudu_log_block_manager_containers_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.log_block_containers
per second

Number of full log block
containers

kudu_log_block_manager_full_containers_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.unitsLogical clock timestamp.kudu_logical_clock_timestamp

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Number of operationswaiting to
be applied to the tablet. High
queue lengths indicate that the

kudu_op_apply_queue_length_rate

server is unable to process
operations as fast as they are
being written to theWAL. This is
the total number of recorded
samples.

CDH 4, CDH 5cluster, kudu,
rack

tasks per
second

Number of operationswaiting to
be applied to the tablet. High
queue lengths indicate that the

kudu_op_apply_queue_length_sum_rate

server is unable to process
operations as fast as they are
being written to theWAL. This is
the total sum of recorded
samples.

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Time that operations spent
waiting in the apply queue
before being processed. High

kudu_op_apply_queue_time_rate

queue times indicate that the
server is unable to process
operations as fast as they are
being written to theWAL. This is
the total number of recorded
samples.

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Time that operations spent
waiting in the apply queue
before being processed. High

kudu_op_apply_queue_time_sum_rate

queue times indicate that the
server is unable to process
operations as fast as they are
being written to theWAL. This is
the total sum of recorded
samples.

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Time that operations spent being
applied to the tablet. High values
may indicate that the server is

kudu_op_apply_run_time_rate

120 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

under-provisioned or that
operations consist of very large
batches. This is the total number
of recorded samples.

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Time that operations spent being
applied to the tablet. High values
may indicate that the server is

kudu_op_apply_run_time_sum_rate

under-provisioned or that
operations consist of very large
batches. This is the total sum of
recorded samples.

CDH 4, CDH 5cluster, kudu,
rack

connections
per second

Number of incoming TCP
connections made to the RPC
server

kudu_rpc_connections_accepted_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Number of microseconds
incoming RPC requests spend in
the worker queue. This is the

kudu_rpc_incoming_queue_time_rate

total number of recorded
samples.

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Number of microseconds
incoming RPC requests spend in
the worker queue. This is the
total sum of recorded samples.

kudu_rpc_incoming_queue_time_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

requests per
second

Number of RPCs dropped
because the service queue was
full.

kudu_rpcs_queue_overflow_rate

CDH 4, CDH 5cluster, kudu,
rack

requests per
second

Number of RPCs whose timeout
elapsed while waiting in the
service queue, and thuswere not
processed.

kudu_rpcs_timed_out_in_queue_rate

CDH 4, CDH 5cluster, kudu,
rack

samples per
second

Histogram of the duration of
active scanners on this tablet.
This is the total number of
recorded samples.

kudu_scanner_duration_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Histogram of the duration of
active scanners on this tablet.
This is the total sum of recorded
samples.

kudu_scanner_duration_sum_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.scanners
per second

Number of scanners that have
expired since service start

kudu_scanners_expired_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.microseconds
per second

Amount of time consumed by
contention on internal spinlocks
since the server started. If this

kudu_spinlock_contention_time_rate

increases rapidly, it may indicate
a performance issue in Kudu
internals triggered by a
particularworkload andwarrant
investigation.

Apache Kudu User Guide | 121

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5cluster, kudu,
rack

bytesA measure of some of the
memory TCMalloc is using (for
small objects).

kudu_tcmalloc_current_total_thread_cache_bytes

CDH 4, CDH 5cluster, kudu,
rack

bytesA limit to how much memory
TCMalloc dedicates for small
objects. Higher numbers trade

kudu_tcmalloc_max_total_thread_cache_bytes

off more memory use for -- in
some situations -- improved
efficiency.

CDH 4, CDH 5cluster, kudu,
rack

bytesNumber of bytes in free,mapped
pages in page heap. These bytes
can be used to fulfill allocation

kudu_tcmalloc_pageheap_free_bytes

requests. They always count
towards virtual memory usage,
and unless the underlying
memory is swapped out by the
OS, they also count towards
physical memory usage.

CDH 4, CDH 5cluster, kudu,
rack

bytesNumber of bytes in free,
unmapped pages in page heap.
These are bytes that have been

kudu_tcmalloc_pageheap_unmapped_bytes

released back to theOS, possibly
by one of the MallocExtension
"Release" calls. They can be used
to fulfill allocation requests, but
typically incur a page fault. They
always count towards virtual
memory usage, and depending
on theOS, typically do not count
towards physicalmemory usage.

CDH 4, CDH 5cluster, kudu,
rack

threadsCurrent number of running
threads

kudu_threads_running

CDH 4, CDH 5cluster, kudu,
rack

threads per
second

Total number of threads started
on this server

kudu_threads_started_rate

CDH 4, CDH 5cluster, kudu,
rack

message.units.context_switches
per second

Total voluntary context switcheskudu_voluntary_context_switches_rate

CDH 4, CDH 5accumulo,
cluster, rack

bytesResident memory usedmem_rss

CDH 4, CDH 5accumulo,
cluster, rack

bytesAmount of swap memory used
by this role's process.

mem_swap

CDH 4, CDH 5accumulo,
cluster, rack

bytesVirtual memory usedmem_virtual

CDH 4, CDH 5accumulo,
cluster, rack

exits per
second

The number of times the role's
backing process was killed due
to an OutOfMemory error. This

oom_exits_rate

counter is only incremented if
the Cloudera Manager "Kill
When Out of Memory" option is
enabled.

122 | Apache Kudu User Guide

Cloudera Manager Metrics for Kudu



CDH VersionParentsUnitDescriptionMetric Name

CDH 4, CDH 5accumulo,
cluster, rack

bytes per
second

The number of bytes read from
the device

read_bytes_rate

CDH 4, CDH 5accumulo,
cluster, rack

exits per
second

The number of times the role's
backing process exited
unexpectedly.

unexpected_exits_rate

CDH 4, CDH 5accumulo,
cluster, rack

secondsFor a host, the amount of time
since the host was booted. For a
role, the uptime of the backing
process.

uptime

CDH 4, CDH 5accumulo,
cluster, rack

bytes per
second

The number of bytes written to
the device

write_bytes_rate

Apache Kudu User Guide | 123

Cloudera Manager Metrics for Kudu



More Resources for Apache Kudu

The following is a list of resources that may help you to understand some of the architectural features of Apache Kudu
and columnar data storage. The links further down tend toward the academic and are not required reading in order
to understand how to install, use, and administer Kudu.

Kudu Project

Read the official Kudu documentation and learn how you can get involved.

Kudu Documentation

Read the official Kudu documentation,which includesmore in-depth information about installation and configuration
choices.

Kudu Github Repository

Examine the Kudu source code and contribute to the project.

Kudu-Examples Github Repository

View and run several Kudu code examples, as well as the Kudu Quickstart VM.

Kudu White Paper

Read draft of the white paper discussing Kudu's architecture, written by the Kudu development team.

In Search Of An Understandable Consensus Algorithm, Diego Ongaro and John Ousterhout, Stanford University.
2014.

The original whitepaper describing the Raft consensus algorithm.

Column-Stores vs. Row-Stores: How Different Are They Really? Abadi, Madden, Hachem. 2008.

A discussion of the characteristics of column-based and row-based datastores and their characteristics under
different workloads and schemas.

Support

Bug reports and feedback can be submitted through the public JIRA, our Cloudera Community Kudu forum, and a public
mailing list monitored by the Kudu development team and community members. In addition, a public Slack instance
is available to communicate with the team.

124 | Apache Kudu User Guide

More Resources for Apache Kudu

http://kudu.apache.org/
http://kudu.apache.org/docs/index.html
http://github.com/cloudera/kudu/
http://github.com/cloudera/kudu-examples/
http://kudu.apache.org/kudu.pdf
https://ramcloud.stanford.edu/raft.pdf
http://db.csail.mit.edu/projects/cstore/abadi-sigmod08.pdf
https://issues.apache.org/jira/browse/KUDU/
http://community.cloudera.com/t5/Beta-Releases-Kudu-RecordService/bd-p/Beta
http://mail-archives.apache.org/mod_mbox/kudu-user/
https://getkudu-slack.herokuapp.com/

	Table of Contents
	About Apache Kudu
	Concepts and Terms
	Columnar Datastore
	Raft Consensus Algorithm
	Table
	Tablet
	Tablet Server
	Master
	Catalog Table
	Logical Replication

	Architectural Overview
	Example Use Cases
	Next Steps

	Apache Kudu Release Notes
	Schema Design and Usage Limitations
	Kudu 1.3.0 / CDH 5.11.2 Release Notes
	Kudu 1.3.0 / CDH 5.11.1 Release Notes
	Kudu 1.3.0 / CDH 5.11.0 Release Notes
	New Features in Kudu 1.3.0 / CDH 5.11.0
	Optimizations and Improvements in Kudu 1.3.0 / CDH 5.11.0
	Fixed Issues in Kudu 1.3.0 / CDH 5.11.0
	Wire Protocol Compatibility
	Incompatible Changes in Kudu 1.3.0 / CDH 5.11.0
	Client Library Compatibility

	Known Issues and Limitations in Kudu 1.3.0 / CDH 5.11.0

	Kudu 1.2.0 / CDH 5.10.2 Release Notes
	Kudu 1.2.0 / CDH 5.10.1 Release Notes
	Kudu 1.2.0 / CDH 5.10.0 Release Notes
	New Features and Improvements in Kudu 1.2.0 / CDH 5.10.0
	Issues Fixed in Kudu 1.2.0 / CDH 5.10.0
	Incompatible Changes in Kudu 1.2.0 / CDH 5.10.0
	Known Issues and Limitations in Kudu 1.2.0 / CDH 5.10.0

	Kudu 1.1.x Release Notes
	New Features in Kudu 1.1.0
	Issues Fixed in Kudu 1.1.0

	Kudu 1.0.1 Release Notes
	Issues Fixed in Kudu 1.0.1

	Kudu 1.0.0 Release Notes
	New Features in Kudu 1.0.0
	Incompatible Changes in Kudu 1.0.0
	Known Issues and Limitations of Kudu 1.0.0
	Issues Fixed in Kudu 1.0.0

	Kudu 0.10.0 Release Notes
	New Features in Kudu 0.10.0
	Other Improvements in Kudu 0.10.0
	Issues Fixed in Kudu 0.10.0
	Incompatible Changes in Kudu 0.10.0

	Kudu 0.9.1 Release Notes
	Issues Fixed in Kudu 0.9.1

	Kudu 0.9.0 Release Notes
	New Features in Kudu 0.9.0
	Other Improvements and Changes in Kudu 0.9.0
	Issues Fixed in Kudu 0.9.0
	Incompatible Changes in Kudu 0.9.0
	Limitations of Kudu 0.9.0
	Upgrade Notes for Kudu 0.9.0

	Kudu 0.8.0 Release Notes
	New Features in Kudu 0.8.0
	Other Improvements in Kudu 0.8.0
	Issues Fixed in Kudu 0.8.0
	Incompatible Changes in Kudu 0.8.0
	Limitations of Kudu 0.8.0
	Upgrade Notes for Kudu 0.8.0

	Kudu 0.7.1 Release Notes
	Issues Fixed in Kudu 0.7.1
	Limitations of Kudu 0.7.1
	Upgrade Notes For Kudu 0.7.1

	Kudu 0.7.0 Release Notes
	New Features in Kudu 0.7.0
	Other Improvements in Kudu 0.7.0
	Issues Fixed in Kudu 0.7.0
	Incompatible Changes in Kudu 0.7.0
	Limitations of Kudu 0.7.0
	Upgrade Notes For Kudu 0.7.0

	Kudu 0.6 Release Notes
	New Features in Kudu 0.6
	Issues Fixed in Kudu 0.6
	Limitations of Kudu 0.6
	Upgrade Notes For Kudu 0.6

	Kudu 0.5 Release Notes
	Limitations of Kudu 0.5

	Next Steps
	Apache Kudu Schema Design and Usage Limitations
	Schema Design Limitations
	Partitioning Limitations
	Scaling Recommendations and Limitations
	Server Management Limitations
	Cluster Management Limitations
	Replication and Backup Limitations
	Impala Integration Limitations
	Spark Integration Limitations
	Security Limitations
	Other Known Issues
	Timeout Possible with Log Force Synchronization Option
	Longer Startup Times with a Large Number of Tablets
	Confusing Descriptions for Kudu TLS/SSL Settings in Cloudera Manager



	Installing and Upgrading Apache Kudu
	Kudu Installation Requirements
	Install Kudu Using Cloudera Manager
	Install Kudu Using Parcels
	Install Kudu Using Packages

	Install Kudu Using the Command Line
	Verify the Installation
	Upgrade Kudu using Cloudera Manager
	Upgrade Kudu Using Parcels
	Upgrade Kudu Using Packages

	Upgrade Kudu Using the Command Line
	Next Steps

	Apache Kudu Configuration
	Configuring the Kudu Master
	Configuring Tablet Servers

	Apache Kudu Administration
	Starting and Stopping Kudu Processes
	Kudu Web Interfaces
	Kudu Master Web Interface
	Kudu Tablet Server Web Interface
	Common Web Interface Pages

	Kudu Metrics
	Listing available metrics
	Collecting metrics via HTTP
	Collecting metrics to a log

	Common Kudu workflows
	Migrating to Multiple Kudu Masters
	Prepare for the migration
	Perform the migration

	Recovering from a dead Kudu Master in a Multi-Master Deployment
	Prepare for the recovery
	Perform the recovery

	Monitoring Cluster Health with ksck
	Recovering from Disk Failure


	Developing Applications With Apache Kudu
	Viewing the API Documentation
	Building the Java Client
	Kudu Example Applications
	Maven Artifacts
	Kudu Python Client
	Example Apache Impala Commands With Kudu
	Kudu Integration with Spark
	Integration with MapReduce, YARN, and Other Frameworks

	Using Apache Impala (incubating) with Kudu
	Impala Database Containment Model
	Internal and External Impala Tables
	Using Impala To Query Kudu Tables
	Querying an Existing Kudu Table from Impala
	Creating a New Kudu Table From Impala
	CREATE TABLE AS SELECT

	Partitioning Tables
	Optimizing Performance for Evaluating SQL Predicates
	Inserting a Row
	Inserting In Bulk
	INSERT and Primary Key Uniqueness Violations

	Updating a Row
	Updating In Bulk

	Upserting a Row
	Deleting a Row
	Deleting In Bulk

	Failures During INSERT, UPDATE, UPSERT, and DELETE Operations
	Altering Table Properties
	Dropping a Kudu Table using Impala

	Security Considerations
	Known Issues and Limitations
	Next Steps

	Apache Kudu Security
	Kudu Authentication with Kerberos
	Internal Private Key Infrastructure (PKI)
	Authentication Tokens
	Scalability

	Encryption
	Coarse-grained Authorization
	Web UI Encryption
	Web UI Redaction
	Log Redaction
	Configuring a Secure Kudu Cluster using Cloudera Manager
	Configuring a Secure Kudu Cluster using the Command Line

	Apache Kudu Schema Design
	The Perfect Schema
	Column Design
	Column Encoding
	Column Compression

	Primary Key Design
	Primary Key Index

	Partitioning
	Range Partitioning
	Hash Partitioning
	Multilevel Partitioning
	Partition Pruning
	Partitioning Examples

	Schema Alterations
	Schema Design Limitations

	Apache Kudu Transaction Semantics
	Single Tablet Write Operations
	Writing to Multiple Tablets
	Read Operations (Scans)
	Known Issues and Limitations
	Reads (Scans)
	Writes


	Apache Kudu Background Maintenance Tasks
	Troubleshooting Apache Kudu
	Issues Starting or Restarting the Master or Tablet Server
	Error during hole punch test
	Clock Synchronization Issues

	Breakpad Minidumps for Kudu
	Troubleshooting Performance Issues
	Kudu Tracing


	Cloudera Manager Metrics for Kudu
	Kudu Metrics
	Kudu Replica Metrics
	Tablet Server Metrics

	More Resources for Apache Kudu

